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ABSTRACT 

In the combustion zone of industrial- and aero- gas turbines, thermomechanical fatigue 

(TMF) is the dominant damage mechanism. Thermomechanical fatigue is a coupling of 

independent creep, fatigue, and oxidation damage mechanisms that interact and accelerate 

microstructural degradation. A mixture of intergranular cracking due to creep, transgranular 

cracking due to fatigue, and surface embrittlement due to oxidation is often observed in gas 

turbine components removed from service. The current maintenance scheme for gas turbines is 

to remove components from service when any criteria (elongation, stress-rupture, crack length, 

etc.) exceed the designed maximum allowable. Experimental, theoretical, and numerical analyses 

are performed to determine the state of the component as it relates to each criterion (a time 

consuming process). While calculating these metrics individually has been successful in the past, 

a better approach would be to develop a unified mechanical modeling that incorporates the 

constitutive response, microstructural degradation, and rupture of the subject material via a 

damage variable used to predict the cumulative “damage state” within a component. This would 

allow for a priori predictions of microstructural degradation, crack propagation/arrest, and 

component-level lifing. In this study, a unified mechanical model for creep-fatigue (deformation, 

cracking, and rupture) is proposed. It is hypothesized that damage quantification techniques can 

be used to develop accurate creep, fatigue, and plastic/ductile cumulative- nonlinear- damage 

laws within the continuum damage mechanics principle. These damage laws when coupled with 

appropriate constitutive equations and a degrading stiffness tensor can be used to predict the 

mechanical state of a component. A series of monotonic, creep, fatigue, and tensile-hold creep-

fatigue tests are obtained from literature for 304 stainless steel at 600°C (1112°F) in an air. 
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Cumulative- nonlinear- creep, fatigue, and a coupled creep-fatigue damage laws are developed. 

The individual damage variables are incorporated as an internal state variable within a novel 

unified viscoplasticity constitutive model (zero yield surface) and degrading stiffness tensor. 

These equations are implemented as a custom material model within a custom FORTRAN one-

dimensional finite element code. The radial return mapping technique is used with the updated 

stress vector solved by Newton-Raphson iteration. A consistent tangent stiffness matrix is 

derived based on the inelastic strain increment. All available experimental data is compared to 

finite element results to determine the ability of the unified mechanical model to predict 

deformation, damage evolution, crack growth, and rupture under a creep-fatigue environment. 
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CHAPTER ONE: INTRODUCTION 

 

1.1 Motivation 

Modern industrial gas turbines (IGTs) experience a combination of high pressure ratios in 

excess of 18 and rotor inlet temperatures above 1425°C (Figure 1.1). This creates a situation 

where material behavior and component design play a critical role in long term reliability [1]. 

Drives to further increase efficiency through higher boundary conditions have led to the advent 

and applications of austenitic, participate-hardened superalloys [2]. Within the combustion zone 

high operating temperatures, mechanical stresses, thermal stresses, sharp geometric 

discontinuities, and foreign objects lead to a number of damage mechanisms. These damage 

mechanisms are creep, fatigue (mechanical, fretting, and/or thermal), corrosion, oxidation, and 

erosion [3]. The interaction of these mechanisms leads to creep-fatigue (CF) or 

thermomechanical-fatigue (TMF) distinguished by constant and dynamic thermal loading 

respectively. Creep-fatigue and thermomechanical-fatigue are the principal cause of 

microstructural damage leading to eventual failure of hot section components [4].  

The combustion zone consists of a ring of combustor baskets and transition pieces as 

depicted in Figure 1.2 (a)-(c). The purpose of the combustor basket is to mix the compressed air 

coming from the compressor with the fuel and ignite the mixture to a temperature of 3500°F 

(1900°C) [1]. An example of a combustor is provided Figure 1.2(a). Compressed air is passed 

across the outer hull, the secondary hull (air casing), and through secondary/dilution air holes 

which create a protective boundary layer to reduce internal hull and combustion gas temperature.  
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The temperature gradient in the hull leads to thermal stresses. External pressure is higher than 

internal pressure causing mechanical stress in the hull which induces creep buckling. The 

combustion process generates high-frequency vibrations which induce high-cycle fatigue. The 

thin walls of the hull make failure due to oxidation a concern. Gas exits the combustor and enters 

the transition piece. An example of a transition piece is provided Figure 1.2(b).The purpose of 

the transition piece is to improve the uniformity of the combustion gas and direct the gas against 

the first row of nozzle guide vanes. Less active cooling is possible on this component due to the 

need to normalize the combustion gas flow thus transition pieces are more susceptible to creep 

buckling and cracking particular in the upper panel [5]. It has been found that the principle 

causes of combustor and transition piece failure are transgranular body and craze cracks due to 

creep, corrosion, and high-cycle fatigue [6]. Common materials used for combustion zone 

components are isotropic nickel-based superalloys such as: Hastelloy X, RA333, Nimonic 263, 

HS-188, GTD-222, and IN617 [5]. Plasma-sprayed thermal barrier coatings (TBCs) are widely 

used to reduce the temperature of the base metal and reduce creep buckling. 

 

 
Figure 1.1 – GE 7EA Heavy Duty Gas Turbine [7] 
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(a) 

  
(b) 

 
(c) 

 

Figure 1.2 – W501F gas turbine components (a) combustor  (b) transition piece (c) fixture [8] 

 

The turbine zone consists primarily of nozzle guide vanes and buckets/blades as depicted 

in Figure 1.3(a) and (b). The purpose of the stationary nozzle guide vanes is to accelerate the 

combustion gases while channeling them to intersect the rotating turbine blades at the optimum 

angle. These components almost always have a thermal barrier coating, internal tubular steam or 

air cooling holes, and are made of a base metal with high creep strength and oxidation resistance 
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[9,10]. While these components are susceptible to creep deformation, of greater concern is the 

failure of the TBC which can lead to enhanced creep deformation, and excessive oxidation of the 

vane. Common materials used are cobalt-base alloys, X-40, X-45, FSX-414, ECY768, as well as 

nickel-base superalloys IN939 and GTD-222 [11]. Once the gas has been directed by the 

stationary vane, it strikes the rotating blades. The purpose of the rotating turbine blades are to 

capture the combustion pressure and cause the rotor to spin. Turbine blades experience high 

stress due to combustion pressure, centrifugal and thermal loads. Blades are susceptible to creep, 

oxidation, and corrosion, as well as thermal and low-cycle fatigue. High-cycle fatigue can also 

arise due to blade flutter, rotor-speed induced excitation, and fretting at the blade root. Turbine 

blade materials have evolved from isotropic (IN738, IN939, and IN792) to directionally-

solidified (DS GTD-111) and finally single crystalline alloys (CMSX 4, PWA1483, Rene N5) 

due to steady increasing combustion pressure and temperatures over the years [1]. 

 

 
(a) 

 
(b) 

Figure 1.3 – Turbine zone components (a) row one nozzle guide vane (b) row one bucket/blade 
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The original equipment manufacturer (OEM) of industrial gases turbines typical divide 

engineering efforts into: research and development, customer order engineering, and field 

service. The research and development team focus on product optimization and integration of 

new IGT products. Fundamental issues of structural integrity, crack initiation, and lifing are 

investigated. Once a demonstrator plant has been constructed and refinements to the operation 

and design of the product made, the product is then made available to customers. The customer 

order engineering team works on taking established IGT designs and customizing them base on 

specifications negotiated with the customer. Special attention is given to ensure components will 

not failure between service intervals. Guarantees are made to the owner in terms of plant 

performance with harsh non-conformance costs associated with missed performance metrics. 

Finite element simulations of thermal, mechanical, vibration, creep, and fatigue responses are 

conducted often independent of each other. Crack initiation, oxidation, and corrosion calculation 

are analytical calculated from experimental data using in house codes and design manuals. The 

field service engineering team focuses on providing standby, running, and disassembly 

inspections of IGTs based on a negotiated service contract in addition to forced outage support. 

Combustor inspections occur every 12,000 hours. Major inspections occur at 100,000 hours. 

During a hot-gas-path inspection all transition pieces and first row nozzle guide vanes are 

removed and inspected. The remaining vanes and blade are inspected in place. A non-destructive 

evaluation (NDE) technique such as fluorescent penetrant inspect (FPI) is used to detect the 

precise of cracks [12]. Where cracks are detected the blade must be removed from service. In 

addition, blades are checked for displacement, clearances, rubbing, oxidation, and erosion with 

set criteria for remove from service.  
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There is a lack of accuracy in the determination of the state of components within 

industrial gas turbines. As described above OEM’s prefer to design and provide fixed service 

intervals at which components should be replaced or repaired based on independent fixed 

criteria. The actual damage state of the component and remaining life is not generally of interest. 

OEM’s are more concerned with safety and reducing the likelihood of incurring non-

conformance costs due to a forced outage caused by unpredicted failure of components. On the 

other hand plant owners are more concerned with service costs associated with repairing or 

replacing components. For example, an undisclosed Frame 6B plant underwent a hot-gas-path 

inspection by an OEM [13]. The OEM recommended the replace of blades due to potential 

cracking on the airfoils. The plant owner to avoid service costs decided instead to repurpose 

blades from second unit that exhibited slight shroud-lifting. No thought was give to the current 

damage state of the component and remaining life which led to a forced outage as depicted in 

Figure 1.4. Cracks formed in the airfoils due to thermo-mechanical fatigue. The critical crack 

length was reached in a single airfoil and the blade fractured. The failed airfoil passed through 

the turbine causes substantial collateral damage. This could have been avoided had the damage 

state and the remaining life of the repurposed blades been known before installation. The 

interaction of creep, fatigue, and oxidation damage mechanism contributed to the damage state. 

The dominance and balance of active damage mechanisms are controlled by stress state, 

temperature, frequency, hold time, wave shape, aging, material processing, environment and 

other miscellaneous variables. Plant owners would like to extend the service intervals between 

inspections. Owners would like to extract more of the remaining life from components. OEM’s 

would like to reduce non-conformance costs [5-7].  
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(a) 

 
(b) 

Figure 1.4 - Forced outage of frame 6B IGT due to customer error (a) hot-gas inspection (b) 

forced outage [13] 
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1.2 Research Objectives 

The objective of this research is to develop a unified mechanical model for creep-fatigue 

which incorporates the physical degradation, constitutive response, and cracking of superalloys. 

The resulting unified model can be used to more accurately determine the damage state and 

remaining life in components which have undergone history. 

 

The goals of thesis research are as follows: 

1) Unified Mechanical Model for Creep 

Creep data is obtained from literature. A coupled creep-damage zero yield surface 

viscoplastic constitutive model is developed based on continuum damage mechanics. The 

phenomenological creep damage evolution is correlated to mechanical property 

degradation. An analytical technique to determine material constants from experimental 

data is created. An implemented of the constitutive model in multiaxial form is derived. 

2) Unified Mechanical Model for Creep-Fatigue 

Fatigue data is obtained. A coupled creep-fatigue-damage yielding viscoplastic 

constitutive model is developed based on continuum damage mechanics. The 

phenomenological fatigue and plastic damage evolution is correlated to mechanical 

property degradation. A functional relationship between creep, fatigue, and plastic 

damage is obtained for total damage and the viscous behavior. Analytical and numerical 

optimization is used to determine material constants. An implemented of the constitutive 

model in multiaxial form is derived. 
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3) Finite Element Simulations 

A series of service-like and atypical loading conditions are simulated to evaluate the 

capabilities of the unified mechanical model to predict mechanical behavior.  

 

1.3 Organization 

This work is organized as follows. Chapter 2 introduces the fundamental concepts of 

creep, fatigue, and creep-fatigue. It covers constitutive and damage modeling as well as a review 

of the issues facing continuum damage mechanics-based numerical crack growth. Chapter 3 is a 

literature review of the subject material 304SS. In Chapter 4, a novel unified mechanical model 

for creep is proposed, based on extensive evaluation of experimental data and existing 

constitutive modeling techniques.  In Chapter 5, a novel unified mechanical model for creep-

fatigue is proposed, based on extensive evaluation of experimental data and existing constitutive 

modeling techniques. Afterwards, in Chapter 6, a series of parametric one-dimensional 

simulations are performed to evaluate the capabilities of the unified mechanical model for creep-

fatigue. Finally, Chapter 7 contains concluding remarks and recommendations for future work. 

Appendix A contains the custom one-dimensional FEA code written in the FORTRAN 

programming language. 

  



 

10 

 

CHAPTER TWO: BACKGROUND 

 

2.1 Introduction 

Towards the development of a new mechanical model for creep-fatigue, a review of 

existing modeling techniques must be conducted. The fundamental concepts, constitutive 

equations, and damage laws for creep, fatigue, and coupled fatigue are discussed in sections 2.2-

2.4 respectively. A pivotal goal in the current study is the development of a numerical technique 

to model crack nucleation, initiation, and propagation. A review of numerical crack propagation 

techniques is provided in section 2.5 with an emphasis on the continuum damage mechanics 

approach. Finally, a summary of the limitation of existing efforts is provided with a description 

of the proposed alternative. It should be noted, that while a serious effort has been expended to 

include as much detail as possible; it is not possible to include an exhaust review of all 

methodologies used to model creep, fatigue, and coupled creep-fatigue. Additional background 

information pertaining to the development of the creep and creep-fatigue mechanical models is 

discussed in the respective chapters.  
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Figure 2.1 – Creep deformation 

 

2.2 Creep 

Under relatively high temperatures (above 0.4 mT  for most metals) and low cyclic 

loading, creep dominant deformation and damage occurs. Creep is a viscoplastic deformation 

that has a zero yield surface (plastic flow occurs when 0  ). Depending on the subject 

material, creep is dependent on temperature, time (aging effects), loading rate, and the state of 

stress. Classically, creep deformation is separated into three distinct stages, primary, secondary, 

and tertiary creep as depicted in Figure 2.1. Descriptively, these stages are associated with 

transient, steady-state, and accelerating creep, respectively [14]. In the case of superalloys, 

primary creep, is due to strain-hardening where pre-existing dislocations encounter obstacles 

(solid solution atoms, dispersoids, precipitates, grain boundaries, etc.) and becoming 

immobilized [15]. It initially occurs at a high rate, but the eventual saturation of dislocation 

density inhibits further primary creep deformation. After this stage, secondary creep is observed 
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and is characterized by an almost constant strain rate (typically called the minimal strain rate) 

due to a balance between strain-hardening and recovery mechanics. Increased mobility enhanced 

by thermal activity (temperature induced diffusion) can cause cross slip where dislocations can 

diffuse away from obstacles [16]. In this region, the nucleation of grain boundaries and grain 

boundary sliding occur. Finally, tertiary creep becomes dominant and is characterized by a rapid 

non-linear increase of strain rate until creep rupture. This stage is driven by the net area 

reduction due to elongation (substantial in ductile material) and the evolution of microcracks and 

voids into macro-cracks leading to rupture. 

