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ABSTRACT 

The application of polymers in robust engineering designs is on the rise due to their 

excellent mechanical properties such as high fracture toughness, specific strength, durability, as 

well as, thermal and chemical resistances. Implementation of some advanced polymeric solids is 

limited due to the lack of available mechanical properties. In order for these materials to endure 

strenuous engineering designs it is vital to investigate their response in multiple loading rates and 

conditions. In this thesis, the mechanical response of polyethermide (PEI) is characterized under 

quasi-static, high strain rate, and multiple impact conditions. Standard tension, torsion, and 

compression experiments are performed in order to distinguish the multi-regime response of PEI. 

The effects of physical ageing and rejuvenation on the quasi-static mechanical response are 

investigated. The strain softening regime resulting from strain localization is eliminated by 

thermal and mechanical rejuvenation, and the advantages of these processes are discussed. The 

dynamic fracture toughness of the material in response to notched impact via Charpy impact test 

is evaluated. The high strain-rate response of PEI to uniaxial compression is evaluated at rates 

exceeding 104/s via miniaturized Split Hopkinson Pressure Bar (MSHPB), and compared to the 

quasi-static case to determine strain-rate sensitivity. The elastic response of the aged material to 

multiple loading conditions are correlated using the Ramberg-Osgood equation, while the 

elastoplastic response of rejuvenated PEI is correlated using a both the Ramberg-Osgood 

equation and a novel model. The strain-rate sensitivity of the strength is found to be nominally 

bilinear and transition strains are modeled using the Ree-Erying formulation. Finally, multiple 

impact experiments are performed on PEI using the MSHPB and a model is proposed to quantify 

damage as a result of collision. 
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1. INTRODUCTION 

 The development of new technologies has increased the challenges of service conditions 

that mechanical components undergo. As these service conditions become increasingly more 

strenuous there is a greater need for the development of durable designs which incorporate strong 

and heavy-duty materials. Developing these materials can prove to be difficult, but 

characterizing them is a task on its own. In the past years, the application of polymeric solids for 

robust engineering designs has greatly increased. These materials are sought after due to their 

excellent mechanical properties such as fracture toughness, specific strength, durability, as well 

as, thermal and chemical resistances. However, the implementation of many of these advanced 

polymeric solids can be limited due to the lack of available mechanical properties. This issue 

becomes increasingly more significant considering the established dependency of polymers to an 

increase in temperature, and deformation rates. To address the need for durable polymeric 

designs, it is vital to characterize these materials in both static and dynamic conditions. Recently, 

thermoplastics such as polycarbonate (PC), polypropylene (PP), and polyetheretherketone 

(PEEK) have been implemented in various mechanical designs. These thermoplastics are 

advantageous due to their ability to be reformed, and thus recyclable. A thermoplastic that has 

been used in various structural and dynamic engineering applications, but has not been fully 

characterized is polyetherimide (PEI). This material has experienced use in various applications 

due to its excellent mechanical strength and favorable characteristics as opposed to other 

thermoplastics. In the present study, the mechanical response of PEI is investigated under quasi-

static and high strain rate conditions. In the quasi-static case, standard tension, torsion, and 

compression experiments are performed on PEI. Ageing, an effect resulting in strain 
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localizations that cripple the ductility and toughness of the material are investigated, and 

methods to eliminate such processes are discussed. The response of PEI to uniaxial high strain-

rate compression is evaluated by means of a miniature Split Hopkinson Pressure Bar (mSHPB), 

and the rate sensitivity of the material is discussed. The elastoplastic response of PEI to quasi-

static deformation for several cases, and the rate sensitivity of the material are modeled. Finally, 

multiple impact experiments are performed on PEI and the results are discussed. This thesis is 

intended to confirm and expand the knowledge of the properties of PEI for future innovative 

applications. 

 A review of literature regarding the material response, and techniques utilized to analyze 

such responses are proposed in Chapter 2. The experimental setup and procedures used to 

evaluate the response of PEI to quasi-static and high strain-rate deformation are discussed in 

chapter 3 and 4, respectively. The results for these experiments are presented and modeled in 

chapter 5 and 6, respectively. Finally, the discussion of results, and plan for future work, as well 

as, references, data and codes are provided in chapter 7 and 8, respectively.  
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2. BACKGROUND 

2.1 Material Background 

2.1.1 Polyetherimide (Ultem 1000) 

 Unreinforced PEI, commonly referred to as Ultem 1000 is an advanced amorphous 

thermoplastic developed by General Electric Co. with superb thermal, electrical and mechanical 

properties. PEI is the result of combining units of ether and aromatic imides leading to the large 

monomer C37H24O6N27. The chemical composition and molecular structure of PEI is shown in 

Fig 1. It is known that ether units supply the excellent flow and flexibility to the melt, while 

imide units provide excellent mechanical and thermal resistances (Chen e. a., 2006). This 

polymer is commonly synthesized via polycondensation of dianhydride 4,4’, with m-phenylene 

diamine. This material is both x-ray amorphous (i.e., the polymer chains lack long range order) 

and exhibits a glass transition, thus being categorized as a glassy polymer. The favorable 

characteristics of PEI have led to its use in various industrial applications.  This material has been 

used in injection molding of a variety of interior and structural components in the Fokker 50 and 100 

series aircraft [Beland, 2009]. It has been used for thermostat housing, transmission components, and 

throttle bodies in automobiles [Bierogel, et al 2008]. In addition, PEI has been used to manufacture 

sterilization trays and surgical probes for the medical industry [Swallowe, 1999]. 

 

 

  (a) (b) 
Figure 1. (a) Molecular arrangement, and (b) amorphous polymer chain of Ultem 1000. 
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2.1.2 Previously Characterized Properties 

 Because polyetherimide has been used in various industrial applications some of its 

properties have been previously investigated, such as in tribological, structural, and impact 

applications. A variety of researchers have also developed the mechanical properties of PEI and 

select properties are provided in table 1. Polytetrafluroethylene (PTFE) has been shown to 

decrease the frictional coefficient of PEI, and glass-fibre reinforcement has been shown to 

increase wear resistance at a tradeoff for ductility [Bijwe, 1990]. Facca showed that it was 

possible to predict the linear elastic behavior of the material from thermodynamic processes 

[Facca, 2006], and the properties of carbon fibre reinforced PEI were evaluated via Izod Impact 

Experiment [Smmazcelik, 2008]. Researchers have also investigated novel production processes 

to increase the properties of PEI in specific applications, such as the addition of alumina or silica 

nano-particles which increase the ultimate strength of PEI, or the fabrication of nanofoams with 

higher specific modulus and thermal resistances than other foams [Chen, 2006; Bansal, 2002; 

Zhou, 2012].  