In the vicinity of the crack tip, the three creep regimes persist. The distribution of creep 

deformation strongly mirrors the stress field. As damage accumulates the primary, secondary, 

and tertiary creep stages grow in size along the crack propagation path as observed in Figure 2.2 

[17]. The tertiary creep zone is nearest to the crack tip as it is the region where the stress 

concentration is highest. The size of each zone is transient due to inelastic strain driven stress 

relaxation and crack propagation driven stress redistribution. It is encircled by secondary creep 

followed by primary creep. Elasticity is remote.  

Deformation mechanism maps offer a convenient way to identify the dominant creep 

mechanism under various boundary conditions. For 304SS, the maps clearly indicate two 

mechanisms, diffusion creep and (dislocation-core-diffusion controlled) power-law creep as 

shown in Figure 2.3. Within diffusion creep the bulk-self (lattice) and grain boundary (boundary) 

zones are also depicted. 
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Figure 2.2 - Creep zones at the crack tip [17] 

 

  
Figure 2.3 - Deformation mechanism maps of 304SS (a) stress/temperature, grain size 200μm (b) 

strain-rate/stress, grain size 100μm [18] 
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The basic approach to modeling time-to-failure is by way of stress-rupture. Two popular 

equations are the Larson-Miller (LMP) and Monkman-Grant (MG) parameters. Larson-Miller is 

one of the earliest creep rupture prediction approaches [19]. This approach is based on a time-

temperature relationship as follows 

  log 1000rLMP T t C   (2.1) 

where T is temperature in Kelvin, tr is rupture time, C is a constant, and LMP is the Larson-

Miller parameter. For metals, C is typically set to 20 [19]. The Larson-Miller parameter can be 

determined for stress or strain-controlled experiments through either applied stress or strain rate 

[20]. The Larson-Miller method requires a suitable set of creep deformation tests to be 

performed to rupture.  In the case of stress-controlled experiments, a plot of stress versus LMP is 

created and the C constant is adjusted until the LMP parameter is described as a logarithm of 

stress. Once the C constant has been determined, rupture time predictions can be produced by 

using the known T and LMP from the applied boundary conditions. Plotting  log   versus LMP 

gives a master plot which represents the strength for all combinations of stress, temperature, and 

rupture time [21]. A linear equation for LMP  as a function of  log   can be found. Rupture 

predictions can then be produced by rearranged the Larson-Miller relation into the following 

form 

  

10

LMP T C

T
rt

  



 
(2.2) 

This method has been used consistently with Ni-based superalloys [22]. Ibanez and colleagues 

produced LMP predictions for DS GTD-111 in both L and T-orientations [23]. 
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  Monkman and Grant [24] observed that creep rupture can be predicted for many alloy 

systems using the following expression 

    minlog logr MGt m k 

 
(2.3) 

where min  is the minimum creep strain rate, rt  is the creep rupture time, m is a constant, and kMG 

is the referred to as the Monkman-Grant constant. For some materials m is assumed equal to 

unity furnishes a simplified form of Eq. (2.3) expressed as 

 
min r MGt k 

 
(2.4) 

Previous studies show that the Monkman-Grant relationship produces accurate rupture time 

predictions for various DS Ni-based superalloys [23,25]. The Monkman-Grant method requires a 

set of creep deformation tests to be performed to rupture.  Using the minimum creep strain rate, 

min and rupture time, tr the m and KMG constants can be determined. The minimum creep strain 

rate can be expressed as a function of stress,  min  . By rearranged the Monkman-Grant 

relation into the following form 

 

 min

10 MGk

r m
t

 


 
(2.5) 

a rupture prediction can be made. 
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2.2.1 Constitutive Modeling 

A creep constitutive model can be considered a viscoplasticity model where the yield 

surface is zero. Generally, two types of constitutive models for creep have been developed, 

mechanistic and phenomenological. Mechanistic constitutive models focus on determining the 

stress-creep strain relationship as it relates to fundamental microstructural mechanisms. These 

constitutive models are used when looking at micro/nano-scale creep. Phenomenological 

constitutive models focus on determined the bulk stress-creep strain relationship through 

functional relations that may have no bearing on the microstructural mechanisms. Theses 

constitutive models are used when looking at macro-scale creep. This section focuses on 

phenomenological constitutive models; however, a brief review of popular mechanistic 

constitutive models is provided. 

Creep can be divided into two mechanisms: diffusion (bulk-self and grain boundary 

diffusion) and dislocation-core-diffusion controlled power-law creep. The active mechanism is 

dependent on grain size, stress, and temperature [26,27]. 

Diffusion creep is divided into bulk-self and grain boundary diffusion. In bulk-self 

diffusion atoms diffuse through the lattice within grains. To model this behavior the Nabarro-

Herring constitutive model has been developed 

 
2NH

D
A

d kT





  (2.6) 

where A is a dimensionless constants, D is the lattice diffusion coefficient, d is the grain size, σ is 

the applied stress, Ω is activation enthalpy, k is the Boltzmann’s constants, and T is the absolute 

temperature [26,27]. The activation enthalpy, Ω is equal to the activation enthalpy of bulk-self 
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diffusion, ΩSD. In grain boundary diffusion, atoms diffuse along grain boundaries. To model this 

behavior the Coble constitutive model has been developed 

 
3Co

D
A

d kT





  (2.7) 

where the activation enthalpy, Ω is equal to the activation enthalpy of grain boundary diffusion, 

ΩGB. 

In dislocation-core-diffusion, atoms diffuse into and out of dislocation cores, causing 

climb and glide. To model this behavior the Weertman constitutive model has been developed as 

follows 

 n

Co

DGb
A

kT G




 
  

 
 (2.8) 

where A and n are dimensionless constants, D is the lattice diffusion coefficient, b is the 

magnitude of the Burgers vector, and G is the shear modulus [27]. Multiple mechanisms can 

contribute to the inelastic strain-rate either in parallel or in series demonstrated below 

 
i

i

   (2.9) 

  
1

1 i

i

 


  
(2.10) 

Historically, more phenomenological models have been generated and used to model the creep of 

materials. An examination of phenomenological models for primary, secondary, or tertiary 

regimes is now provided. 

The transient nature of the primary creep regime detonates a dependence on time. 

Numerous phenomenological primary constitutive equations have been developed. A list of the 

earliest and most popular is provided in Table 2.1. 
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One of the most popular and well received models is Andrade’s law for primary creep 

 1/q

cr At   (2.11) 

where 0  is instantaneous creep, A (t 
-1/q

) is a coefficient, and q is a unitless exponent. The 

constant q has been experimentally observed to be 3 for most materials [28,29]. A number of 

authors have attempted to disprove the uniformity of this constant with limited success [30]. A 

more advantageous equation for primary creep adds stress dependence in a power law form 

 n m

cr A t   (2.12) 

where  (MPa) is the applied load and A (MPa 
–n

hr 
-m

), n, and m are temperature-dependent 

primary creep constants [31]. When stress is assumed to be constant, a time-hardening primary 

creep strain rate equation can be developed of the form  

 1cr n m

cr

d

dt
Am t


     (2.13) 

where the units of A change to MPa 
–n

hr 
-(m-1)

. By taking time, t from Eq. (2.12) and inserting it 

into Eq. (2.13), a strain harden-hardening primary creep strain rate equation is of the form 

  11/ /cr m mm n m

cr c

d

dt
mA


  


   (2.14) 

Generally, the time-hardening solution predicts a slightly higher creep strain rates than strain-

hardening. Combined theories have been developed to produce intermediate results between time 

and strain-hardening theories of the form 

 
cr

cr cr

d

dt
C t  

     (2.15) 

where    1 1C MPa hr
  

,γ, δ, and η are constants.  
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Table 2.1 – Primary creep consituive equations [16] 

Source Creep Law

 

Andrade, 1910 

   

 

1/

1/

1 exp 1

0, 0

q

cr

q

cr

At kt

At t k





  

  
 

Bailey, 1935 
 1 1

3 2

n

cr Ft n     

McVetty, 1943 
 1 qt

cr G e Ht   
 

Graham and Walles, 1955 

in

cr i

i

a t   

Garofalo, 1965 
 2

1 1
t

cr se t
  

    

 

The secondary creep regime is denoted by the minimum creep strain rate, min  observed 

in constant load tests. Numerous studies have demonstrated a strong relationship between stress 

and the minimum creep strain rate. Numerous stress-dependent constitutive equations have been 

developed. A list of the earliest and most popular is provided in Table 2.2. 

One of the most popular models is the classical Norton power law for secondary creep 

[32] 

 
cr n

cr

d

dt
A


    (2.16) 

where A and n are the secondary creep constants, and   is an equivalent stress. This popularity 

is derived from the simplicity of implementation and the retention of functional shape regardless 

of stress magnitude. A proportional load increase will not change the stress distribution. In 

contrast, most other models undergo a functional change that causes a redistribution of stress as 
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load increases. Typical the von Mises equivalent stress which is both isotropic and pressure 

insensitive is used 

 3
, , 3;

2
vm ij ij ij ij H H kk      S S S σ

 

(2.17) 

where H  is the hydrostatic (mean) stress and S is the deviatoric stress tensor. The Norton 

power law is sometimes referred to as the Norton-Bailey law. The secondary creep constants A 

and n exhibit temperature-dependence. Stress provides a substantial contribution to the creep 

strain rate as the n secondary creep constant is an exponent of stress. 

Dorn [33] suggested that temperature contributions can be accounted for by replacing the 

A constant with an Arrhenius equation 

 
  exp cr

Q
A T B

RT




 
 
 

 (2.18) 

where B is the pre-exponential factor in units MPa
-1

 hr
-1

, Qcr is the apparent activation energy for 

creep deformation in units J mol
-1

, R is the universal gas constant 8.314 J mol
-1 

K, and T is 

temperature in units Kelvin. Introducing Eq. (2.16) into Eq. (2.18) leads to 

 
expcr crn

cr

d Q
B

dt RT


 

 
   

 
 (2.19) 

Historic application of this model has shown that the B, Qcr, and n secondary creep constants 

exhibit stress dependence when comparing constants obtain from high stress (high creep strain 

rate)  experiments with those at lower stress (low strain rate). A high stress modification was 

proposed as 

 
 expexpcr cr

cr

d Q
B

dt RT


 

 
   

 
 (2.20) 
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where   is an additional secondary creep constant. An interface of Eq. (2.19) and Eq. (2.20) was 

proposed by Garofalo [34] as follows 

 
  expsinhcr crn

cr

d Q
B

dt RT


 

 
   

   

 

(2.21) 

where the model reverts to Eq. (2.19) when 0.8   and reverts to Eq. (2.20) when 1.2   

provided that n   [35]. Typically due to equipment and time constraints creep tests at both 

high and low stress levels are not available; therefore, the commonly implemented method is the 

simple Norton power law with the Arrhenius relation, Eq. (2.19).  

The tertiary creep regime is denoted by a rapid increase in creep deformation consistent 

with the microstructural degradation that leads to rupture. Most tertiary creep constitutive models 

are mixed regime requiring that both secondary and tertiary regimes be modeled together. A list 

most popular is provided in Table 2.3. 

 

Table 2.2 – Steady-state creep constitutive equations [16] 

Source Creep Law
 

Norton, 1929  0

n

cr A    

Soderberg, 1936   0exp 1cr A     

McVetty, 1943  0sinhcr A  
 

Dorn, 1955  0expcr A    

Johnson, Henderson, and Kahn, 1963    1 2

1 0 2 0

n n

cr A A       

Garofalo, 1965   0sinh
n

cr A  
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Table 2.3 – Mixed regime creep constitutive equations [36-39] 

Source Creep Law

 

Creep Regimes

 

Kachanov-Rabotnov, 1967-69 ,
1

cr

n
A






 
  

 
 

 1

M
D

D








 

Secondary 

Tertiary

 

Evans-Wilshire 

(Theta Projection), 1984 
   2 4

1 31 1
t t

e e
   

   

 

Primary 

Secondary 

Tertiary 

Prager, M. 

(Omega Method), 1995 
 0 expcr p   

 

Secondary 

Tertiary 

 

2.2.2 Damage 

Over 25 creep damage models have been developed since 1938 [36-37,40,41-48]. A list 

of the earliest and most popular is provided in Table 2.4. Creep damage if often modeled using 

continuum mechanics; where heterogeneous micro-scale damage is modeled as a homogenous 

macro-scale effective constitutive response within a finite volume [49,50]. Creep damage can be 

considered equal to the reduction-in-area from microcrack, cavities, voids, and etc. as a structure 

undergoes creep deformation. This reduction-in area can be represented mathematically as the 

net/effective stress 

 

 
0

0

0

1
1net net

A

A A A

A

 
 


  

 
 

 

 
(2.22) 

where Anet is the current area, A0 is the initial area,   is equivalent stress,   is the net/effective 

stress, and   is damage. The effective stress increase leads to an accelerated rate of creep 

deformation. 
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1D  - Damage due to mobile dislocation density 

2D  - Damage due to creep-constrained cavitation 

rit  - Rupture time under conditions ,i iT  

ri  -Ductility under conditions ,i iT  

, , , , , , , , , , , ,M n h C R N B d k     - Material constants 

 

 

Table 2.4 - Creep damage laws [40, 36-37,41-48]. 
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2.3 Fatigue 

Fatigue refers to the behavior of a material under cyclic loading, where over time 

localized fatigue damage builds (nucleates) leading to crack initiation and propagation. 

Depending on the subject material, fatigue is a function of load, mean stress, stress ratio, surface 

condition, size, temperature, frequency and occurs above the endurance limit of a material. 

Fatigue damage occurs in both elastic and plastic regimes. Fatigue cracks have the possibility of 

arresting. Fatigue damage is progressive and irreversible [51].  