 In the quasi-static case, the mechanical response of PEI is similar to that of other 

amorphous thermoplastics, in such a way that it is marked by four distinctive mechanical 

regimes before rupturing: (1) linear elastic, (2) non-linear elastic, (3) strain softening, and (4) 

strain hardening. The response of PEI to quasi-static compression is shown in Fig 2. Initially, 

PEI responds linearly to stress, this response is dictated by the van der waal forces present during 

the interaction between polymer chains as they slide with respect to one another. As deformation 

continues, the stress in localized areas of the material increase to a level by which they overcome 
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the van der waal forces, at this point the response becomes notably non-linear. The non-linear 

response continues until high stresses propagate throughout the sample and the material yields, 

for amorphous polymers the yield strength is denoted as the local maximum stress prior to strain 

softening. The third mechanical regime has been a source of some debate, of whether it is 

characterized by a local temperature rise [Marshall, 1954], or a permanent rearrangement of 

polymer chains [Brown, 1968; Vincent, 1960], but the latter has been accepted. It is known that 

amorphous polymers exist in a state of non-equilibrium, and with enough time theoretically 

mobilize to a lower energy state. The rate at which they mobilize is directly related to the ratio of 

the temperature application and their glass transition temperature. This phenomenon has been 

extensively researched and shown to increase free volume at the expense of mobility within the 

material. This process referred to as physical ageing in polymers promotes strain localizations 

which can cripple the ductility of the material during the strain softening regime [Struik, 1978; 

Simon, 1996; Garcia, 2007; Mahajan, 2010; Marano, 2013]. Subsequent to strain softening, the 

material begins to harden in response to an alignment of once randomly oriented polymer chains 

in a way where increased stress is required for continued flow, and finally the material ruptures.  

 Despite the limited available mechanical data the quasi-static properties of PEI are 

relatively well understood, however, most investigations focused on a single mode of mechanical 

response. Further research is needed to improve the confidence of designs in multi-modal 

applications. Furthermore, the response of PEI to high deformation rates has received even less 

attention, and these investigations are vital given the polymeric sensitivity to high rates of 

deformation. To further understand the response of polymers the following section will discuss 

the background of previous polymer high strain-rate investigations. 
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Table 1. Mechanical and thermal properties of Ultem 1000 [Mutter, 2010]. 

 

 

 

Mechanical Properties Value (English) Value (SI) 

Tensile Modulus, Et 475 ksi 3.28 GPa 

Compressive Modulus, Ec 480 ksi 3.31 GPa 

Flexural Modulus, Ef 500 ksi 3.45 GPa 

Poisson’s Ratio, ν 0.36 0.36 

Elongation (Yield), εy 7.0 % 7.0 % 

Tensile Strength,  σut 16.5 ksi 113.8 MPa 

Compressive Strength, σuc 22 ksi 151.7 MPa 

Shear Strength, σsu 15 ksi 103.4 MPa 

Flexural Strength, σuf 20 ksi 137.9 MPa 

Elongation (Fracture), εf 60 % 60 % 

Izod Impact Resistance, Notched  1.0 ft-lbs/in 0.034 J/m 

Rockwell Hardness, HRM 109 109 

Physical Properties Value (English) Value (SI) 

Specific Gravity  1.28 1.28 

Thermal Properties Value (English) Value (SI) 

CTE-Flow, αf 31 μin/in-°F 55.8 μm/m-°C 

Glass Temperature, Tg 419°F 215°C 

Figure 2.  Response of PEI to quasi-static uniaxial compression. 
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Figure 3.  Stress-strain response of PC for multiple strain rates [Sivour, 2005]. 

2.1.3 High Rate Polymer Investigations 

 It is a well-known phenomenon that materials exhibit and increase in strength in response 

to increasing strain-rates. The same has been found when investigating the dynamic response of 

polymeric solids. Chou et al. employed a custom medium strain-rate machine and a Kolsky bar 

apparatus to study the response of polymethylmethacrylate PMMA, cellulose acetate butyrate 

(CAB), polypropylene (PP), and nylon 6 to a wide range of strain rates. It was noted that a 

positively sloped relationship existed between the strength of the polymers and the rate at which 

they were deformed [Chou, 1973]. Similar investigations were performed on a range of polymers 

by Walley and Field [Walley, 1989; Walley, 1991; Field, 1994]. They too noted a positively 

sloped strain rate dependency in the yield strength of the polymers, and went further to classify 

this relationship into three groups. The first is a positively sloped linear relationship, followed by 

a positively sloped bilinear relationship, while the final is a decrease in the strength of the 

material at approximately 103/s strain rate. The stress-strain response and rate dependency of 

polycarbonate PC found in an investigation by Sivour, is illustrated in Fig 3 and Fig 4 [Sivour, 

2005]. 
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As shown above the rate sensitivity of amorphous polymers is vital to the understanding 

of the mechanical response, and for each rate sensitivity group it is necessary to model this 

behavior. In order to model the linear rate dependency of the yield strength in amorphous polymers 

the Eyring activation theory [Eyring, 1936] has been used by researchers, but for materials which 

exhibit a bilinear behavior, a modified version of the Eyring activation theory, knows as the Ree-

Erying model [Ree, 1955] has been developed and utilized [Roetling, 1965]. The techniques stated 

above will be used in the following investigation to study the behavior of PEI, further information 

detailing the models will be presented in chapter 7. In the following section the history of the Split 

Hopkinson Pressure Bar will be provided, as well as, a background detailing the theory and 

assumptions required for acquiring the stress-strain response of materials at high deformation rates. 

 

Figure 4. Rate sensitivity of PC strength [Siviour, 2005]. 
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2.2 Split Hopkinson Pressure Bar Background 

2.2.1 History  

 The Hopkinson Pressure Bar (HPB) was developed by Bertram Hopkinson as a means of 

generating pressure waves associated with dynamic conditions. Although Hopkinson developed 

the device to study the behavior of waves as the propagated through cylindrical mediums 

[Hopkinson, 1914], Davies and Kolsky further developed the device in order to attain a 

constitutive response of a material under high deformation rates [Davies, 1948; Kolsky, 1949]. 

The new device was called the “Split Hopkinson Pressure Bar” (SHPB) or simply Kolsky bar, 

because the original bar was divided into two bars in order to contain a sample. Since the 

development of the SHPB, the technique has been modified in order to load materials in multi-

modes, such as tension, torsion, shear, biaxial, and triaxial modes [Harding, 1960; Nicholas, 

1981; Staab, 1991, Gilat, 2000; Nemat, 2000]. Further, modifications have been made for precise 

control of the apparatus such as pulse shaping and momentum trapping, which are critical for 

steady strain-rates, and dynamic recovery experiments, respectively.  

 The SHPB is not a commercially available device nor does it possess an ASTM standard, 

however, guidelines due exist which detail the design, experimental analysis, and solutions to 

various experimental complications [Gray, 2000; Chen, 2011; Mutter, 2011]. Special 

considerations are required when using the SHPB technique to test varying materials. 

Modifications have been made to the technique in order to test ceramics [Zhao, 1998; Subhash, 

2000], low impedance materials [Blumenthal, 2000], and even metallic glasses [Sunny, 2012]. 

Mathematical techniques to correct error in the acquired pulses due to wave dispersion have been 



10 

 

developed by various researchers [Follanbee, 1983; Gong, 1990; Gorham, 1983; Lifshitz, 1994; 

Tyas, 2005]. High resolution optical strain measurement techniques have been studied to correct 

similar effects [Siviour, 2009; Ramesh, 2007; Swantek, 2011], and the minituarized Split 

Hopkinson Pressure Bar (mSHPB) has been rigorously studied [Jia and Ramesh, 2004]. This 

technique has been shown to possess advantages over the full scale setup, such as an increase in 

the strain-rate limit, a reduction of the negative effects from wave dispersion, friction and inertia.  