Typical fatigue failures exhibit three observable features; a crack initiation site, beach 

marks or a rubbed surface (due to growth per-cycle), and a final granular fracture surface. The 

fatigue damage process during initiation is primarily driven by slip. Slip is where individual 

grains by dislocation move along crystallographic planes. Dependent on material history, the 

existing dislocations may increase leading to hardening or rearrange with enhanced dislocation 

mobility leading to softening. In brittle materials, dislocations are not mobile and slip is minimal. 

In ductile materials, dislocations are mobile and slip is free to occur. Materials with mixed 

behaviors exhibit both limited mobility and slip planes. Initiation typical occurs at the surface of 

a material. Intrusion and extrusion under cycling leads to slip bands. Crack initiation occurs at 

slip band intrusions near stress concentrations. Slip bands increase over time and are also 

referred to as slip lines. Slip bands are 3D dimensional with varying thickness, depth, and 

orientation at the surface. 

Once nucleation of an initial microcrack has occurred, under continuous cycling two 

distinct stages of growth are observed. The two distinct stages are (Stage 1) shear mode and 

(Stage 2) tensile mode as observed in Figure 2.4 [51]. In stage 1, also known as the short crack 



 

25 

 

propagation stage, growth occurs primarily due to a shear stresses and strains across a finite 

number of grain boundaries (dependent on subject material). Cracks will growth along the 

maximum shear planes. The end of this stage is signified by a deceleration of the crack growth 

rate due to microstructural barriers including grain boundaries and inclusions. In Stage 2, as 

known as the long crack propagation stage, striations/beach marks are observable under 

magnification. Cracks grow perpendicular to the maximum tensile stress direction and under 

magnification follow a “zigzag” pattern [52]. Fatigue cracks are typically transgranular; however 

have been observed to be intergranular dependent on grain size, stress, and temperature. This is 

typically attributed to the activation of the creep damage mechanism. Once a cyclically loaded 

material has reached its fatigue life, fracture will occur. Fracture occurs at the dominant crack. 

 

 
Figure 2.4 - Schematic of stages I and II transcrystalline microscopic fatigue crack growth [51] 
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Figure 2.5 - The effect of temperature and frequency on strain-life fatigue of 304SS [53] 

 

At high temperature fatigue is influenced by and interacts with the creep damage 

mechanism. Additional factors influence damage evolution such as: oxidation, creep/relaxation, 

frequency, wave shape, and metallurgical aspects such as aging and phase change [51]. 

Intergranular creep cracking is observed with increased temperature corresponding with a 

decrease in fatigue resistance. In many metals, the weak fatigue resistance of the oxide scale 

reduces crack initiation time and accelerates crack propagation rates. The frequency and wave-

shape of the applied boundary conditions can lead to either fatigue or creep damage dominance 

indicating time- and rate-dependence [54-56]. At long hours, the formation of laves phase 

particles can have a dramatic effect on remaining life. At high temperature a continuous decrease 

in fatigue strength is observed for most metals. Notches can either weaken or strength the 

material based on the net section stress and whether fatigue or creep damage is dominant. The 
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strain-life curve for 304SS is provided in Figure 2.5 [53]. The frequencies 1f and 2f  are 10 and 

0.001 cpm respectively [57]. Examining the graph it is found as frequency decreases the fatigue 

resistance also decreases. This is due to the increased period which allows more creep damage to 

be imparted on the material. As temperature increases strength decreases. 

The simple approach to modeling fatigue is the use of fatigue-life equations. The three 

traditional methods are stress-life (s-N), strain-life (ε-N) and linear elastic fracture mechanics 

(LEFM) [51]. Each approach is employed based on the expected life or the presence/absences of 

prior damage to the structure. The stress-life (s-N) approach involves the relationship between 

cycles to failure and applied alternating stress. The Basquin equation suggests a power law 

relationship as follows 

       
B

fa Nf
NS or S A  (2.23) 

where  aS is the applied alternating stress, 
NfS  is the fully-reversed fatigue strength at 

fN  cycles, 

and A and B are material constants. To incorporate mean stress and the influence of creep the 

following equation is used 

 2 2

1
a m

f R

S S

S S

   
    
  

 (2.24) 

where 
fS  is the fully-reversed fatigue limit (at 10

8
 cycles), mS  is the mean stress, and RS  is the 

creep rupture strength replacing uS  in the modified Goodman equation [51]. Finally, a uniaxial 

yield criterion is incorporated as 

 
1a m

y y

S S

S S

   (2.25) 
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where 
yS  is the yield strength and 

yS 
 is the cyclic yield strength. 

The strain-life (ε-N) approach involves the relationship between cycles to failure and 

applied strain amplitude, a  (or strain range,  ). The Coffin-Manson relationship is the classic 

approach 

  ,

c

ija ij ij
NA      (2.26) 

where 
ij  is an applied strain range, A  and c are material constants and ij denotes the type of 

strain.  

The LEFM approach involves the relationship between cycle/time to failure and crack 

length. The classic approach developed by Paris, follows 

 
 

mda
C K

dN
   (2.27) 

where C and m are the coefficient and exponential constants respectively and K  the range of 

the stress intensity factor. 

 

2.3.1 Constitutive Modeling 

Viscoplastic constitutive models are ideal for modeling the cyclic deformation observed 

during low-cycle fatigue at high temperature. Viscoplastic materials exhibit rate-dependent strain 

hardening/softening where strain rate influences the apparent yield strength. Osgerby and Dyson 

demonstrated that the peak stress in a constant strain-rate test is equal to the load of constant-load 

creep test where the minimum creep strain rate is equal to the applied constant strain-rate [58]. 
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The isochronous relationship allows the viscous properties of materials to be determined rapidly 

from creep tests compared with traditional constant strain-rate tests. 

Viscoplastic constitutive models require the following: a yield criterion, flow rule, and 

hardening rule. The yield criterion specifies the onset of plastic deformation based on the stress 

tensor via an equivalent stress term. A yield surface is a surface in stress space where inside the 

region elastic deformation occurs and on the surface inelastic deformation occurs. During 

unloading the state of stress is within the yield surface resulting in elastic behavior. During 

neutral loading, the state of stress moves on the yield surface but causes no plasticity. During 

loading, the state of stress moves outwards from the yield surface expanding it in two ways 

isotropic and/or kinematic hardening [59].  

 

 

  
Figure 2.6 – Schematic of hardening:  (a) isotropic and (b) kinematic [60] 

 

(a)          (b) 



 

30 

 

The flow rule relates the rate of plastic deformation to the stress components (e.g. Levy-

Mises [61-63] or Prandtl-Reuss [64-65]), generally described as  

 
ij

ij

df
d p t

d



   (2.28) 

where p  is the equivalent strain rate known as a viscous function, and the term f  is a scalar -

valued plastic potential function of 
ij  [92]. The viscous function is the inelastic strain-rate 

equation. It includes the hardening variables. The hardening rule describes the work hardening of 

the material (isotropic or kinematic).  

Isotropic hardening is a type of hardening where the apparent yield strength increases 

uniformly in all directions. Solute atoms, precipitate particles, dislocation tangles, sub-grains, 

and grain boundaries contribute to this form of hardening. It allows for the change in size of the 

yield surface but with no change in shape (Figure 2.6a) [60]. Isotropic hardening is not suitable 

for modeling cyclic loading as it does not account for the Bauschinger effect.  

The Bauschinger effect is where progressive tensile/compressive asymmetry develops 

over a number of cycles. An increase in tensile strength causes a decrease in subsequent 

compressive strength. 

Kinematic hardening is a type of hardening where the apparent yield strength increases 

directionally based on the existence of mean stress. This can lead to increased strengthen in 

tension or compression to the detriment of the other, which is the Bauschinger effect. This 

mechanism is physically represented by dislocation pileups and bowing of pinned dislocations. 

Kinematic hardening allows the translation of the yield surface, without change in shape, size, or 
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orientation during yielding (Figure 2.6b) [60]. The yield surface will shift in the stress space 

along the applied loading direction. 

Gilman proposed that isotropic hardening could be represented by drag stress, the D 

variable [66]. In the viscous function D is a ratio with the applied stress, / D . Rice proposed 

that kinematic hardening could be represented by rest stress, the R variable [67]. In the viscous 

function R is subtracted from applied stress, R  . Rest stress is often referred to as “back 

stress” due to it being positioned behind the applied stress. The relationship R   is described 

as “overstress” due to it being positioned over the drag stress. Many viscoplasticity laws have 

been created and continue to be developed in literature [68].  

A number of authors have proposed mixed hardening rules, where a combination of 

isotropic and kinematic hardening leads to a more generalized formulation [69]. Generally these 

formulations allow for different degrees of the Bauschinger effect allowing for both translation 

and expansion of a yield surface.  Cyclic hardening, softening, and saturation effects can be 

incorporated into viscoplasticity constitutive models through the incorporation of mixed 

hardening rules [68]. 

A special type of viscoplasticity model eliminates the concept of a yield surface. Instead, 

an equilibrium surface is considered where some rate-dependent equilibrium stress must be 

overcome to allow plastic flow. An advantage of these types of viscoplasticity models is the 

ability to model cyclic plastic and creep deformation simultaneously. Models by Miller, Bodner, 

and Krempl follow this approach [70,71,72]. 

A list of the viscous functions for a number of viscoplasticity constitutive models is 

provided in Table 2.5. In these models the hardening variables are introduced in the viscous 
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function to simulate microstructural mechanisms. Hardening equations have been developed to 

represent various mechanisms such as: creep, strain hardening, dynamic recovery, static 

recovery, Bauschinger’s effect, induced/ pre-existing anisotropy, strain range memorization, out-

of-phase effects, metallurgical instabilities (phase change), and aging [68]. 

 

 

Table 2.5 – Viscoplasticity constitutive models [68] 

Source

 

Viscous Function
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K – isotropic hardening variable 

D’– Kinematic hardening variable 

D – Drag stress (isotropic) 

R – Rest Stress (kinematic) 

X – Back Stress (kinematic) 

g – over stress (kinematic) 
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2.3.2 Damage 

Over 50 fatigue damage models have been developed since 1924 [46,73]. A list of the 

earliest and most popular is provided in Table 2.6. The concept of fatigue was initially developed 

to explain the tiring of metals. An investigation by Albert determined that fatigue failure in iron 

mine-hoist chain is dependent on load and the number of cycles [74]. One of the earliest fatigue 

damage models is that proposed separately by Palmgren [75] and Miner [76] where damage is 

considered a linear relationship between the number of cycles n and the number of cycles to 

failure Nf. When under VAL conditions summation provides a simple method to predict damage. 

Failure is reached once the total value of damage reaches unity. 

 
1i

fi

n
D

N
   

(2.29) 

A limitation of the Palmgren-Miner rule is that damage accumulation is dependent on the order 

of loading. A number of modified versions of this equations where proposed by authors up to the 

1960s [77]. When comparing specimen that are loaded from low to high and high to low 

amplitudes, the high to low specimen was found to exhibit more microstructural damage; 

therefore, non-linear rules are necessary to accurately predict damage. A depiction of linear and 

non-linear damage evolution is shown in Figure 2.7. A number of authors have investigated this 

issue and developed non-linear rules [58, 78-81]. A recent advancement has been the use of 

continuum damage mechanics (CDM) to predict fatigue damage. 
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Figure 2.7 - Fatigue damage fraction versus cycle ratio [51] 
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Table 2.6 – Fatigue damage laws [51,40,46,73] 

Source Damage Law
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2.4 Creep-Fatigue 

Creep-fatigue is the condition where both creep and fatigue damage mechanisms actively 

contribute to the microstructural degradation of a material. It involves the application of cyclic 

load above the creep activation temperature such that both creep and fatigue contribute to the 

constitutive response, material degradation, and crack propagation [82]. The dominant damage 

mechanism depends on load, mean stress, stress ratio, surface condition, size, temperature, 

frequency, stress ratio, dwell time and geometry [83-89]. 

Failure in alloys can be observed as transgranular, intergranular, or mixed sequential 

draw in Figure 2.8 [90]. Transgranular cracking occurs when slip bands of plasticity form in 

favorably oriented grains under high stress and low temperature [40]. Few cavities form and 

typical develop near the fracture surface. Cyclic application of load produces ductile striations, 

each striation representing a single cycle. In some cases there is not a one to one relationship 

between striations and cycles indicating secondary damage mechanisms are active. Intergranular 

cracking is a micro-cavitation and sliding process on grain boundaries under low stress and high 

temperature [51]. A large number of micro-voids nucleate on grain boundaries. The coalescence 

of voids contributes to the micro and macro-cracking processes.  

Fatigue damage dominated failure is associated with transgranular fracture, while creep 

damage dominated failure is primarily intergranular; however, the creep isotherms of most 

metals show that mixed trans-intergranular cracking can occur during experiments conducted at 

high stress and/or low temperature [82,91]. In Figure 2.9 and Figure 2.10, triangular and 

trapezium load cyclic shapes are shown with lines indicating that active damage mechanism. 

Assuming an isothermal test under stress cycling, under a triangular load history (Figure 2.9a) 
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both creep and fatigue damage mechanisms are active throughout the application of load. The 

dominant damage mechanism is dependent on the interplay between loading and the 

microstructural aspects of the material and can be determined through fractography. Under a 

trapezium load history (Figure 2.9b) the fatigue damage mechanism is only active during cycles 

of loading and unloading. Increasing the hold period will increase the amount of creep damage; 

however, again dominance is dependent on boundary conditions. Assuming zero applied 

mechanical stress, and thermal cycling, under a triangular load history (Figure 2.10a) the fatigue 

mechanism is always active, while the creep mechanism becomes active only when temperature 

is above the creep activation temperature ( 0.4 mT ). As the temperature increases, the creep 

damage mechanism becomes more dominant. Under a trapezium load history (Figure 2.10b), the 

activation and deactivation of creep and fatigue becomes highly complex. Under these 

conditions, mixed sequential cracking is expected to occur. 

 

 
Figure 2.8 – SEM of low carbon steel (a) transgranular and (b) intergranular cracking (c) mixed-

mode [90] 

 

(a)      (b)    (c) 
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Figure 2.9 – Stress-time plot demonstrating active damage mechanisms during a cycle 
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Figure 2.10 – Temperature-time plot demonstrating active damage mechanisms during a cycle 
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Using the strain life approach and strain partitioning the total inelastic strain range as 

follows 

     cpin vp cc pc
or             (2.30) 

where 
vp  is fatigue (yielding viscoplasticity), cc  is creep (zero yield viscoplasticity), and 

pc  and 
cp are mutually exclusive representations of combined fatigue and creep. A 

specialized test program is needed to determine the independent Coffin-Manson material 

constants for each of these strains. 