2.2.2 SHPB Theory 

 Now that the history of the apparatus has been discussed, a brief review of the 

SHPB theory will be discussed in this section. Further details and derivations can be found in the 

ASM handbook [Gray, 2004]. In application, pressures waves transverse a slender bar and impart 

a dynamic load to an adjacent specimen. Because these devices can generate strain rates on the 

order of 105/s it is reasonable that conditions similar to explosive detonations or bullet impact 

can be simulated in a lab type environment. The classic SHPB had three main components; the 

striker bar, the impact bar, and the transmission bar. An illustration of the classic setup is shown 

in Fig 5.  
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Under compression, a sample located between the incident and transmission bars is 

compressively loaded by a stress wave generated through the collision of the striker and incident 

bars. Initially, the stress wave, known as the incident pulse, 𝜀𝐼 , travels through the incident bar. 

Once the incident pulse reaches the sample and transmission bar interface it is partially reflected 

back through the incident bar, while the remainder travels into the transmission bar. These are 

referred to as the reflected, 𝜀𝑟, and transmitted pulses, 𝜀𝑡, respectively. An illustration of the 

signal acquired during a SHPB test is shown in Fig 6. The strain rate, 𝜀̇, of the deforming 

material can be expressed as a function dependent on the velocity of the bars: 

1 2( )
( )

sp

v v
t

L



                                            (1) 

Where  𝑣1 and 𝑣2 are the velocities of the front and back surfaces of the sample, respectively. 

The velocities of the front and back surfaces of the sample are proportional to the strains 

generated in the bar and the speed of the propagating wave CB and are given by: 

Figure 5. Classic Split Hopkinson Pressure Bar Apparatus. 
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1 ( )B I rV C                                                            (2) 

2 B tV C                                                                (3) 

By combining equations (2) and (3) into equation (1), the relationship of the sample deformation 

speed to the incident, reflected and transmitted pulses can be expressed as follows: 

( ) [ ( ) ( ) ( )]B
I r t

sp

C
t t t t

L
                                                 (4) 

When the sample reaches dynamic equilibrium the strain at the incident bar interface equals that 

of the transmission bar interface. 

( ) ( ) ( )I r tt t t                                                (5) 

By using equation (5) the equation describing the strain rate of the sample can be simplified to: 

2
( ) [ ( )]B

r

sp

C
t t

L
 


                                               (6) 

Finally, by using the transmitted strain pulse the stress on the sample can be described by the 

following equation: 

( ) [ ( )]b
s t

s

EA
t t

A
                                                 (7) 

Under the assumption of dynamic equilibrium equations (6) and (7) can be used to directly 

acquire the stress and strain-rate of the sample as a function of time. The dynamic equilibrium 
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state of the sample can be evaluated by using equation (7) and replacing εt(t) with εI(t) + εr(𝑡). 

Equilibrium is assumed in the region where the summation of the incident and reflected pulses 

oscillated about the transmitted pulse by a difference of roughly 10%, this is illustrated in Fig. 7. 

The equations stated above only hold true under the assumptions of 1 dimensional wave 

propagation, frictionless contact, dynamic equilibrium, and no wave dispersion. 
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Figure 6. Acquired signal from incident and transmitted bars. 
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Figure 7. Two wave signal oscillating about the one wave signal. 
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3. QUASI-STATIC EXPERIMENATION 

3.1 Experimental Procedure of Tensile Testing 

 In order to investigate the tensile properties of the material, several uniaxial tensile 

experiments were performed on PEI samples at room temperature. To ensure accuracy of the 

acquired data, all tests were performed in accordance to their ASTM Standard [ASTM D638, 

2010]. As-received plate PEI was precision milled into standard Type I rectangular cross section 

samples. The samples featured an outer radius, 𝑅𝑜 , of 0.75 in (19.1 mm), an inner radius 𝑅𝑖 , of 

0.50 in (12.7 mm), a gage section 𝐿𝑜 ,of 2.0 in (50.8 mm), and a thickness, 𝑡, of 0.094 in (2.39 

mm). To ensure that sample failure occurred within the gage section, a fillet of radius, 𝜌 , of 3.0 

in (76.2 mm) was introduced just outside the gage area.  

Experiments were performed using a universal test machine (MTS model Insight 5) with 

a 5 kN load cell operating at a cross head velocity of 0.20 in/min (0.51mm/min). An axial 

extensometer MTS model 634.11 was used to measure strain to standard and with high precision 

[ASTM E83a, 2010]. The test coupon and fixture are shown in Fig 8. Fractographic analyses of 

the test coupons were performed in order to characterize mechanisms of rupture; these images 

are shown in Fig. 9. To properly acquire the plastic response of PEI beyond the limit of the 

extensometer, the cross-head displacement was used.  
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(a) (b) 

Figure 9. (a) Standard tensile sample with dimensions, and (b) universal test frame 

Figure 8. Fracture Surfaces of Standard tensile samples 
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3.2 Compression Experiments 

3.2.1 Experimental Setup and Procedure 

 Quasi-static compression experiments were designed and perfomed in accordance to the 

appropriate ASTM Standard [ASTM D695, 2010]. Cylindrical samples were machined from as-

received rod material to dimensions of 0.25 in (6.35 mm) by 0.5 in (12.7 mm), and were 

subjected to compressive load at a crosshead velocity of 0.050 in/min (1.3 mm/min). 

Experiments were performed on an MTS insight 5 mechanical unit, and the experimental setup is 

shown in Fig 10. In order to prevent barreling of the samples precautionary actions were 

performed to lower the surface friction at the sample interface. Surface finishing of the samples 

and compression plates were performed using 600 grit silicon carbide papers, and lubrication 

was applied at the interface using a molybdenum disulfide film lubricant (Drislide Multi-

Purpose). 

 

D = 0.25in 

L
=

 0
.5

0
in

 

(a) (b) 

Figure 10. (a) Standard compression test specimen , and (b) universal test frame. 
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3.2.2 Naturally Aged and Rejuvenated Experiments 

In order to study the effects of physical ageing on the mechanical properties of PEI, 

rejuvenation processes were performed on the material samples and compared to the quasi-static 

case. Two commonly used processes which work to decrease strain localization in polymers are 

mechanical and thermal rejuvenation. Mechanical rejuvenation refers to the deformation of the 

polymer well beyond its yield strength, which lowers the yield strength of the material. Thermal 

rejuvenation refers to the process of heating a polymer above the glass transition temperature, 

and then quenching the material causing the polymer chains to return to a high energy state. In 

this experiment, mechanical rejuvenation was accomplished by pre-deforming Ultem 1000 

specimens to 12% strain, while thermal rejuvenation was achieved by heating rod material to 235 

°C for 30 min, then quenching the material in water to room temperature.  

3.3 Experimental Setup and Procedure for Torsion Experiments 

Quasi-static torsion experiments were performed on as-received PEI samples at room 

temperature. In illustration of the torsion sample in fixture is provided in Fig. 11. Samples were 

machined from rod material to solid cylinders with dimensions corresponding to specifications of 

the appropriate ASTM standard [ASTM E143, 2010]. The gage length and diameter of the 

samples measured 2.25 in (0.057 m) and 0.235 in (0.006 m), respectively. Experiments were 

performed on an MTS (Bionix 45 N-m) testing frame, and at a speed of 5 revolutions per minute 

corresponding to strain rates on the order of 10-2/s.  
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(a) (b) 

L = 2.25 in 

(0.057 m) 

D = 0.235 in 

 (0.006 m) 

Figure 11. (a) Standard Torsion Specimen, and (b) testing fixture. 
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4. HIGH STRAIN RATE EXPERIMENTS 

4.1 Charpy Impact Experiments 

To study the mechanisms of failure as a response to high strain rate deformation, Charpy 

Impact experiments were performed at room temperature using a universal impact test machine 

(Instron Model SI-1B) on as received Poly(etherimide). Plate material was machined into Type 

A notched impact samples in accordance to the appropriate ASTM standard [ASTM E23, 2012]. 