A linear summation similar to strain range partition is used to incorporate the fatigue and 

crack mechanisms leading to   

 

fatigue creep

da da da

dN dN dt

   
    
   

 (2.31) 

where the cycle-dependent fatigue and time-dependent creep mechanisms work together to 

produces crack initiation and growth. 

 

2.4.1 Constitutive Modeling 

A classical approach to dealing with modeling the constitutive response of a material 

under creep-fatigue is to use strain partitioning [88]. This approach assumes that elastic, creep, 

and yielding viscoplastic strains can be linearly summed to equal total strain. The strain-life 

approach to fatigue life is similarly based on “strain range partitioning”
 
with t , total strain 

range [51]. The linear summation of strain suggests that there are independent damage 

mechanisms for each strain contribution. Total strain takes the following form 
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t e cr vp       (2.32) 

where e  is the elastic, cr
 

is creep (zero yield viscoplastic),
 

and 
vp  is fatigue (yielding 

viscoplastic) strain. It should be noted that creep is a form of viscoplasticity with a zero yield 

surface; therefore, creep will occur at all non-zero stress values. The tensorial form of strain can 

be obtained using a general flow rule and strain potential function. The flow rule determines the 

direction of straining and is given as 

  ij

ij

ij

df
d d

d


 


  (2.33) 

where d  is the equivalent strain increment, and the term f  is a scalar -valued plastic potential 

function of 
ij  [92].  

 

2.4.2 Damage 

Generally, the microstructural damage of a material in the creep regime, under cyclic 

loading above material yield strength can be said to consist of  

 
p f cD D D D    (2.34) 

where 
pD , 

fD , and cD are the rate-independent plastic, and rate-dependent fatigue and creep 

damage respectively [93]. Often these damage terms are described as having one-to-one mapping 

(i.e. a linear summation equal to unity results in failure). The physical mechanisms that 

contribute to these damage terms are dislocation motion and cavitation. Damage is an 

irreversible heterogeneous process with the damage rate and distribution influenced by boundary 

conditions, material evolution, time, and environment.  
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Continuous development since the 1970’s has led to various approaches: cycle counting, 

continuum damage, crack length, strain, strain-energy, and hybrids [35,46,73,94]. In a review, 

Fatemi and Yang provides found over 50 different models [73]. A list of the earliest and most 

popular is provided in Table 2.7. The earliest approaches focused on extending the Palmgren-

Miner by separating the fatigue (cycling) and creep (hold time) into individual components 

where rupture is reached when the sum equations unity.  

Continuum damage mechanics (CDM) based creep-fatigue damage models have the 

advantage of being inherently non-linear while allowing a linear summation of the contribution 

of creep and fatigue to damage evolution.  Generally, creep-fatigue continuum damage models 

would take one of three forms 
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 (2.35) 

where is  equivalent stress, 1  is first principal stress, H  is hydrostatic mean stress, and is cD

creep damage, 
fD  is fatigue damage, and D  is total damage. The first form assumes one-to-

one mapping of creep and fatigue contributions to total damage (Chaboche, 1988). The second 

form assumes creep and fatigue damage independently contribute to total damage. The third 

form is a bridge which connects the independent creep and fatigue damage through a mixing 

damage. 
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Table 2.7 – Coupled creep-fatigue damage laws [35,46,73] 

Source Damage Law
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2.5 Numerical Crack Propagation 

A number of linear elastic fracture mechanics (LFEM) based computer codes exist to 

model crack growth (FRANC2D, FRANC3D, FEACrack, CurvedCrack, ADAPCrack3D, 

ZenCrack, BEASY, XFEM) [95]. A majority of these codes are third-party extensions to 

established FEM software; requiring that the crack propagation information be calculated 

externally after each iteration. The mesh and/or geometry are modified and an updated FE model 

provided to the solver (ANSYS, ABAQUS, and Nastran). This process is repeated iteratively 

until some fracture criterion is reached. The crack increment a  is determined after directions 

of crack extension is defined and typically calculated using fatigue crack growth models such as 

the Paris law. The crack direction is calculated using well established criteria: Griffith’s 
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maximum energy release rate (the direction where the energy release rate is maximum) [96], 

maximum circumferential stress criterion (normal to the direction of the maximum hoop stress) 

[97], minimum strain energy density criterion (normal to the direction of minimum strain energy) 

[98], or minimum mode II stress intensity factor (along the direction where mode II SIF 

vanishes) [99].  

Linear Elastic Fracture Mechanics (LEFM) has a number of limitations when compared 

to CDM when simulating crack propagation [100]. It requires a new geometry and mesh after 

each iteration (during propagation) or local enrichment of approximation space through the 

partition of unity concept (PUFEM) or the extended finite element method (XFEM) [95]. 

Plasticity at the crack tip requires a plastic zone correction that is only valid at moderate plastic 

strain [51]. The stress intensity factor is dependent on specimen geometry and loading 

conditions. Short and long crack growths are typically modeled using different parameters. The 

nucleation of numerous microcracks observed during intergranular cracking leads to 

convergence issues in FEM. Alternatively, CDM approaches incorporate the constitutive 

response, multiple crack initiation sites, micro-void coalesce, crack propagation, and rupture. It 

can be quickly implemented into FEM, and readily applied to contour geometry. 

Since the 1980’s, continuum damage mechanics (CDM) has been used as a technique to 

describe crack initiation and propagation. Discrete representative volume elements (RVE) are 

used to model the discontinuous and heterogeneous solid. It is assumed that within the RVE 

micro-defects are homogenously distributed. The RVEs contain the constitutive response and 

damage state of the solid [101]. In each RVE the stiffness is a function of damage such that 

degradation is localized [102]. The elements, when brought together in the finite element method 
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(FEM), produce a balanced solution to the mechanical state of a solid. When applied to fracture 

mechanics, a crack can be measured by the critical damage zone. This zone is where the damage 

variable in an element has exceeded the critical value. The distance between node points which 

have reached the critical damage value is equal to the measured flaw size. These flaws 

phenomenological represent any micro-defect which degrades structural integrity. It is assumed 

that the crack propagation rate and direct are driven by the damage evolution equation as it 

relates to the dynamic stress at the crack tip. Another method is to introduce relaxation nodes 

(coincident nodes) along the proposed crack path [103]. Once damage reaches a critical value 

relaxation of the connection between these nodes occurs through the use of weak springs until a 

point where they are completely released from DOF constraints [104]. Authors have developed 

CDM-based models using contact elements, node release, element removal, dynamic remeshing, 

and/or meshless techniques to achieve crack extension [105]. Many local CDM-based crack 

growth models have been developed [46,94,106,107]. JianPing and colleagues developed a 

CDM-based creep-fatigue crack growth model to predict the rupture of a steam turbine rotor 

[108]. Yatomi used CDM-based creep crack growth with nodal-release to evaluate the C* and 

Q* integrals [109]. Recently, Götting developed a CDM-based creep crack growth model with 

nodal release for a Ni-base superalloy [110]. The accuracy of CDM-based crack propagation is 

limited by flaws in FEM. Two major problems are mesh discretization and stress sensitivity. 
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2.5.1 Mesh Discretization 

A contributing factor to the inconsistency in local CDM approaches is mesh 

discretization. Damage evolution is based on the localized state of stress in each element. This 

leads to crack propagation being highly dependent on the state of stress near the crack tip. Thus 

the mesh size and shape can negatively influence crack propagation rate and direction. Murakami 

and colleagues, using the elastic and creep material properties for copper, conducted a parametric 

study examining the effect of mesh discretization using different configurations of triangular 

elements [102]. The results are shown in Figure 2.11. As observed, due to localization, crack 

growth is restricted to elements adjacent to the highly damage elements. In Mesh I, the direction 

of crack growth is constrained due to the triangular elements providing only three possible 

directions for growth. Mesh II and III provide more flexibility with a block configuration of two 

triangular element. They show that the crack propagation path is highly dependent on the aspect 

ratio of the two elements. It is observed that crack propagation is highly dependent on mesh 

configuration. 

 

 
Figure 2.11 - Effect of finite element discretization on creep crack growth [102] 
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To overcome this issue, a number of authors have developed dynamic remeshing 

algorithms [111-113]. These algorithms dynamic remesh zones of high damage into smaller and 

smaller elements until a minimum element size is reached at which point, when critical damage 

is reached, the minimized element is removed. This provides a method by which the stress 

gradient observed across the rupturing element is minimized. The crack propagation path is 

therefore trapped along a boundary of finely meshed elements minimizing the influence of mesh 

size and shape has on crack path. The primary limitation of dynamic meshing is computational 

cost. 

 

2.5.2 Stress Sensitivity  

A major factor leading to the inaccuracy of the local CDM approach is the way in which 

damage is implementation in the damage evolution equation. In the classic damage models the 

damage evolution equation contains  1/ 1
q

  (where 0 < ω < 1.0). This relation encapsulates 

both creep damage and the instantaneous elastic-plastic damage (fast fracture) which facilitates 

rupture of a creep specimen [114]. Examining, Figure 2.12 it is observed that the classic model 

does not produce a metallographically valid damage evolution [115]. Calculated A-Parameter 

and Voronoi simulations of grain boundary cavity area density result in a vastly different damage 

evolution when compared with the classic damage model [116]. The ill-formed damage 

evolution equation is the source of stress sensitivity.  To avoid this issue some authors suggest 

implementing variable critical damage criterion,  ,cr f T  [117]; however, this leads to 

additional prediction error. Extensive work has been done in analytically determining this critical 
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damage criterion [101,102,118]. The better alternative is to develop a damage evolution equation 

which better represents the physical damage evolution rate of metals. Liu and Murakami 

demonstrated that by introducing an exponential form of previous damage in the damage 

evolution equation leads to better correlation with physical damage processes and relative 

insensitivity to mesh size [115]. 

 

 
Figure 2.12 - Damage evolution under uniaxial tension [115] 
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Figure 2.13 - Schematic of mechanical state 

 

2.6 Summary 

As discussed in this chapter, significant effort has gone towards modeling the constitutive 

response, damage, and rupture of materials subject to creep, fatigue, and coupled creep-fatigue. It 

is found that most efforts focus on modeling only a portion of the mechanical response of 

materials. The global state of a material should be considered. Boundary conditions induce 

inelastic deformation a symptom of damage evolution caused by microstructural degradation. As 

microstructural degradation occurs; the nucleation of defects contributes to the initiation of 

cracks and subsequent crack propagation. The constitutive response, damage evolution, 

microstructural degradation, and rupture of materials are inherently linked. It is therefore, 

necessary to develop a new “unified” methodology to accurately model this phenomenon and 

their interaction to fully realize the mechanical state of a material in FEM. 

  

Mechanical State 
Rupture 

Inelastic 
Deformation 

Damage 
Evolution 

Physical 
Degradation 

Rupture 
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CHAPTER THREE: MATERIAL 

 

3.1 304 Stainless Steel 

The subject material of this study is rod-stock dual certified 304/304L Stainless Steel 

(SS), an austenitic Fe-Ni-Cr stainless steel that has been used extensively in the power 

generation and pressure vessel and piping industry. It has been prepared to meet ASTM A276 

and A479 [119,120] with the chemical composition provided in Table 3.1. The rod has been 

annealed and cold finished improving strength and straightness. It should be noted that rod 

304SS was chosen over plate/sheet due to the reduced machining cost of cylindrical specimen.  

 

The material 304SS was selected for a two reasons:  

1. Well documented mechanical behavior: Using data from literature it is possible to reduce the 

number of mechanical tests needed to characterize the material properties. It is possible to 

verify the accuracy of the proposed model via comparison to deformation and fatigue crack 

growth data from literature. 

2. Acquisition: 304SS is a standardized material used in numerous structural applications. The 

cost of the material is low compared to the more advanced Ni-base superalloys used in 

rotating gas turbine components while it retains a similar mechanical behavior and creep 

resistance. 
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Table 3.1 – Chemical composition of dual certified 304/304L stainless steel (wt%) [119,120] 

 Fe Cr Ni C Mn Cu Mo Si S P Co N 

Min 74 18 8 0 0 0 0 0 0 0 0 0 

Max 64 20 10.5 0.08 2 1 1 1 0.03 0.045 0.2 0.1 

Avg. 69 19 9.25 0.04 1 0.5 0.5 0.5 0.015 0.023 0.1 0.05 

 

 In this chapter an extensive review of the mechanical behavior of rod, bar, plate, and 

sheet 304SS subject to high temperature is presented. In section 3.2, the tensile behavior is 

evaluated. In section 3.3, the creep behavior subject to tensile, multiaxial, and material 

processing effects are investigated. In section 3.4, the fatigue behavior subject to load amplitude, 

mean stress, frequency, hold time, wave shape and form, multiaxiality, and material processing is 

investigated.  

 

3.2 Tensile Response 

The tensile behavior of 304SS was evaluated using a number of sources and include bar, 

plate and sheet specimen [121-125]. The mechanical properties according to ASTM are provided 

in Table 3.2. Antoun and colleagues investigated the influence of temperature on the tensile and 

compressive properties of 304SS [121]. The tests were conducted under extension-control to 

produce a strain rate of 0.001/s at temperature ranging from 25 to 800°C. The stress-strain 

response is provided in Figure 3.1 [121]. It is observed that as temperature increases there is a 

marked increase in elongation and decreases in yield strength and ultimate tensile strength a 

typical behavior for most materials. 
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Table 3.2 – Mechanical properties of a304/304L at room temperature [119,120] 

Modulus of Elasticity  
Ultimate Tensile 

Strength 
Yield Strength Elongation Brinell Hardness 

KSI x 10^3 KSI [MPa] KSI [MPa] % B 

28 75-90 30-40 30-70 80-99 

 

 
Figure 3.1 - Stress-strain curve of 304L stainless steel in tension [121] 

 

The yield and ultimate tensile strength with respect to temperature are plotted in Figure 

3.2 [122-125]. It is observed that 304SS exhibits an anomalous yield strength between 300 and 

500°C. Sikka conducted a study on the elevated temperature ductility of 304 stainless steel with 

ductility versus temperature plotted in Figure 3.3 [126]. It is observed that as temperature 

increases the total elongation (EL%) and reduction-in-area (RA%) decrease. Examining the effect 

of strain rate, it is observed that if the applied strain rate is decreased the resulting EL% and RA% 

decrease. The effect is greatly influenced by temperature. This strain rate, temperature, EL%, and 

RA% relationship suggests the activation of both creep and oxidation mechanisms. 
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Figure 3.2 –Yield strength and ultimate tensile strength vs temperature of 304SS [122-125] 

 
Figure 3.3 - Ductility versus temperature for 25mm plate of 304SS (a) elongation (b) reduction-

of-area [126] 
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The stress-strain curve of 304SS subject to monotonic and cyclic loading (R=0) is 

provided in Figure 3.4 [127]. Comparing monotonic and cyclic loading, it is clearly observed 

that under cyclic loading the material exhibits isotropic cyclic hardening. For both loading 

conditions when the applied strain rate is reduced the material exhibits less hardening. This 

suggests that the material exhibits viscoplasticity, where the applied strain rate influences 

hardening and softening behavior. 