The PEI sample and Charpy Impact test fixture is shown in Fig. 12. The samples had a total 

length, L, of 2.165 in (55 mm), a height, H, of 0.394 in (10 mm) and thickness ,T, of 0.394 in (10 

mm), a notch depth, D, of 0.039in (1.0 mm), with an angle ,P, of 45°, and radius of the notch, R, 

of 0.001 in (0.25 mm). To evaluate the properties of Poly(etherimide) the pendulum of the 

impact test machine was set at a height, 𝐻𝑝, of 1.88 ft (0.573 m), resulting at an impact velocity, 

𝑉𝑝, of 11.0 ft/s (3.35 m/s) corresponding to strain rates on the order of 102/s. This height 

corresponds to the lowest possible starting height of the pendulum. 

To quantitatively analyze the mechanisms of failure, fracture surface photographs were 

captured and the fracture appearance of the samples were compared to percent shear fracture 

comparators provided in the ASTM standard. The common post impact fracture surfaces are 

shown in Fig. 13. Finally, the area of the sample was measured post examination to determine 

the percent of lateral expansion. 
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(a) (b) 

Figure 13. (a) Standard Type A Impact sample, and (b) Charpy Impact test fixture. 

Figure 12. Fracture surfaces of standard Charpy Impact samples. 
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4.2 Split Hopkinson Bar Experiments 

4.2.1 Experimental Setup and Procedure 

For this experiment, PEI was machined to a right circular cylinder using a miniature 

lathe, and then sanded using a custom jig to a diameter, 𝐷𝑠, of 0.070 in (1.83 mm) and a length, 

𝐿𝑠𝑝, of 0.039 in (1.00 mm). An illustration of the mSHPB samples is provided in Fig 14. 

Specimens with a length to diameter ratio of nearly 0.50 were carefully chosen in order to 

prevent barreling of the samples, radial inertial effects, and interfacial friction between the 

specimen and bars [Davies, 1948; Gray, 1977; Chen, 2011]. The experiments were conducted 

using a miniaturized Split Hopkinson Pressure Bar (MSHPB) at high strain rates of 104/s. The 

mSHPB is fundamentally identical to the SHPB apart from the reduction in size. Shown in Fig. 

15 is the experimental setup. The mSHPB consists of incident and transmitted Aluminum 7075-

T6 bars each of 10.0 in (254 mm) length and 0.125 in (3.175 mm) diameter, and a striker bar of 

the same diameter and length 3.00 in (76.2 mm). Further details about the setup and data 

acquisition system can be found in the Thesis by Nathan Mutter [Mutter, 2011]. The next section 

will discuss the calibration methods used for this experiment. 
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Figure 15. Side view and top view of a sample used for mSHPB experimentation. 

Figure 14. Minituare Split Hopkinson Pressure Bar loaded with PEI samples. 
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4.2.2 Calibration 

 In experimental techniques such as the SHPB it is vital to maintain an accurate 

calibration to ensure the precision of acquired data. Prior to this investigation the newly built 

mSHPB was subjected to a comprehensive calibration procedure. First, the gas gun chamber was 

subjected to varying pressures in order to determine fire speed and repeatability.  The pressure of 

50 psi was determined to project the striker bar at a speed of 15m/s by means of a photo gate. 

Second, the gain of the amplification system was determined by plotting the input versus output 

voltages, the result is shown in Fig 16.  

 

 

 

 

 

 

 

Next, the signal acquired from the strain gages was calibrated. Using the following relationship  

                                                                
1

2
B B B stC V                                                            (8) 

Figure 16. Ch1 and Ch2 gain calibration for amplification system. 
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where, ρb, and Cb, are the density and wave speed of the bar, respectively, the theoretical stress 

generated by the bar was determined based on the striker velocity. By dividing the theoretical 

stress from equation (8) by the Young’s modulus of the bar the theoretical strain of 0.2175 (in/in) 

was determined. By performing “bars together” experiments the magnitude and transmission of 

the experimental strain pulses were acquired. By comparing the magnitude of the experimental 

strain pulses to the theoretical strain pulse, the calibration constants of 1.084 and 1.061 were 

determined for the incident and transmission bars, respectively. The calibrated signal is plotted 

versus the theoretical maximum shown in Fig. 17. 

 

Figure 17. Calibrated strain pulses acquired from incident and transmission bars. 

From the figure it is shown that the calibrated incident bar signal adequately reaches the 

theoretical strain and propagates from the incident to the transmitted bar.    

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

4000 5000 6000 7000 8000 9000 10000

St
ra

in
 (

in
/i

n
)

Samples (unitless)

Transmitted Bar

Incident Bar

Theoretical Max



26 

 

 In order to maintain the assumption of one dimensional wave propagation it was 

necessary to ensure that the mSHPB sample was aligned to the center of the bar interface. To 

precisely align the sample a custom alignment jig was developed our of stainless steel and PLA 

and is shown in Fig. 18. 

 

Figure 18. Custom sample alignment fixture for mSHPB. 

Furthermore, an enclosure was developed in order to capture the sample during post testing, and 

this enclosure is shown in Fig. 19. 

 

Figure 19. mSHPB sample capture enclosure.  



27 

 

5. EXPERIMENTAL RESULTS 

5.1 Quasi-Static Tension 

It has been noted that the mechanical responses of several polymers are marked by four 

distinctive mechanical regimes before rupturing: (1) linear elastic, (2) non-linear elastic, (3) 

strain softening, and (4) strain hardening [Brown, 1968]. Similarly is the response of PEI. Shown 

in Fig. 20. The linear elastic regime is a result of van der waal forces present during interactions 

between polymer chains as they slide with respect to one another. The linear elastic regime is 

used to calculate the Young’s modulus of the material, averaged at 470 ksi (3.24 GPa). As 

deformation continues, localization within the sample increase the level of stress until it finally 

overcomes the van der waal forces and causes the linear response to become notably non-linear, 

this occurs after the proportional limit (PL) found to be at 1% engineering strain. At roughly 

7.3% engineering strain, the material exhibits a local maximum in stress considered the yield 

strength, and this value was averaged at 15.6 ksi (108 MPa). Upon plastic deformation the tensile 

curve exhibited a strain softening regime related to volume relaxation attributed to the physical 

aging process [Struik, 1978, Simon, 1996, Mahajan, 2010]. This mechanical response is a result 

of reduction in mobility and increase in free volume caused by the polymer slowly shifting 

towards equilibrium. The consequence of this process is strain localization which leads to a 

reduced level of stress required for continued deformation. The material then begins to strain 

harden due to the alignment of the polymer chains in the direction of the force and the reduction 

of cavity density which requires an increased level of stress for continued deformation [Marano, 

2013]. Finally, the sample ruptures after reaching approximately 80% engineering strain, at a 

stress of 13.6 ksi (89.6 MPa).  
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Material: Ultem 1000 
Test type: Uniaxial Tension 

Disp. Rate: 0.2 in/min 

Material: Ultem 1000 

Test type: Uniaxial Tension 
Disp. Rate: 0.2 in/min 

Material: Ultem 1000 

Test type: Uniaxial Tension 

Disp. Rate: 0.2 in/min 

Material: Ultem 1000 

Test type: Uniaxial Tension 
Disp. Rate: 0.2 in/min 

Figure 20.Mechanical response of PEI to uniaxial Tension. 
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An analysis of the fractured tensile samples was performed in order to characterize the 

mechanisms of rupture. The fracture surfaces of several tensile samples are shown in Fig. 21. 

During deformation a stress concentration was the origination point for a slow growing crack 

characterized by a nominally flat and uniform region in the vicinity of the defect. Once the crack 

reached critical proportions a sparse region characterized the transition between a slow growing 

crack and a fast fracture. The stress levels generated by the test exceeded the load bearing 

capacity of the sample causing a fast fracture, and the presence of shear lips and dimples 

indicated a ductile overload. The fracture surface features mentioned above are consistent among 

the tensile samples.  

  

Origination point (defect) 
Rib Marks  

Direction of crack growth  

Flat/uniform 

Sparse Region (fast fracture transition) 

Shear lips (fast fracture by ductile overload) 

Dimpled Appearance  

Figure 21. Macro-scale fracture surface of the Ultem 1000 samples after uniaxial tension. 
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5.2 Quasi-Static Compression 

5.2.1 As-received PEI Testing 

Similar to the quasi-static tensile behavior of as received Ultem 1000, the compressive 

mechanical response is marked by four mechanical regimes. (1) linear elastic, (2) non-linear 

elastic, (3) strain softening, and (4) strain hardening. The compressive strength curve for Ultem 

1000 is provided in Fig 22. The linear elastic regime is caused by the resistance to deformation 

due to the van der Waal forces which attract the polymer chains to one another. This regime lasts 

until about 1% engineering strain, and is used to calculate the compressive Young’s Modulus, 𝐸𝑐, 

which averages 480 ksi (3.31 GPa). Subsequent to the linear elastic behavior is the non-linear 

elastic regime, caused by the polymer chains sliding with respect to one another. At roughly 

8.7% engineering strain the material yields at 22 ksi (152 MPa). Upon yielding the specimen 

strain softens, and then continues to strain while hardening until finally buckling at about 30 ksi 

(207 MPa) and 40% engineering strain. 

 

 

  

Figure 22. The mechanical response of Ultem 1000 to uniaxial compressive loading. 

Material: Ultem 1000 

Test type: Compression 

Disp. Rate: 0.2 in/min 
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5.2.2 Rejuvenation Experiments 

The mechanical response of Poly(etherimide) to uniaxial compression post rejuvenation 

is shown in Fig. 23 and Fig. 24. The mechanical and thermal rejuvenation processes were shown 

to be nearly identical in lowering the yield stress of the material 20% from 22ksi (152 MPa) to 

roughly 18 ksi (124 MPa), and both processes completely eliminated the strain softening regime 

and thus hindered strain localization. Thermal rejuvenation should be induced under a vacuum to 

prevent the formation of cavities, and dimensional changes within the sample. A decrease in 

ductility amounting to nearly 4% was induced by mechanical rejuvenation; however, this impact 

in the ductility was not evident in the experiments considering that the samples buckled before 

reaching their maximum elongation. Mechanical and thermal rejuvenation were shown to be 

exceptional methods of reducing the strain softening regime in the response of the material. 

 

  

PL 
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Figure 24. Mechanical Response of PEI to compression post thermal rejuvenation. 

Figure 23. Mechanical response of PEI to compression post mechanical rejuvenation. 

Material: Ultem 1000 

Test type: Compression 

Disp. Rate: 0.2 in/min 

Material: Ultem 1000 

Test type: Compression 

Disp. Rate: 0.2 in/min 
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5.3 Quasi-Static Torsion 

Similar to the quasi-static deformation of as-received PEI, the material initially responds 

to shear stress linearly. The elastic response of as-received PEI is compiled in Table 5, and 

illustrated in Fig 8. The shear modulus, G, is the slope of the linear regime and is measured to be 

174.4 ksi (1.2 GPa), and expressed as 

2(1 )

E
G





                                                              (9) 

that compares the shear and Young’s modulus, the Poisson’s ratio, ν, is found to be 0.362. The 

linear regime ceases at the proportional limit, PL, occurring at just over 1% engineering strain. 

The response following the linear elastic regime is shown to be non-linear. At nearly 15% 

engineering strain the material exhibits a local maximum in strength; this value is regarded as the 

yield strength and is measured at 14.0 ksi (96.3 MPa).  

 

  

Figure 25. The mechanical response of PEI to uniaxial torsion. 

Material: Ultem 1000 

Test type: Torsion 
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5.4 Charpy Impact Testing 

With the pendulum of a mass,𝑀𝑝, of 13.3 lbs (6.03 kg) the anvil supplied a total impact 

energy, 𝐸𝑝, of (25.0 ft-lbs) 33.9 J. At this energy, the Poly(etherimide) samples did not absorb 

any measurable energy.  To analyze the failure mechanisms of the samples, macro-scale fracture 

surface images are shown in Fig. 26. It can be observed that the samples did not display any 

lateral expansion, nor did they possess shear lips/area. From the analysis, it can be deduced that 

in the presence of a notch and at the specified impact energy, Poly(etherimide) will consistently 

respond to impact by brittle fracture.  
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Figure 26. Macro-scale fracture surfaces of Ultem 1000 samples post Impact. 
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5.5 Split Hopkinson Pressure Bar 

Using the Split-Hopkinson Pressure Bar technique Ultem 1000 specimens were 

compressively deformed to nearly 50% engineering strain, at roughly 15,000/s strain rates. The 

equilibrium regions were determined by comparing the one wave and two wave curves, this is 

shown in Fig. 27. The stress acquired during the test is shown in Fig 28a and the stress-strain 

response of this material is shown in Fig. 28b. By using Eq. (5) in conjunction with Eq. (7) the 

specimens were determined to reach a point of dynamic equilibrium in a range of 2-4% 

engineering strain, hence, a linear regression between this point and the point of zero 

deformation was used to determine a stiffness estimate of the material of 447 ksi (3.08 GPa). 

This approximation was compared to E of the statically deformed compression samples which 

showed that the elastic response of the sample did not change significantly as a function of strain 

rate, as shown in Fig. 28c; however, the strength of the material clearly shows strain-rate 

sensitivity. The material exhibits a bilinear behavior in its sensitivity to strain rate, and displays a 

transition region at around 103/s similar to that of poly(propylene) and poly(vinyl chloride) 

[Walley, 1991], this result is illustrated in Fig 28d. The upper yield strength of the material was 

averaged at 36.1 ksi (248 MPa), and the lower yield strength of the material at 31.0 ksi (213 

MPa). This result is significantly larger than that of the statically deformed samples averaged at 

22.4 ksi (154 MPa) and 12.0 ksi (82.7 MPa). 