 

 
Figure 3.4 - The effect of constant strain rate on Stress-Strain Curve of 304SS [127] 
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3.3 Creep 

Considerable efforts have been conducted by various researchers to characterize the creep 

properties of 304SS. Simmons conducted two studies compiling the elevated-temperature 

mechanical properties of commercial available stainless steels for ASTM and ASME [122,123]. 

ASM International produced a handbook with a compilation of creep and stress-rupture curves 

for various alloys [128]. Kim and colleagues investigated at the statistical properties of creep-

rupture as pertaining to STS304 [129]. Creep curves are provided within a stress range of 160-

320 MPa and temperature range of 600-700°C in Figure 3.5. It is observed that depending on the 

stress and temperature conditions all three creep regimes are present. Clearly, a multistage creep 

constitutive model is needed to characterize the deformation under creep conditions. There is 

substantial scatter observed in the creep curves, represented in the key factors of: total creep 

strain, primary creep strain, steady state creep rate, total creep rate, and rupture time. This scatter 

seems to decreases when test temperature is increased. Scatter also decreases when tests are 

conducted at elevated stress under constant temperature. Kim and colleagues found that the 

probability density function of creep-rupture data follows a Weibull distribution. It is suggested 

that statistical modeling should be used when conducting long-term creep rupture predictions to 

improve reliability. Minimum creep strain rate versus strain data from multiple sources was 

digitized and plotted in Figure 3.6 [129-136]. Significant scatter is observed in the minimum 

creep strain rate where data from different temperature sets overlay; however, it should be noted 

that the data is compiled from multiple source with different testing equipment and subject 

material manufacturers. 
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Kim and college investigated the high temperature creep-rupture of 304 subject to triaxial 

stress in comparison to uniaxial [131]. Optical micrographs of ruptured 304 specimen subject to 

uniaxial tension of 60 and 180MPa at 760°C are provided in Figure 3.7(a) and (b) where the 

180MPa ruptured much sooner than the 60 MPa test. In both figures, intergranular microcracks 

due to cavitation are observed perpendicular to the applied load direction. Notice, the smaller 

cavities observed under the high load test. Cavitation is a homogenous time-dependent process. 

Rupture of the 180MPa specimen occurred due a more localized phenomena that did not require 

homogenous cavitation. 

 

 
Figure 3.5 - Creep curves for STS304 (a) 600°C (b) 650°C and (c) 700°C with (d) rupture [129] 
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Figure 3.6 - Minimum creep rate versus stress of 304 stainless steel [129-136] 

 
Figure 3.7 - Optical micrograph of 304SS creep test at 760°C and (a) 60MPa (b) 180MPa [131] 
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Examining the closeness of microcracks in the micrographs, it is observed that creep 

cavitation is localized and does not require homogenous cavitation damage before rupture. More 

creep cavitation was observed at (a) 60MPa than at (b) 180MPa suggesting that the material is 

more damage tolerant at low stress.  The distribution of cavities at low stress is wider providing 

multiple sites from which microcrack can initiate and grow. At low stress, the unexpected 

coalescence of multiple microcracks causes the scatter observed in rupture data. At high stress, 

cavitation is more localized such that the coalescence of microcracks is less like to produce 

unexpected rupture of the specimen. Grain boundary cavitation coupled with localized 

deformation processes control the life of 304SS under creep [131]. 

Creep-rupture data from multiple sources was digitized and plotted in Figure 3.8 [129-

134]. The causes of scatter in Figure 3.8 can be attributed to variations of each of the following 

 Chemical compositions which met the ASME and ASTM standards 

 Product types (rod, bar, sheet, plate, orientation) 

 Specimen size (gage diameter) 

 Material processing (cold working, annealing, surface roughness etc.) 

Scatter appears to decreases as temperature is increased which also correlates with a 

reduced applied stress to produce comparable rupture time across temperature sets. Perhaps, this 

scatter is associated with the energy provided by the applied stress. At high stress a localized 

damage mechanism is activated where the pre-existing flaws unique to each specimen results in 

rupture. This provides significant more scatter, then the homogenous cavitation mechanism 

which is active at high temperature and low stress. 
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Figure 3.8 – Compiled creep-rupture data [129-134]
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3.3.1 Multiaxiality 

A multiaxial state of stress greatly influences the creep-rupture properties of most metals 

including 304SS. Kuang conducted a study evaluating the effect of notches on the creep-rupture 

of 304SS at 650°C; the results depicted in Figure 3.9 [127]. In the figure, stress is defined as the 

mean stress in the minimum cross section. Comparing the smooth and notched specimen, it is 

observed that notch strengthening occurs. The strengthening ratio (mean stress in minimum cross 

section over the uniaxial stress) is given for circular-notched specimen as 1.30 and sharp-notched 

specimen as 1.38. In the circular-notched specimen (Kt=1.61), considerable cavitation was 

observed throughout the specimen with voids concentrated at the center away from the notch. In 

the sharp-notched specimen (Kt=4.4), minimum cavitation is observed. Metallography 

suggesting fatigue damage due to the true stresses at the notch tip exceeding the yield strength. 

Microcracks are localized at the crack tip. 

 
Figure 3.9 - Creep-rupture results for smooth and notched specimen [127] 
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The behavior of circular and sharp-notched specimens can be attributed to the effect low and 

high stress has on cavitation damage [131]. The high stress concentration in the sharp-notched 

specimen leads to considerable localized plastic deformation at the notch. Degradation is 

concentrated at this zone of weakness and cavitation appears in a limited fashion. In the circular-

notched specimen, the lower stress concentration allows homogenous initiation of microcracks 

throughout the specimen geometry.  

 

3.3.2 Material Processing 

The industrial process used to chemically and mechanically convert raw chemicals into a 

desirable alloy greatly influences the mechanical properties of the resulting “product”. McCoy 

and colleagues investigate the effect material processing has on mechanical properties of 304 

[132]. The primary objects where to study the effect re-annealing and product type (plate, bar, 

pipe, tube) have on the stress-rupture curve. A graph compare the creep deformation of various 

products of 304SS was produced for 304SS annealed 0.5 hours at 2000°F and tested at 593°C 

and 172.3MPa, as shown in Figure 3.10. Comparing the creep curves of various products, it is 

observed that the scatter observed is no different than that which would be observed during 

repeated testing of a single product. This becomes obvious when comparing Figure 3.10 with 

Figure 3.5. Gold studied the effects of varying degrees of cold work on the creep-rupture 

properties of 304SS the resulting plotted provided in Figure 3.11. Cold working was found to 

improve the strength of 304SS at low temperature, however; increasing the degree of cold 

working lowers the recrystallization temperature. In cold worked 304SS once it reaches the 

recrystallization temperature, over time, the strength level can reduce to below that of annealed 
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304SS as observed in Figure 3.11(d). Materials that are heavily cold-worked are more 

susceptible to creep rupture at high temperature. 

 

 
Figure 3.10 - Creep curves of 304SS annealed 0.5 hours at 2000°F and tested at 593°C and 

172.3MPa [132] 
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Figure 3.11 - The effect of percent (%) cold work on the creep-rupture of 304SS at (a) 566°C (b) 

649°C (c) 732°C and (d) 816°C [136] 
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3.4 Creep-Fatigue 

High temperature fatigue is an important engineering challenge and has been the subject 

of numerous investigations. The classic fatigue process occurs in three stages; the nucleation of 

microstructural small defects into initiated cracks, the stabilized propagation of the dominant 

crack, and the unstable acceleration of the crack leading to sudden fracture [137]. Load 

amplitude and applied mean stress influence the cycles to failure. When subject to high 

temperature 304SS exhibits time-dependence. Over time, creep and/or relaxation cause stress 

redistribution to occur at the crack tip changing the constitutive response.  Factors such as 

frequency, hold time, wave shape, and wave form that incorporate time as a variable will effect 

fatigue life. When subject to a multiaxial state of stress (either via application or due to a notch), 

the multiaxial behavior of the material and the presence of a stress concentration factor will 

influence fatigue life. Additionally, the manufacturing process and environment a material is 

subject to will influence life.  

At high temperature and under cyclic loading conditions, both the fatigue and creep 

mechanisms are active suggesting the term creep-fatigue. Creep is primarily an intergranular 

process and fatigue primarily transgranular. Fatigue test above the creep activation temperature 

(creep-fatigue) can undergo intergranular, transgranular, and mixed-mode cracking depending on 

load history and temperature. Merah and colleagues investigated the creep-fatigue crack growth 

of 304SS plate at 600°C [139]. Micrographs from the study are provided in Figure 3.12 

[138,139]. Figure 3.12(a) was conducted at 276 MPa with a frequency of 1 Hz. Regular 

transgranular ductile striations are observed suggesting fatigue dominated damage. In Figure 

3.12(b) the frequency is reduced to 0.0033 Hz and a hold time of 5 min introduced, intergranular 
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dimples are observed with few fatigue striations visible suggesting creep damage dominance. 

The variables of load amplitude, mean stress, temperature, frequency, hold time, wave 

shape/form, multiaxiality, and material processing all influence the dominant cracking 

mechanism.  

 

 
Figure 3.12 - Microstructure of notched 304SS specimen at 600°C (a) Transgranular ductile 

striations at (276MPa, 1Hz) (b) Intergranular dimples observed (300MPa, th=5min, 0.0033 Hz) 

[138,139] 

 

(b) 

(a) 
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3.4.1 Load Amplitude 

Load amplitude is a key factor relating to the number of cycles to failure. In the cases of 

creep-fatigue load can be stress (force), strain (displacement), and/or temperature. In Figure 3.13 

the relationship between maximum stress and the number of cycles to failure is given [140]. It is 

observed that as the maximum stress is increased, the number of cycles to failure decreases. It is 

also worth noting that the fatigue strength at room temperature 446 MPa drops to 353 MPa at 

538°C lowering by 20%. Suh and colleagues studied the initiation, growth, and coalescence of 

fatigue microcrack in smooth 304SS using quantitative analysis [140]. It was found that 

microcracks begin to initiate at 10-20% of fatigue life, and grow until fracture. New microcracks 

continuously initiate at grain-boundaries due to creep. Microcrack density undergoes a parabolic 

increase with cycle. At room temperature microcrack density is low and localized around the 

primary flaw. At elevated temperature microcrack density is high and increases with load cycle 

ratio. 

 

 
Figure 3.13 - Stress-Life curve for 304SS at room temperature and 538°C where R=0.1 [140] 
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An examination of total strain range data provides insight into how displacement control 

loading influences rupture. In Figure 3.14 the relationship between total strain range and the 

number of cycles to failure is given [141]. It is observed that as the applied total strain range 

increases, the number of cycles to failure decreases. Nishino, S. and colleagues conducted a 

quantitative damage analysis of 304SS under creep-fatigue. The researchers attempted to use a 

combination creep and fatigue of linear damage rules to predict failure and had limited success. 

While linear damage rules can provide accurate estimates of cycles to failure they do not 

represent the true state of degradation within a material. Both creep and fatigue damage are non-

linear degradation processes which require more detailed representative equations. 

 

 
Figure 3.14 - Total strain range-life curve of 304SS at 600°C [141] 
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3.4.2 Mean Stress 

Mean stress has a dramatic influence on fatigue behavior. The effect of tensile and 

compressive mean stress on fatigue strength is provided in Figure 3.15(a) and (b) respectively 

[142,143]. It is observed that tensile mean stress is detrimental to fatigue strength while 

compressive mean stress improves fatigue strength. 

When 304SS is subject to asymmetric cyclic loading, ratcheting will occur. Ratcheting is 

the plastic strain accumulated under cyclic loading with nonzero mean stress [144]. Ratcheting 

can lead to the severe deformation and greatly decreases the cycles to failure. After a suitable 

number of cycles, at low temperature, shakedown is expected to occur. Shakedown is where 

plastic deformation ceases to occur due to translation and expansion of the yield surface. 

Shakedown is greatly delayed and often not observed at elevated temperature due to the 

accumulation of creep strain. The stress-life curve of most materials translates downwards as 

mean stress is increased. Ratcheting experiments have been conducted by Basaruddin [144], Gao 

[145], and Kang [146]. It should be noted that hold times are not necessary to induce ratcheting 

only a non-zero mean stress is needed. In Figure 3.16 the ratcheting of 304SS with various hold 

times are reported. It is observed that ratcheting strain accumulates and appears to harden with 

respect to cycles. It is also apparent that ratcheting strain significantly increases with increases in 

hold time. The ratcheting strain continuously increases with not shakedown observed. This is 

attributed to the accumulation of creep strain which is active above and below the yield strength.   
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Figure 3.15 - Effect of mean stress on fatigue strength under (a) tension [142] (b) compession 

[143] 

 

(a) 

 

 

 

 

 

(b) 
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Figure 3.16 - Ratcheting of 304SS at 700°C with various hold times (a) stress-strain curve (b) 

ratcheting strain vs. cyclic number [146] 
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3.4.3 Temperature 

Temperature greatly influences the creep-fatigue behavior of 304SS. In Figure 3.17 the 

elevated temperature strain-life of 304SS is provided [51,147]. It is observed that as temperature 

increases, the strain-life curve develops a knee and fatigue resistance decreases. The knee that 

develops represents the transition between elastic-dominated high-cycle fatigue, and plastic-

dominated low-cycle fatigue. With increasing temperature the transition fatigue life shifts to 

lower values of life. Coffin found the elevated temperature behavior can be attributed to the 

environment, more specifically oxygen [148]. Evidence shows that at low frequency and 

elevated temperature, most fatigue cracks are filled with oxide products. When subject to a 

vacuum at elevated temperature the strain-life behavior of a metal will be equivalent to a room 

temperature experiment. This is demonstrated in Figure 3.18 for A286 alloy [148]. Increasing 

temperature greatly increases the crack growth rates of 304 exposed to air as depicted in Figure 

3.19 [149]. 

 
Figure 3.17 - The effect of temperature and frequency on strain-life fatigue of 304 stainless steel 

[51,147] 
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Figure 3.18 - Plastic strain-life curve for A286 alloy in air and vacuum at 593°C (numbers 

indicate frequency in cpm) [148] 

 
Figure 3.19 - The effect of temperature on the fatigue crack growth rates for annealed 304SS at 

0.066 Hz, with an R ratio of 0 to 0.05 [149] 
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3.4.4 Frequency 

As mentioned in the previous section there is an interaction between temperature and 

frequency. At higher temperature the frequency effect is enhanced as observed in Figure 3.17. 

For a given temperature, the lower frequency has less fatigue resistance. As depicted in Figure 

3.18 the frequency effect disappears when experiments are conducted in a vacuum. This suggests 

that similar to temperature, the frequency effect is a result of the environment. At ultra low 

frequencies, the fatigue behavior is time-dependent and failure occurs due to time-dependent 

creep. At low to intermediate frequencies the failure process is due to interaction of time-

dependent creep and cyclic damage. At ultra high frequencies cyclic-dependent failure dominates 

[148]. The crack growth rate versus stress intensity factor, K , for annealed 304SS at 538°C 

and various frequencies is provided in Figure 3.20 [51,150]. It is observed that as frequency is 

decreased, the crack growth rate increases. Interestingly, frequency has little effect on the slope 

[139]. It is also observed that the scatter-band becomes larger. This can be attributed 

accumulative time-dependent creep. 
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Figure 3.20 - The effect of frequency on fatigue crack growth behavior of 304SS at 538°C 

R=0.05 [51,150] 
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3.4.5 Hold time 

Hold time can greatly influence the creep-fatigue behavior of 304SS. Hold time is 

representative of a component which undergoes a dwell period where loads are held constant 

before being discharged. In Figure 3.21, Berling and Conway studied the effect of hold time on 

304SS at 593°C [151]. 304SS was found to be extremely sensitive to tensile holds. It is observed 

that as the applied tensile hold time is increased, life decreases drastically. This was not observed 

for symmetrical and compressive hold times suggesting that compressive holds do not contribute 

to degradation and may enhance oxide-induced crack closure [152]. While oxidation of the 

fracture surface is observed in both tensile and compressive hold tests, compressive holds 

produce a much thicker oxide scale [153]. 

 

 
Figure 3.21 – The effect of hold time on 304SS at 593°C [51,151] 
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Cheng and Diercks studied the fractography of 304SS subject to various hold conditions 

with micrographs provided in Figure 3.22 [154]. For no hold time, and compressive and 

symmetric hold times the fracture surface displays ductile fatigue striations indicative of 

transgranular cracking. Under tensile hold, no fatigue striations are observed suggesting 

intergranular cracking. Examining the symmetric test it is clear that the compressive hold 

mitigates the negative effects of the tensile hold. Hold tests can be thought of as mixed creep-

fatigue test where the hold portion corresponds to static load creep tests and the cyclic portion 

corresponds to fatigue.  

 

 
Figure 3.22 - Influence of hold time and loading condition on fracture surface at 593°C [154] 
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Plumtree and Tang found that when tensile hold times are suitably small (between, a 

mixed cracking mode is observed as depicted in Figure 3.23 [155]. Successive sections of 

transgranular and intergranular cracking correspond to fatigue and hold time (creep) periods. 

After hold periods, grain boundary cavities are observed ahead of the crack tip. During 

subsequent fatigue cycling a few beachmarks are missing. This suggests that the first few cycles 

after a hold contribute to intergranular crack of the nucleated grain boundary cavities ahead of 

the crack tip. Intergranular fracture will occur as temperature is increased, frequency is 

decreased, and/or plastic range is decreased. Intergranular facture is strongly tied to the 

environment as testing under a high vacuum will completely eliminate intergranular cracking. 

 

 
Figure 3.23 - Mixed intergranular (I) and transgranular (T) frature of 304SS under tensile hold 

[155] 
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The rate of crack propagation under hold time is a function of stress intensity factor K , 

sequence, and the length of the hold period [155]. Different configuration of these three factors 

can dramatically change the crack propagation rate and the dominant failure mechanism. At low 

stress intensity oxide-induced crack closure retards crack propagation. At high stress intensity 

crack propagation is accelerated. Cheng conducted a study on 304SS at 593°C under continuous 

cycling with zero, symmetric and compressive holds of minute, depicted in Figure 3.24 [154]. It 

was found that crack propagation rate is sensitive to hold time. Crack initiation and propagation 

occurs the quickest under a symmetric hold time. A compressive hold time has the effect of 

retarding the crack initiation process; however, zero hold time produces the largest fatigue life. 

Plumtree studied 304SS at 570°C under 50, 500, and 1000 cycle blocks with 15 and 120 minute 

hold times as depicted in Figure 3.25 [155]. It is apparent that the influences of cycle block size 

and hold time on the crack propagation rate varies with sequence and stress intensity factor. The 

fastest propagation rates are observed in sequences where the smallest cyclic block (N=50) is 

used. This can be attributed to an increase in hold periods which allow significant activation of 

the creep damage mechanism to occur. The lowest rates are observed when the cyclic blocks are 

highest (N=1000) where minimal creep damage occurs. The influence of sequence and hold time 

on crack propagation rate is a function of temperature. At low temperature the disparity between 

various sequence and hold times will be greatly reduced. 
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Figure 3.24 – Crack length vs strain cycles for specimens tested under various loading conditions 

[154] 

 
Figure 3.25 - The effect of hold time and sequence on 304SS at 570°C [155] 

570°C 

R = 0.014 

f  = 5 Hz 

R = 0.014 

f  = 5 Hz 
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3.4.6 Waveform 

The waveform of an applied loading condition can dramatically influence the fatigue life 

of materials. Lee and colleagues studied the effect of waveform on 304SS at 650°C results of 

which are plotted in Figure 3.26 [156]. Three waveforms were studied; fast-fast, slow(tension)-

fast(compression), and fast(tension)-slow(compression). The fast and slow strain rates were 

34 10 s  and 
54 10 s  respectively. The fatigue life under slow-fast cycling was dramatically 

reduced. The slow tension left the material susceptible to creep cavitation with intergranular 

cracking observed on the fracture surface. The fatigue life under fast-slow cycling was reduced 

but by a smaller degree. Typical transgranular cracking was observed with regular ductile fatigue 

striations. James conducted a study examining the influence of wave shape on crack propagation 

[157]. Two wave shapes were used: saw tooth and trapezoid with tensile hold at 4, 0.333, and 

0.083 cpm. Wave shape sensitive was not observed at 4 and 0.333 cpm. At 0.083 cpm the crack 

growth rate was lower through the trapezoid with tensile hold wave shape. 

 

 
Figure 3.26 - Waveform effect on the low cycle fatigue behavior of AISI 304 Stainless Steel at 

650°C [156] 
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3.4.7 Notch Sensitivity 

The failure of 304SS is greatly influenced by the applied state of stress. Kuang conducted 

a study evaluating the effect of notches on the life of 304SS at 650°C; the results depicted in 

Figure 3.27 [127]. Notch strengthening is observed for both circular and sharp-notched 

specimen. This indicates that the multiaxial state of stress at the crack tip greatly influences life.  

 

 
Figure 3.27 - Stress-Life Curve of 304SS at 650°C (a) circular-notched (b) sharp-notched [127] 
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3.4.8 Material Processing 

Michel and Smith studied the fatigue crack growth of aged 304SS 5000 hours at 593°C as 

plotted in Figure 3.28 [158]. Examining the figure it is clear that aging has no negative effect on 

crack growth rates. Lee and Nam studied the effect surface roughness has on low cycle fatigue 

life [156]. At low to intermediate temperature the number of cycles to crack initiation decreased 

with surface roughness. Cracks were found to initiate at surface grooves. When temperature and 

grain size is increased 304 becomes less sensitive to grain size. Crack initiate at both the surface 

and grain boundaries. Mechanical surface treatment techniques such as deep rolling, laser shock 

peening, shot peening, and brushing have been found to greatly improve the cycles to failure; 

however, as temperature increases, the effect is lessened due to residual stress relaxation[159].  

 

 
Figure 3.28 - Effect of Aging (593°C for 5000h) on fatigue crack growth rates of 304SS at 

593°C, 0.17 Hz, and R=0 [158] 
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3.5 Summary 

 
 The exhaustive literature review on 304 stainless steel has provided substantial insight into 

the behavior of the material. The knowledge gain is key towards developing an accurate mechanical 

model for creep-fatigue. The question of how to validate the proposed mechanical model arises. It is 

necessary to conduct a set of "specialized" mechanical tests to verify the hypothesis that a unified 

mechanical model for creep-fatigue can be developed which incorporates the physical degradation, 

constitutive response, and rupture of superalloys. Monotonic tensile and fatigue tests were performed 

using the following equipment. 

 

3.6 Testing Equipment 

 
 A single universal testing machines (UTMs) is used in this study. The UTM is a first 

generation MTS-810 which was donated to the University of Central Florida as depicted in Figure 

3.29. It is a servo-hydraulic load frame produced by MTS. It has been designed for fatigue, 

environmental, monotonic, fracture, high temperature, and thermo-mechanical fatigue testing 

conditions. The system support dynamic tests up to 20 Hz. It has water-cooled grips with a force 

capacity of 100kN and a maximum operating pressure of 45 MPa. An Ameritherm HOTShot 

3500Watt induction heater is used to heat the specimen with a specially wound copper induction coil 

as depicted in Figure 3.30. A K-type thermocouple is welded directly to the center of specimen. A 

MTS 632.53 high temperature extensometer is used to measure displacement in the specimen visible 

in Figure 3.29(b). This device is capable of operating at temperatures up to 1200°C and is not-

cooled. The UTM is centrally controlled by desktop computer running the MTS TestStar II 
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acquisition and control system. Load, displacement, and temperature (through the induction heater 

and convective cooling valves) are controlled and data is stored. The device will be used to conduct 

fatigue tests on novel specimen designed to evaluate the capabilities of the proposed constitutive 

model.  

 

 
Figure 3.29 - MTS 810 Universal Test Machine (a) covered (b) close up 

 

Figure 3.30 - Temperature Control (a) control box (b) induction coil 
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CHAPTER FOUR: UNIFIED MECHANICAL MODEL FOR CREEP 

 

 

4.1 Introduction 

The development of a unified mechanical model for creep involves many steps. First an 

appropriate viscous function which relates the minimum creep strain rate to stress must be 

determined for the subject material. This function must incorporate the ability to deal with 

temperature-dependence. Next, a damage evolution equation must be generated and coupled with 

the viscous function. This coupling must be done is such a way that the viscous function reverts 

back to its original form when damage is zero. The damage evolution equation must be 

formulated to mitigate stress-sensitivity and replicate the evolution of microstructural defects. 

Afterwards, a “special” equivalent stress must be found to incorporate the issue of multiaxiality. 

This “special” equivalent stress is incorporated into the viscous and damage evolution equations. 

Finally, an appropriate approach for the degradation of the stiffness material Jacobian is 

determined. 

 

4.2 Proposed Constitutive Model 

The proposed constitutive model is multistage where primary, secondary, and tertiary 

creep regimes are modeled. This is done by separation into primary and secondary viscous 

function as follows 

  cr pr sc      (4.1) 

where the tertiary regime arises from the damage variable,  . 
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4.2.1 Secondary Viscous Function 

The secondary viscous function must be found. The form of the secondary viscous 

function is given by the relationship between the minimum creep strain rate and stress as follows 

 
   

min f g T 
 (4.2) 

where  is  constant stress, and T  is temperature. Literature has provided numerous types of 

viscous functions for secondary creep as listed in Table 2.2. For conveniences the viscous 

functions (given subscripts, a, b, c, d, f, and g) are relisted below as 

a Norton, 1929  
n

a sA    
(4.3) 

b Soderberg, 1936   exp 1b sA     
(4.4) 

c McVetty, 1943  sinhc sA  
 

(4.5) 

d Dorn, 1955  expd sA    
(4.6) 

f Johnson, Henderson, and Kahn, 1963    1 2

1 2

n n

f s sA A       
(4.7) 

g Garofalo, 1965  sinh
n

g sA       
(4.8) 

where A, A1,A2, n, n1, n2, and σs are material constants. An analytical exercise of the viscous 

functions as a function of stress produced Figure 4.1.  
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Figure 4.1 – Analytical evaluation of various viscous functions 
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Figure 4.2 – Viscous function fit to experimental data at 649°C [130,135,136]
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 The viscous functions were fit to 649°C experimental data as depicted in Figure 4.2 

[130,135,136]. The equations where fit using regression analysis by minimization of the residual 

sum of squares. This metric is sensitive to scale and would not fit the low stress data; therefore, 

constants found through regression where then adjusted by hand. Function A had the lowest 

quality fit to the data and is unacceptable for this study. Examining the deformation mechanism 

map in Figure 2.3, it is clear that function A does not take into account transition from diffusion-

creep at low stress to power-law-creep at high stress. Examining function D, it is shown that it 

does not model the low stress behavior accurately. A more critical assessment shows that when 

stress is equal to zero the minimum strain rate calculated does not equal zero. This makes 

equation D unacceptable. Functions B, C, F, and G produce similar high quality fits of the 

experimental data yet it is still necessary to determine the optimal function. In function B, an 

extra term (negative one) is needed to zero out the function. In function F, there are excess 

constants that do not contribute equal weight to the solution. In function G, the constant, n, has 

no weight on the solution. The optimal function for 304 stainless steel is C, a hyperbolic-sine 

function developed by McVetty [160] as follows 

    sinhsc sA T    (4.9) 

where A (1/s) and s  (MPa) are the creep coefficient and secondary creep mechanism-transition 

stress respectively. This viscous function has been used by a number of authors in literature 

[48,161,162]. 
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The viscous function must be modified to incorporate temperature-dependence. This is 

done by making the material constants as function of stress either A(T) or  
0 T .  