Considering the bilinear trend of the strength sensitivity of PEI to strain-rate, this 

behavior was correlated using the Ree-Erying equation. The equation takes the form: 
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                            (10) 

Here, 𝐴𝑖 is a material parameter with units Pa/°K, 𝐶𝑖 is a material parameter with units seconds, 

Qi are the activation energies associated with each process kcal/mol, R is the universal gas 

constant, and θ is the absolute temperature of the material [Ree, 1955]. The parameters of the 

model were determined from fitting experimental data and are shown in Fig. 28d. The results 

show that the deformation response of this material at higher strain rates follows a similar shape 

as that of the statically deformed specimen, but at an amplified stress. The strength of the 

material at 15,000/s strain rate was shown to be up to 170 % that of the quasi-static case.  
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Figure 27. One wave and two wave stress signals, and dynamic equilibrium region. 
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6. Modeling 

6.1 Monotonic Modeling 

 In order to determine the mechanical response of the Poly(etherimide) to quasi-static 

loading, a model was implemented by using the Ramberg-Osgood strain equation in conjunction 

with a novel model. The implementation of this model is practical for correlating the behavior of 

the material, as well as, finding uncertainties within a set of data. The Ramberg-Osgood strain 

equation was used to model the elastic regime of the material due to the ease in determining the 

parameters to fit the curve. The equation takes the form 

        

n

o

oE E

 
 



  
    

  
                                                   (11) 

where 𝜎𝑜 is the 0.02% offset yield stress, respectively; both 𝛼 and 𝑛 are parameters that describe 

the yield point and hardening behavior of the material. By evaluating the equation at the yield 

strain 𝜀𝑜, 𝛼 is expressed as: 

                                               1o

o

E




 
  
 

                                                         (12) 

The equation can be further evaluated at an arbitrary stress 𝜎1 and re-arranged to solve for the 

parameter 𝑛. The equation is as follows: 
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                                                    (13) 

By using the parameters 𝛼 and 𝑛 (0.053 and 11.92, respectively), the Ramberg-Osgood model 

was used to fit the elastic regime of the rejuvenated material response to compression, as shown 

in Fig 29a. This model was also used to correlate the elastic response of as-received PEI, to 

quasi-static tension, torsion, and compression. The material and hardening constants for these 

quasi-static cases can be found in Tables 3-5, the result is illustrated in Fig 29b. The Ramberg-

Osgood model provided an excellent fit for the data and validated the model’s ability to capture 

the elastic response of PEI. 

 Although the Ramberg-Osgood model correlated well with the material deformation up 

to 12% engineering strain, it did not accurately capture the strain hardening response.  In order to 

capture hardening of the material at higher strains a more sophisticated model was required. 

Hooke’s Law was used to model the initial linear response of the material, and an inverse 

exponential equation was added in order to model the non-linear elastic and plastic behavior of 

the material. The equation becomes 

1

1 2 exp
ref

C C
E








  
    

  
                                 (14) 

where 𝐶1, 𝐶2, and σref are model parameters. The model parameters were determined by 

regression fit. The parameters𝐶1  and 𝐶2 were found to be 703 and 1860, respectively, while 𝜎𝑟𝑒𝑓 



40 

 

was found to be 23.1 ksi (159 MPa), respectively. The result of this model can be seen in Fig 

29c. Equation (13) correlates well with the elastic and plastic behavior of the material. The 

maximum error of the model valued at 4.5% occurs at the 0.02% yield strength.  

 In order to fully capture the elastic and plastic behavior of the material a piece-wise 

equation was implemented by combining equations (13) and (10). The Ramberg-Osgood 

equation was used to model the material response until 12% engineering strain, and an inverse 

exponential relationship was used to model the material response beyond that point. The piece-

wise equation can be expressed as follows: 

1

1 2

0 0.12

exp 0.12 0.40

n

o

o

ref

E E

C C
E

 
 











   
      

   
 

   
      

  

                          (15) 

By combining the Ramberg-Osgood equation and the inverse exponential equation, the 

elastic and plastic response of poly(etherimide) in static conditions is accurately captured for 

deformations up to 40% strain. This model bears resemblance to the E. Voce one-dimensional 

plastic hardening model, a practical model with 3 parameters where plastic strain is inversely 

related to the stress on the material [Voce, 1948, Voce 1955]. The elastic response of as-received 

PEI was correlated solely using the Ramberg-Osgood equation and is provided in Fig 29d. 

Future modifications to Eq. (15) will be investigated in order to correlate elastoplastic response 

of rejuvenated and as-received PEI to multiple rate conditions. 
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Figure 29. (a) The elastic response of rejuvenated PEI fit with the Ramberg-Osgood equation, (b) the elastoplastic 

response of rejuvenated PEI fit with the inverse exponential equation, and (c) the elastoplastic response of rejuvenated PEI 

correlated with the combined equations. (d) The correlated elastic regime of as-received PEI to quasi-static compression, 

tension, and torsion fit with the Ramberg-Osgood equation. 
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7. Discussion and Conclusion 

The mechanical response of PEI is evaluated at a range of strain-rates and loading 

conditions. The response of PEI to quasi-static uniaxial tension and compression is found to be 

consistent to that of other amorphous polymers tested in similar conditions. PEI responds to this 

loading type by deforming in four distinct mechanical regimes; linear elastic, non-linear elastic, 

strain softening, and strain hardening. The as-received PEI material exhibits an upper yield 

strength characterized by a local maximum in the strength curve, this attribute is a result of 

physical ageing which promotes strain localization within the material, and as a consequence 

leads to strain softening. The strain softening regime was shown to be avoidable by inducing 

either mechanical or thermal rejuvenation. Both processes successfully eliminated the strain 

softening response of PEI, and lowered the yield strength of the material nearly 20%. The 

mechanical response of rejuvenated PEI was investigated and correlated using a combination of 

the Ramberg-Osgood model and an inverse exponential equation. This model accurately 

predicted the response of PEI for deformations up to 40%. The elastic response of PEI to quasi-

static torsion was investigated and found to follow a similar trend to that of the tension, and 

compression case. The shear modulus was measured and compared to the Young’s modulus in 

order to evaluate the Poisson’s ratio, which was found to be 0.36. The elastic response of PEI 

was successfully modeled using the Ramberg-Osgood equation. Next, the failure mechanism of 

PEI was evaluated under dynamic conditions using a Charpy Impact Test machine, and the 

material failed predictably and in a brittle manner under the presence of a notch at impact 

energies of 33.9 J. Finally, the response of PEI to uniaxial compression is evaluated at over 104/s 

strain-rate using a MSHPB. The stiffness of PEI is found to be independent of strain-rate, 
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however, the strength of the material is found to be strain-rate sensitive. The strength of PEI is 

found to increase by 70% during the high strain-rate experiments as opposed to the quasi-static 

case. The strain-rate sensitivity of PEI is found to be bilinear, and was successfully correlated 

using the Ree-Erying equation.  

8. FUTURE WORK 

 Much future work is still necessary in order to fully characterize PEI. New developments 

must be made both experimentally and numerically. Experimentally, the rate dependency and 

mechanical response of rejuvenated PEI will be characterized at a range of high strain rates. 

Next, the temperature dependency and multi-axial pressure sensitivity of the mechanical 

response will be investigated. Multiple impact experiments will be performed on as-received and 

rejuvenated PEI, and microstructural changes in response to impact will be investigated. In order 

accurately, perform these experiments several modifications will be made to the mSHPB testing 

apparatus. Low impedance pulse shapers must be developed to allow for constant strain rate 

experimentation, and optical strain measurement techniques, as well as, high speed CCDs will be 

used in order to precisely measure strain and evaluate the dynamic equilibrium of the sample. 

Confinement and strain limitation jigs will be machined in order to run multiple impact 

experiments at constant strain energies and to apply multi-axial load to the samples. Numerical 

models have been developed to correlate the elastoplastic response of rejuvenated PEI, however, 

models that correlate the response of as-received PEI will be developed. Work is be done to 

modify quasi-static numerical models in order to correlate the response of PEI to a range of 

deformation rates, preliminary results are shown in Fig. 30.  
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Figure 30. Preliminary results correlating the response of PEI to multiple strain rates. 

 

Finally, have been developed to predict the strain pulse behavior in response to a mSHPB wave 

shaper, preliminary results are shown in Fig. 31 and Fig. 32, but these models will be modified in 

order to predict the sensitivity of the apparatus to factors in specimen size, geometry, and 

interfacial friction.   
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Figure 31. Model predicting the effect of a wave shaper on the  mSHPB incident signal. 

 

 

Figure 32. Sensitivity of the peak strain rate in response to a wave shaper of varying stiffness.  
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APPENDIX A: SUMMARIZED DATA FROM HIGH STRAIN RATE 

COMPRESSION AND QUASI-STATIC TENSION, TORSION, AND 

COMPRESSION EXPERIMENTS 
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Summarized Tensile Response of PEI at room Temperature 

 

 

 

 

Mechanical Properties Value 

(English units) 

Value 

(SI units) 

Tensile Strength, 𝜎𝑢𝑡 15.5 ksi 107 MPa 

Tensile Modulus, 𝐸𝑡 465 ksi 3.2 GPa 

Strain at yield, 𝜀𝑦 7.3 % 7.3% 

Strain at break, 𝜀𝑓 87.3 % 87.3% 

Elongation, 𝐸𝐿% 80.3% 80.3% 

Toughness, Ut 10.8 ksi 74.5 MPa 

Upper yield, 𝜎𝑢𝑦 15.5 ksi 107 MPa 

Lower Yield, 𝜎𝑙𝑦 12.0 ksi 82.7 MPa 

0.02% Yield Strength, 𝜎𝑙2 9.9 ksi 68.3 Mpa 

Ramberg-Osgood, 𝛼 0.037 0.037 

Ramberg-Osgood, n 7.28  7.28 
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Summarized Compressive Response of PEI at Room Temperature 

 

 

 

 

 

Mechanical Properties Value 

(English units) 

Value 

(SI units) 

Compressive Modulus, 𝑬𝒄 480 ksi 3.3 GPa 

Strain at yield, 𝜺𝒚𝒄 7.2 % 7.2% 

Upper yield Strength, 𝝈𝒖𝒚𝒄  22.4 ksi 154 MPa 

Lower Yield Strength, 𝝈𝒍𝒚𝒄 12 ksi 82.7 MPa 

0.02 % Yield Strength, 𝝈𝒚𝟐 15.5 ksi 106.9 MPa 

Ramberg-Osgood, 𝜶 0.038 0.038 

Ramberg-Osgood, n 7.53  7.53 
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Summarized Torsional Response of PEI at Room Temperature 

 

 

 

 

 

Mechanical Properties Value 

(English units) 

Value 

(SI units) 

Shear Modulus, 𝑮𝒄 174 ksi 1.20 GPa 

Proportional Limit, PL 1.3% 1.3% 

Strain at yield, 𝜺𝒚𝒕 15.1 % 15.1% 

Shear yield Strength, 𝝈𝒔𝒚  13.96 ksi 96.3 MPa 

0.02% Yield Strength 6.2 ksi 42.7 Mpa 

Poisson’s Ratio, ν 0.362 0.362 

Ramberg-Osgood, α 0.0315 0.0315 

Ramberg-Osgood, n 4.63 4.63 
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Summarized Compressive Response of PEI at 15,000/s Strain Rate and Room 

Temperatures 

 

 

 

 

 

Mechanical Properties Value 

(English units) 

Value 

(SI units) 

Averaged Elasticity, 𝑬𝒄 480 ksi 3.3 GPa 

Strain at yield, 𝜺𝒚𝒄 8.5 % 8.5% 

Upper yield Strength, 𝝈𝒖𝒚𝒄  36.1 ksi 248 MPa 

Lower Yield Strength, 𝝈𝒍𝒚𝒄 31 ksi 213 MPa 

Material Parameter , 𝑨𝟏, 𝑨𝟐 1.70, 1.74 psi/°K 11.7, 12.0 KPa/°K 

Activation Energy, 𝑸𝟏, 𝑸𝟐 70.0, 4.20 kcal/mol 70.0, 4.20 kcal/mol 

Material Parameter, 𝑪𝟏, 𝑪𝟐 7.00, 35.0 x10−7s 7.00, 35.0 x10−7s 
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APPENDIX B: LAB VIEW DATA ACQUISITION SYSTEM AND MATLAB 

DATA PROCESSING ROUTINES. 
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LabView Data Acquisition Routine for Striker Velocity 
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Matlab Data Processing Routine: Quasi-Static Experiments 

close all 

clc 

clear all 

  

%DATA ANALYSIS FOR COMPRESSION/TENSION TESTS 

%Bryan Zuanetti 

  

tic 

  

run=4; 

  

%for run=1:6 

  

%Defining Variables 

file_name='Test'; 

pi=2*asin(1); 

length=.367; 

diameter=.225; 

Area=(pi/4)*diameter^2; 

  

%Read time, load, extension and deflection data 

time=xlsread(file_name,run,'A2:A723'); 

Load=xlsread(file_name,run,'B2:B723'); 

extension=xlsread(file_name,run,'C2:C723'); 

deflection=xlsread(file_name,run,'D2:D723'); 

  

%Define Deflection absolute value 

defl_abs=abs(deflection); 

  

%Define Stress and Strain 

Stress=Load/(Area*1000); 

Strain=defl_abs/length; 

  

%Build Output Matrix 

output(:,1)=[defl_abs]; 

output(:,2)=[Stress]; 

output(:,3)=[Strain]; 

  

%Write Stress, Strain, and deflection 

xlswrite(file_name,output,run,'E2:G723'); 

  

%Defining Slope and Intercept 

y=xlsread(file_name,run,'F1:F200');             %Stress column  
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x=xlsread(file_name,run,'G1:G200');             %Strain Column  

Start=find(y<5,1,'last');                       %Criteria for 

linear portion 

Finish=find(y>10,1,'first');                    %of Stress vs 

Strain graph 

y_new=y(Start:Finish);                          %Choosing the 

correct range 

x_new=x(Start:Finish); 

p = polyfit(x_new,y_new,1);                       %Using Linear 

Regression 

slope=p(1);                                       %Defining 

Slope 

y_inter=p(2);                                     %Defining Y 

intercept 

x_inter=(-y_inter/slope);                         %Defining X 

intercept 

  

%Output to screen to check for correctness 

fprintf('Slope(MOD),                     :      %6.2f (ksi)\n'  

, slope); 

fprintf('y_inter,                        :      %6.2f \n'       

, y_inter); 

fprintf('x_inter,                        :      %6.2f \n'       

, x_inter); 

   

%Defining new Strain, and stress 

Strain_adj=Strain-x_inter; 

Stress_adj=Strain_adj*slope; 

Offset=slope*(Strain_adj-.002); 

Start2=find(Offset<21,1,'last'); 

Offset_new=Offset(1:Start2); 

  

%Output and Write New Strain, Stress and Offset 

A(:,1)=[Strain_adj];                     %Strain after shift to 

origin 

A(:,2)=[Stress_adj];                     %Linear Portion of 

Stress 

Z(:,1)=[Offset_new];                     %.02% percent offset 

line 

xlswrite(file_name,A,run,'H2:I723'); 

xlswrite(file_name,Z,run,'J2:J300'); 

  

%Finding Yeild Strength 

Stress2=Stress(1:Start2); 

Offset2=Offset_new; 
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Root=Stress2-Offset2; 

Zero=Root.^4; 

[C,I]=min(Zero); 