In the case of the creep coefficient, A(T), a common approach is to use an Arrhenius type 

relation as follows 

 
  0 exp cr

Q
A T A

RT




 
 
 

 (4.10) 

where 0A  (MPa
-1

 hr
-1

) is the pre-exponential factor, Qcr (J mol
-1

) is the apparent activation 

energy, R is the universal gas constant 8.314 J mol
-1

K
-1

, and T (K) is temperature [33]. 

Introducing Eq. (4.10) into Eq. (4.9) leads to 

 
 0 expsinh cr

sc s

Q
A

RT
  

 
  

 
 (4.11) 

The mechanism transition stress,  
0 T , is not often used to account for the temperature-

dependence of creep; however, the ultimate tensile strength and yield strength of materials are 

temperature-dependent and can be used as follows 

     

    
0

0

UTS

UTS

fT T

fT T

 

 




 (4.12) 

The minimum creep strain rate versus stress data in Figure 3.6 is used to evaluate 

temperature-dependence. The A constants was fixed and optimization done to find the 

mechanism-transition stress 0  at each temperature. Temperature-dependence was not observed. 

The fit to experimental data was of very low quality. Next, the mechanism-transition stress 0  

was fixed and optimization done to find the A constant for each temperature. The resulting 

constants are plotted in Figure 4.3. Using regression analysis, [Eq. (4.10)] was fit to the data. The 
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pre-exponential factor, 0A , is equal to 3.1754E+16 % hr
-1

. The apparent activation energy was 

calculated to be 4.058E+5 J/mol. This compares well to the value reported by Williams with an 

apparent activation energy equaling 3.977e5 J/mol [163]. The viscous function becomes  

 
 

5
16 4.085 10

exp3.1754 10 sinhsc s
RT

  
  

   
 

 (4.13) 
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Figure 4.3 – Plot of A versus 1/K 
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Figure 4.4 – The viscous function fitted to minimum creep strain rate data [129-136] 

 

 Using [Eq. (4.13)], the minimum creep strain rate versus stress data is plotted in Figure 

4.4 . Examining the figure, it is observed that the modified viscous function successfully fits the 

experimental data. For non-isothermal conditions, this equation would successful model the 

creep behavior. In the current study, all tests are conducted under isothermal conditions and at a 

single set temperature. The modified viscous function will not be used in this study; however, it 

was important to demonstrate the ability to deal with temperature-dependence. 
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4.2.2 Primary Viscous Function 

With knowledge of a suitable secondary viscous function, a suitable primary viscous 

function must now be determined. Time-, strain-, and mixed/work-hardening viscous functions 

have been developed to model the primary creep regime. Preference has been given to time-

hardening based laws because the simplicity of numerical implementation [48,161,162,164,165]. 

These laws typically take the following form 

 
   ,maxpr pr H t    (4.14) 

where the maximum primary creep strain,
,maxpr , is a function of stress, and the hardening 

variable, H, a function of time. Investigations by Phaniraj and colleagues have shown that for 

304 stainless steel the primary creep strain can be correlated to the minimum creep strain rate as 

follows 

 
min 0pr K t   (4.15) 

where K is a constant and 0t  is the time at which the minimum creep strain rate, min , is reached 

[166]. This suggests that the maximum primary creep strain,
,maxpr will take a similar form to the 

secondary viscous function as 

 
 ,max sinhpr sK A      (4.16) 

where K is a enhancement coefficient that incorporates 0t . 

The hardening variable  H t  can take various forms as depicted in Table 2.1. The 

McVetty time-hardening variable, a decaying exponential, confirmed by various authors 
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[34,166-168], has been shown to successful model the high temperature primary creep behavior 

of steels 

    1 expH qtt     (4.17) 

where q ( 1t ) is the primary creep exhaustion rate. This time-hardening function is a 

simplification of dislocation immobilization based micromechanical models where q is the rate 

of dislocation immobilization [169]. Bring together [(4.16)] and [(4.17)] into [(4.14)] produces 

the following 

    sinh 1 exppr sK A qt        

     sinh sinh exppr s sK A K A qt          

(4.18) 

where the expanded form shows two deformations of Voigt and Maxell elements respectively 

[16]. Differentiation furnishes the primary creep strain rate as 

    sinh exppr sqK A qt    
 

(4.19) 

Work by Stewart and Gordon has shown that to obtain the optimal fit of primary creep data 

requires three unique material constants [170]. This can be attributed to the active deformation 

mechanism. When the deformation mechanism transitions from diffusion to power-law creep, 

the relationship between the maximum creep strain, 
,maxpr  , and minimum creep strain rate, min  

depict in [(4.15)] will change. To account for this changes coefficient, B and stress, 
p must be 

introduced. The incorporate of this parameters and simplification produces the following primary 

viscous function 

    sinh 1 exppr p

B
qt

q
       (4.20) 



 

94 

 

   sinh exppr pB qt     

where B ( 1t ) is the primary creep coefficient, 
p  ( MPa ) is the primary creep mechanism-

transition stress, and q ( 1t ) is the primary creep exhaustion rate. 

 Combining the primary and secondary viscous functions produces the following 

 
     sinh exp sinh

cr pr sc

cr p sB Aqt

  

    

 

 
 (4.21) 

where cr is the total creep strain. Implementation of this model is straightforward. Finite 

difference furnishes the creep strain rate. The minimum creep strain rate is regression fit to the 

secondary viscous function. Subtracting the secondary creep rate from the total creep rate 

produces the primary creep rate. This data is fit to the primary viscous function through 

regression. Averaged creep curves of 304 stainless steel at 600°C are used to evaluate the 

capabilities of the primary viscous function, original depicted in Figure 3.5 [129]. The results of 

fitting are provided in Figure 4.5. The material constants are provided in Table 4.1. The proposed 

model produces a high quality fit to the experiment data with minimal residual sum of squares. A 

similar temperature-dependence is observed in primary creep data to that observed in secondary 

creep data. The suggested Arrhenius function, [Eq. (4.10)] can also be used to model the 

temperature dependence of primary creep data where A(T) and 0A  are replaced with B(T) and 0B   

respectively. 
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Table 4.1 – Primary and Secondary Creep Constants for 304 Stainless Steel at 600°C 

Material Constant Units Value

 A % hr
-1

 5.270E-07 

s  MPa 27.823 

B % hr
-1

 
2.835E-04 

p  MPa 37.447 

q hr
-1

 0.415 
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Figure 4.5 – Fit of Proposed Model to Creep Deformation [129] 
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4.2.3 Damage Evolution and Microstructural Degradation 

The purpose of the damage evolution equation is three-fold: 

 To model the tertiary creep regime 

 To track the evolution of creep driven defects (cavities, microcracks, etc.) 

 To predict rupture 

To achieve these goals, the damage variable,  , must be coupled to the secondary 

viscous function as follows 

      sc f g hT      (4.22) 

where  f   and  g T  are [Eq. (4.9)] and [Eq. (4.10)] respectively. The  h   function 

describes how damage influences the strain rate. The classic continuum damage mechanics 

(CDM) approach was developed by Kachanov and Rabotnov [36-37]. It evolved from the 

assumption that damage is driven by a net-area-reduction from microcracks, cavities, voids, etc. 

This reduction in area furnishes a net/effective stress described as follows 
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(4.23) 

where Anet is the current area, A0 is the initial area,   is equivalent stress,   is the net/effective 

stress, and   is damage. From this net/effective stress, Kachanov and Rabotnov (K-R) proposed 

the following coupled creep-damage equations 
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 (4.24) 
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








     0 1   (4.25) 

where A and n are the secondary creep constants of  Norton’s power law for secondary creep 

[32],  is von Mises stress, and M, χ, and ϕ are tertiary creep damage constants. When damage is 

equal to unity the material has reached fracture. Variations of this formulation have been used to 

model the creep response of numerous materials [117, 170-174]. 

There are several limitations when using the classic K-R model for the prediction of 

creep cracking: 

 Critical damage is a function of stress and temperature necessitating a cumulative damage 

law to account for variable amplitude loading and stress gradients. The details of this 

problem have been detailed elsewhere by the author [117]. 

 The structure of the formulation leads to a localization of the damage field and the mesh-

dependence of damage evolution rate and cracking.  

The describe the problem, integration of the K-R damage rate [Eq. (4.25)] produces 

 

 1 d M dt
   

 

 
1

1

1 o

o

t
M

t


 










 


 

(4.26) 

where stress and temperature are constant. Assuming initial time, to and initial damage, ωo equals 

zero, and solving for damage,  , produces 

    
1

11 1 1t M t
           (4.27) 
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where  t  is damage as a function of time. Taking a variation of  t with an infinitesimal 

variation of stress  t  produces 

  
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 (4.28) 

Replacing the portion,  M tt


 , by rearranging [Eq. (2.20)] and introducing into the above 

gives 
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 (4.29) 

When damage is critical (near unity), the damage variation  t  is near infinite due to an 

infinitesimal variation of stress  t . Damage can never equal unity (due to divide by zero). 

This damage evolution equation is highly sensitive to the stress field. The stress sensitivity leads 

to a localization of the damage field. Changes in mesh size will lead to small changes in the 

stress field that produce enormous changes in the damage field. This is the primary contributing 

factor to the mesh-dependence of the classic CDM approach. The classic approach attempts to 

model the near instantaneous plasticity of fracture at the end of life resulting in astronomical 

damage rates. This process is better described as a step function loss of stiffness rather than a 

near infinite damage rate at rupture. 

To overcome this issue, a damage evolution equation which exhibits a finite variation of 

damage  t  under an infinitesimal variation of stress  t  must be developed. Liu and 

Murakami demonstrated that damage evolution is better represented as an exponential growth 

function [115]. In the current study, the following damage evolution equation is proposed 
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where M,  ,  , and t  are material constants which must be greater than zero. The portion 

 1 e    is necessary to avoid an undefined error when damage evolution is integrated. 

Integration of damage evolution produces 
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(4.31) 

where stress and temperature are constant. Assuming initial time, to and initial damage, ωo equals 

zero, and solving for damage,  , gives 
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(4.32) 

The M,  , and  material constants can be determined by from stress-rupture data. Taking a 

variation of  t with an infinitesimal variation of stress  t  produces 
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Replacing the portion,  sinh tM


  , by rearranging [Eq. (4.32)] and introducing into the 

above gives 
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(4.34) 

where after simplification becomes 

  
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 (4.35) 

Examining the above equation, damage can equal unity. When damage is equal to unity, the 

damage variation  t  is finite due to an infinitesimal variation of stress  t . The parameter 

  controls stress sensitivity. Increasing the value of   increases the damage variation and thus 

stress sensitivity. The constant   is hereafter called the damage trajectory constant. A 

comparison of the K-R model [Eq. (4.27)] and the proposed [Eq. (4.32)] damage equations are 

presented in Figure 4.6. The subscripts 1, 2, and 3 indicate the value of damage trajectory 

constant  . The K-R equation produces a steep damage evolution that is near infinite at rupture. 

The (new) proposed equation produces a less steep damage evolution (only slightly non-linear) 

that is finite at rupture. 



 

101 

 

 
Figure 4.6 - Comparison of the K-R and proposed damage evolution equations 

 

For the proposed damage evolution equation [Eq. (4.32)], the damage trajectory constant 

  can be determined by fitting the damage equation to normalized mechanical, crack, physical, 

and/or microstructural damage quantities. Theory suggests that creep damage arises primarily 

due to internal-grain and grain-boundary cavitation. Liu and Murakami have shown that the use 

of cavity-based microstructural damage quantities can be advantageous [115]. Parameters such 
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as the cavity area density,   (number of cavities within a set area) and the 
pA -Parameter 

(number of cavitated grain-boundaries) can be correlated to the CDM damage variable,  , in a 

number of ways [175]. The simplest form follows 
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A





   (4.36) 

where 
,p crA  and cr  are the critical 

pA -Parameter and cavity area density respectively. For 

complex versions for the 
pA -Parameter have been develop 

 

2

,

p

p cr

A

A
 

 
 
 

 

 

2

,

1 1
pL

p cr

A

A
  

 
    

 
 

(4.37) 

where L is a material constant. The relationship between the CDM damage variable and the 
pA -

Parameter is dependent on the structure of the damage evolution equation such that the equation 

is better described as an unknown function 
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 (4.38) 

It should be noted that both 
,p crA  and cr  are measured on the plane perpendicular to the applied 

load vector. The proper methods to measure the quantities have been established [175-177].  
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Figure 4.7 - Comparison of microstructural quantities to the CDM damage [178,179] 

 

For the subject material 304 stainless steel,  
pA  and  data is not available; therefore, the 

microstructural quantities from Nimonic 80A and 1Cr-1/2Mo HAZ are used to give an estimate 

of the damage trajectory   constant [178,179]. Assuming the simplest relationship  

,p p cr crA A      [Eq. (4.36)], regression analysis is used to fit the damage variable,   [Eq. 
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(4.32)] to the 
,p crA  and cr  quantities (plotted in Figure 4.7). The best fit value of the damage 

trajectory constant   is 2.078. To determine the true relationship between damage and the 

microstructural quantities [Eq. (4.38)] the damage trajectory constant   must be determined 

from creep deformation data. 

 To that end, mathematical manipulation of the creep deformation data follows. As 

depicted in [Eq. (4.22)] some unknown function  h   describes how damage influences the 

strain rate. The total creep strain rate, [Eq. (4.21)] then becomes 
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where solving for ( )h   produces 
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 (4.40) 

Using experimental data the A, s ,B,
p , and q material constants can be determined as discussed 

in sections 4.2.1and 4.2.2. In most constitutive models the relationship that damage has within 

the creep strain rate and damage evolution equations are similar. In the current study that would 

suggest the  h   function takes an exponential form. 

A number of micromechanics-based constitutive models with an exponential-function of 

damage have been developed to model the tertiary creep regime [115,180,181]. Riedel [181] 

suggested that the creep strain rate relates to some microcrack damage parameter, c , as follows 

   exp( )ch    (4.41) 
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work by Hutchinson [180] describes c  as 

 
31

2 1 3
c

n
Nd

n






 (4.42) 

where n is a material constant, d is average diameter of the microcracks and N is the number of 

microcracks per unit volume. Liu and Murakami [115] found that using the geometry of a 

cavitated cylindrical grain the relationship between the microcracking damage parameter, c  and 

the CDM damage,   is 
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 (4.43) 

The problem with most micromechanics-based creep models are the assumptions made about the 

shape, location, and nucleation rate of flaws (microcracks, cavities, voids, etc.). These 

assumptions limit the ability to accurately model the tertiary creep regime. 