Yeild_S=Stress2(I);                      %Consider Linearization 

for improvement 

SUT=max(Stress); 

fprintf('Yield_S,                        :      %6.2f (ksi)\n'       

, Yeild_S); 

fprintf('Tensile_S,                      :      %6.2f (ksi)\n'       

, SUT); 

  

%Delete tail portion of Stress and Linearize 

[rows,columns]=size(Strain); 

c=find(Stress<5,1,'last'); 

i=1:rows; 

for i=1:c 

Stress_new(i)=Stress_adj(i); 

end 

for j=c:rows 

    Stress_new(j)=Stress(j); 

end 

B(:,1)=[Stress_new]; 

xlswrite(file_name,B,run,'F2:F723'); 

  

%make Plot Stress vs Strain 

figure; 

plot(Strain_adj,Stress_new,'b','LineWidth',3) 

grid 

title('Stress vs Strain') 

legend('Stress') 

xlabel('Strain(mm/mm)') 

ylabel('Stress(ksi)') 

  

%end 

  

toc 
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Matlab Data Processing Routine: High Strain Rate Experiments 

close all 

clc 

clear all 

  

tic 

%DATA ANALYSIS FOR MSHB TEST 

%Bryan Zuanetti 

  

% Define variables 

file_name='Test3';                   % File name 

CH1_gain=1208.5;                   % Gain for CH1 

CH2_gain=1203.8;                   % Gain for CH2              

CH1_intcp=0.0785;                  % Gain intercept for CH1 (V) 

CH2_intcp=-0.1742;                 % Gain intercept for CH2 (V) 

gauge_factor=2.08;                 % Strain gauge factor 

ex_volt=3.288;                     % Bridge excitation voltage 

(V) 

Cb=4943;                           % Bar wave speed (m/s) 

span=101;                          % Smoothing span value (must 

be odd) 

CH1_cal=1.15;                      % Calibration 1 

CH2_cal=1.19;                      % Calibration 2 

L0=.001039; 

Mod=6.87*(10^10); 

Ab=7.92*(10^-6); 

As=2.48*(10^-6); 

Sample_rate=.00000002; 

  

run=1; 

  

%for run=6:6 

  

% Read time, incident pulse, and transmission pulse vectors 

[time]=xlsread(file_name,run,'A14:A16397'); 

CH1=xlsread(file_name,run,'B14:B16397'); 

CH2=xlsread(file_name,run,'C14:C16397'); 

  

  

% Reduce magnitude of pulses using gain equation 

CH1_gain=(CH1-CH1_intcp)/CH1_gain; 

CH2_gain=(CH2-CH2_intcp)/CH2_gain; 

  

% Determine pulse offset zeros 
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CH1_zero=mean(CH1_gain(1:500)); 

CH2_zero=mean(CH2_gain(1:500)); 

  

% Offset pulses to start at zero 

CH1_adj=CH1_gain-CH1_zero; 

CH2_adj=CH2_gain-CH2_zero; 

  

  

% Convert pulses from voltage to strain 

CH1_strain=(4*CH1_adj)/(gauge_factor*ex_volt); 

CH2_strain=(4*CH2_adj)/(gauge_factor*ex_volt); 

  

% Calculate theoretical strain pulse amplitude 

%amp_theor=(1/2)*(vel/Cb); 

  

% Smooth data 

CH1_smooth=smooth(CH1_strain,span,'rlowess'); 

CH2_smooth=smooth(CH2_strain,span,'rlowess'); 

  

% Amplitude Corrected 

CH1_Corrected=CH1_smooth*CH1_cal; 

CH2_corrected=CH2_smooth*CH2_cal; 

  

% Build matrix of values to write back into excel workbook 

output(:,1)=[CH1_gain]; 

output(:,2)=[CH2_gain]; 

output(:,3)=[CH1_adj]; 

output(:,4)=[CH2_adj]; 

output(:,5)=[CH1_strain]; 

output(:,6)=[CH2_strain]; 

output(:,7)=[CH1_smooth]; 

output(:,8)=[CH2_smooth]; 

output(:,9)=[CH1_Corrected]; 

output(:,10)=[CH2_corrected]; 

  

% Write output matrix back into excel workbook 

xlswrite(file_name,output,run,'D14:M16397'); 

  

%Defining Incident, Reflected and transmitted pulse 

i=1:16000; 

A = CH1_Corrected(i); 

C = find(A > .00025); 

fprintf('Start,                        :      %6.2f \n'       , 

C(1)); 

Start=C(1)-300;                           
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Finish=Start+1750;  

%Refinement Process to automatically obtain Incident Pulse 

New1=CH1_Corrected(Start:C(1)); 

C_new=find(New1<.0001,1,'last'); 

Start_new=C(1)-300+C_new; 

Finish_new=Start_new+1750; 

Incident_P=CH1_Corrected(Start_new:Finish_new); 

  

D = find(A < -.00025); 

fprintf('Start2,                       :      %6.2f \n'       , 

D(1)); 

Start2=D(1)-300;                         

Finish2=Start2+1750; 

%Refinement Process to automatically obtain Reflected Pulse 

New2=CH1_Corrected(Start2:D(1)); 

D_new=find(New2>-.0001,1,'last'); 

Start2_new=D(1)-300+D_new; 

Finish2_new=Start2_new+1750; 

Reflected_P=CH1_Corrected(Start2_new:Finish2_new); 

  

E = CH2_corrected(i); 

B = find(E > .00025); 

fprintf('Start,                        :      %6.2f \n'       , 

B(1)); 

Start3=B(1)-300;                         

Finish3=Start3+1750; 

%Refinement Process to automatically obtain Transmitted Pulse 

New3=CH2_corrected(Start3:B(1)); 

B_new=find(New3<.0001,1,'last'); 

Start3_new=B(1)-300+B_new; 

Finish3_new=Start3_new+1750; 

Transmitted_P=CH2_corrected(Start3_new:Finish3_new); 

  

%Build output matrix for Incident, Reflected and transmitted 

Pulses 

OM(:,1)=[Incident_P]; 

OM(:,2)=[Reflected_P]; 

OM(:,3)=[Transmitted_P]; 

  

%Write Output back into the excel file 

xlswrite(file_name,OM,run,'N14:P1764'); 

  

%Define Stress, Strain rate, Strain and Strain increment 

Strain_Rate=abs((-2*Cb/L0)*Reflected_P); 

Stress=abs((Ab/As)*Mod*Transmitted_P)/1000000; 
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OM2(:,1)=[Strain_Rate]; 

OM2(:,2)=[Stress]; 

Strain_inc=Strain_Rate*Sample_rate; 

OM2(:,3)=[Strain_inc]; 

xlswrite(file_name,OM2,run,'Q14:S1764'); 

  

  

%Defining Strain,creating output and writing on file 

[M,O]=size(Incident_P); 

N=M+1; 

for i=3:N 

    Strain(1)=Strain_inc(1); 

    Strain(i-1)=Strain(i-2)+Strain_inc(i-1); 

end 

Strain_rateMPA=Strain_Rate/100; 

OM3(:,1)=[Strain]; 

OM3(:,2)=[Strain_rateMPA]; 

xlswrite(file_name,OM3,run,'T14:U1764'); 

  

%plot Pulse 

%figure; 

%plot(Incident_P,'b') 

%grid 

%title('Incident Pulse') 

%legend('Trace') 

%xlabel('Time') 

%ylabel('Incident Pulse(mm/mm)') 

  

%end 

  

toc 
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