As an alternative, the function is assumed to have the following structure 

 
  exp( )ph  

 (4.44) 

where   and p  are unitless material constants. Introducing this into [Eq. (4.40)] and solving for 

damage produces the following 
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 (4.45) 

where  *
t is the analytical damage derived from the creep strain rate,  cr t . Considering the 

time just before fracture rt t , where 0pr  , the creep strain rate [Eq. (4.39)] becomes 
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Clearly, the constant   can be described as the natural logarithm of the creep strain rate ratio 

(final over minimum). The p and   constants can be numerically found by equating damage [Eq. 

(4.32)] to the damage derived from creep strain rate data [Eq. (4.45)] 

    *
t t   (4.47) 
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Figure 4.8 - Parametric study to determine p and   constants. 
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A study was conducted where the constant p was increase at increments of 0.5 and 

regression analysis performed to find   based on the creep deformation residual sum of squares 

(RSS) for averaged creep curves of 304 stainless steel at 600°C depicted in Figure 4.5 [129]. The 

results are provided in Figure 4.8. The optimal fit of both creep deformation and damage 

evolution was obtained when p equaled to 1.5, with   found to be 3.704. This suggests that the 

 h   function should take a similar structure that obtained by Liu and Murakami [115]. (It 

should be noted that with p <1.5 the creep deformation produced less error but the fit to damage 

evolution become more conservative and stress sensitive). The  h   function becomes 

   3/2exp( )h    (4.48) 

Return to the relationship between the microstructural damage quantities and the CDM 

damage variable. It is found, assuming 
,p p cr crA A    , that   equal to 3.704 does not 

accurately predict the microstructural damage quantities as depicted in Figure 4.7. Using 

evolutionary computation [182], the function relationship of microstructural damage to the CDM 

damage variable is found to be 
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This produces a perfect fit to the microstructural damage quantities as depicted in Figure 4.7. 

Finally, the multistage coupled-creep damage constitutive model is complete as follows 
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The averaged creep curves of 304 stainless steel at 600°C are used to evaluate the damage 

evolution law, Figure 4.5 [129]. The primary and secondary creep constants A, B, q, s , and 
p

are listed in Table 4.1. Using regression analysis the damage constants,  ,  , M,  , and t  are 

found as listed in Table 4.2. The creep deformation and damage evolution are plotted in Figure 

4.9. The proposed model produces an extremely accurate prediction of the creep deformation. 

The damage is fitted to the damage derived from creep strain rate data [Eq. (4.45)] and as a result 

is fuzzy. The anomalous damage at 0.5nt   can be attributed to the sensitivity of the derived 

damage to the primary creep strain rate. At times 0.5nt   the damage predicted is accurate. 

 

 Table 4.2 – Tertiary Creep Constants for 304 Stainless Steel at 600°C 

Material Constant Units Value

   none 3.586 
  none 3.704 

M hr
-1

 
1.898E-06 

  none 3.09 

t  MPa 87.4 
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Figure 4.9 –Proposed Model Fit (a) Creep Deformation and (b) Damage Evolution at 600°C 
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4.2.4 Notch Strengthening 

As discussed in section 3.3.1, a multiaxial state of stress (often called a triaxial stress 

field) greatly influences the creep-rupture of most metals. Alloys subject to creep often exhibit a 

notch strengthening effect. The underlying mechanism that causes this behavior is anisotropic 

cavity damage. For most metals, cavitation can be indentified in two material classes, aluminum-

like and copper-like [40,183]. For aluminum-like materials, cavity damage is mostly distributed 

isotropically (Figure 4.10a). For copper-like materials, cavity damage is mostly observed on the 

plane perpendicular to the first principal stress direction (Figure 4.10b). Anisotropic cavity 

damage can be incorporated into most isotropic constitutive models by some stress- or strain-

based modification of the equations. 

 

 

Figure 4.10 - Schematic of cavity growth on grain boundaries for (a) Aluminum and (b) Copper 
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Yao and colleagues have produced an exhaustive review of multiaxial equations [184]. 

Historically two approaches to dealing with anisotropic cavity growth have been proposed: 

multiaxial creep ductility, 
*

f  and representative stress, 
rep  approaches. 

The multiaxial creep ductility approach involves predicting a multiaxial ductility based 

on some function of stress and uniaxial ductility.  Ductility is the failure strain at rupture. A 

number of models have been proposed that correlate cavity growth and imposed stress and strain 

[185-190]. An early and popular model is the Rice and Tracey [186] void growth model based on 

an isolated spherical void in remote-uniformed stress and strain rate field. The model follows 

 

*
0.521

3
sinh

2

f

mf

e








 
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   

(4.51) 

where 
*

f  is the multiaxial ductility and 
f  is the uniaxial ductility.  Cocks and Ashby [187] 

proposed a model based on the constrained cavity growth mechanism which has been used in 

various design codes (British R5, ASME III, French RCC-MR, etc.) as follows 
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               

(4.52) 

where n is a material constant. The limitation of the multiaxial creep ductility approach is that 

there is no direct modification of the constitutive equations; therefore, the deformation and 

damage fields produced will not represent the evolution of defects under multiaxial conditions. 

The multiaxial creep ductility approach will only predict the appropriate rupture strain and time. 

An alternative is the representative stress, 
rep  approach. Sdobyrev [191] proposed the 

following representative stress 



 

112 

 

 
 1 1rep vm      (4.53) 

where 1 and vm are the first principal and von Mises stress and  is a constant.  The value of 

 for various metals have been established including: stainless steel 0.75  , aluminum alloys 

0  , commercially pure copper 0.848  , extruded copper bar 0.70  , Ni-base alloy 

0.15  , and titanium alloy 0    [192,193,194]. The fastest way to determine   is to 

perform FEM simulations at various values of  ,  plot   vs. rupture time, and then select the 

value which matches rupture data  [192]. Alternatively,  constant can be found using a skeletal 

stress approach  [192,195]. The skeletal stress approach takes the following form 

 
 

**

1
1

rep vm

net net net

 
 

  
  

 
(4.54) 

where 
rep net  is the ratio of net stress in a uniaxial specimen to that in the necked area of a 

Bridgman specimen that gives equal rupture time [196,197].  The ratio
rep net   is found by 

plotting the rupture time versus net stress of the uniaxial specimen and Bridgman specimen. A 

curve fit of these lines will produce the ratio  [192]. An excel solver can do this quickly. 

Kachanov produces an analytical theory to predict the stress which arises in a Bridgman 

specimen [197]. The ratios *

1 net   and *

vm net  represent the ratio of skeletal maximum 

principal and von Mises stress to the net stress within a Bridgman specimen. The skeletal stress 

is an invariant stress located some distance from the notch tip in the Bridgman specimen. It can 

be determined by running FEM simulations and plotting the stress ratio across the net section of 

the specimen (from notch tip to the center) [198]. At a point along this line a semi-stable value of 

stress will be observed. This is the location and quantity of the skeletal stress [199]. Hayhurst 

[200] proposed a more complex equation that includes the hydrostatic stress and two additional 
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constants; however, the additional complexity does not produce much improve over the original 

equation. Some authors have suggested the use of the principal facet stress (the average tensile 

stress on grain boundary facet perpendicular to the maximum principal stress); however, this 

term does not correlate well for materials where cavitation is not the dominant mechanism, such 

as aluminum [131]. 

The in the current study, the Sdobyrev representative stress [Eq. (4.53)] is selected. The 

stress is incorporated in the damage evolution equation as follows 
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
  
 
 

  

 (4.55) 

where the value of   is assumed to be 0.75. 

 

4.2.5 Mechanical Degradation 

As damage occurs within a material it induces a measurable change in most physical 

quantities. In the case of the mechanical quantities Young’s modulus and Poisson’s ratio it is 

important to model this degradation such that the mechanical stresses are accurately predicted 

[40].  Two theories of mechanical degradation have been suggested: the hypotheses of strain and 

strain-energy equivalence. For clarity a schematic describing the virgin, damaged, and pseudo-

undamaged state of a material is provided in Figure 4.11. The assumption of 1D and isotropic 

material is used. 

As discussed earlier [Eq. (4.23)], the effective stress,   and effective strain,   can be 

derived from the net-area-reduction as follows 
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 , 1

1


  


  

  
(4.56) 

For the cases of the damaged state Hooke’s law becomes 

 
eE 

 
(4.57) 

where E  is the degraded Young’s modulus. For the pseudo-undamaged state Hooke’s law 

becomes 

 

 
Figure 4.11 - 1D schematic of the effective stress concept 

 

0A
0 netA A

,0E



,0E



,E 




 ,0e   ,e  

Virgin Damaged Pseudo-undamaged



 

115 

 

 
eE 
 

(4.58) 

where E  is the initial Young’s modulus. 

In the hypothesis of strain equivalence it is assumed that the elastic strain observed in the 

damaged state is equated to that observed in the pseudo-undamaged state ( e e  ) [40]. Using 

the effective stress [Eq. (4.23)] we find the following 

 
 

 1E E

 





  

(4.59) 

where after rearranging for the damage variable and the degraded Young’s modulus are 

 
  1 , 1

E
E E

E
 

 
    

 
 

(4.60) 

It should be noted that this hypothesis assumes that the Poisson’s ratio is not affected by damage. 

This is not true for most engineering materials, and thus limits the applicability of the strain 

equivalence approach. 

As an alternatively, the hypothesis of strain-energy equivalence has been proposed, 

where the strain-energy of the damage state is equated to that of the pseudo-undamaged state 

[201]. Using both the effective stress and strain [Eq. (4.56)] the following is found 

 
 

 

2 2
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2 2 1E E

 
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(4.61) 

where after rearranging for the damage variable and the degraded Young’s modulus are 
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1 2
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E
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 
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(4.62) 

With the 3D assumption the strain and strain-energy hypothesis become more complex. While 

the virgin material is initial isotropic, upon application of load microscopic defects (microcracks, 
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voids) form and are distributed anisotropically. Thus damage induces an anisotropic response in 

isotropic materials [14]. Murakami and Ohno [202] found that the scalar damage variable,  , 

becomes a second-order symmetric damage tensor, D ,  
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D  
(4.63) 

Solve the Eigen problem to find iD  and in , the principal value and axes of damage 

 3

1

i i

i

D n


 D  
(4.64) 

The effective stress and strain vectors become 

 1 : , :e e

 σ M σ ε M ε  
(4.65) 

where σ  is the Cauchy stress tensor, σ  is the symmetric effective stress tensor, and M  is a 

fourth-order integrity/damage effect tensor. This fourth-order integrity tensor M  is a function of 

the second-order damage tensor D  described various ways in literature [40,203]. Due to 

symmetry the fourth-order integrity tensor can be represented by a 6x6 matrix and thus through 

transformation the effectives stress is represented as follows 
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(4.66) 

General linear elasticity can be described by the Hooke’s law as 
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ij ijkl kl

EL e
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σ C ε

=

=
 (4.67) 

where 
ij  are the components of the Cauchy stress tensor σ  (9 terms), kl  are the components of 

the Cauchy strain tensor ε (9 terms), and 
ijklC  are components of the elastic stiffness tensor ELC

(81 terms) containing the mechanical properties of the material. An alternative approach has also 

been employed by rearranging Eq. (4.67) to 
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 (4.68) 

where 
ijklS  are components of ELS  the elastic compliance tensor. The fourth order tensors ELC  

and ELS , through symmetry of the Cauchy stress and strain shear terms (down to 6 independent 

terms) reduces from 81 (9x9) components to 36 (6x6).  In the case of isotropic (PC) materials 

linear elasticity takes the following form 
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when taken into matrix form produces 
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where only two material properties are necessary to characterize the mechanical behavior; E, 

elastic modulus and  , Poisson’s ratio. For the damaged and pseudo-undamaged states Hooke’s 

law takes the following forms 

 
EL e

EL e

σ C ε

σ C ε

=

=
 (4.71) 

respectively, where ELC  is the degraded elastic stiffness tensor. 

In the hypothesis of strain equivalence it is assumed that the elastic strain tensor observed 

in the damaged state is equated to that observed in the pseudo-undamaged state ( e eε ε ) [40]. 

Using the effective stress [Eq. (4.65)] we find the degraded elastic stiffness tensor as  

 
 

1

2
EL EL EL  C M C C M=  (4.72) 

In the hypothesis of strain-energy equivalence the strain-energy of the damage state is 

equated to that of the pseudo-undamaged state [201]. Using both the effective stress and strain 

[Eq. (4.65)] the following is found 

 
EL EL C M C M=  (4.73) 

More complex forms of the M  and ELC have been proposed in literature [14,40,204,205]. 

Experiments have been conducted to compare the strain and strain-energy hypotheses. It 

has been found that mechanical degradation is strongly dependent on the dominant 

microstructural damage mechanism [206-208]. Possible damage mechanisms include: 

constrained cavity nucleation and growth, continuum cavity growth, super-plastic void growth, 

and ductile void growth [209]. It has been observed that just before fracture the stiffness 
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degrades by 50 to 100% dependent on the ductility of the subject material. Just before fracture, 

damage is the following 

  
0 ,

0

net cr

cr

A A

A



=  (4.74) 

where cr  and 
,net crA  are the critical damage and reduced area respectively. This suggests that 

critical damage should be less than unity and is a function load rate and temperature  ,cr T  . 

Predicting rupture becomes highly inaccurate. To overcome this issue the following assumptions 

about damage are made 

 Isotropic and scalar 

 Critical damage is always unity 

 It is possible for stiffness to be greater than zero just before fracture 

The most important feature of the proposed approach is the introduction of the degradation 

factor, m that changes the damage-area equation [Eq. (4.74)] to  
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This assumption is important because it infers that the effective stress reaches some critical value 

before fracture occurs. Penny found that a critical effective stress exists between the ultimate 

tensile UTS  and yield strength YS  of most materials [210]. In the proposed approach the critical 

effective stress becomes 
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where the degradation factor, m, is proportional to the ultimate tensile strength a function of 

temperature. 

The hypothesis of strain equivalence furnishes an elastic degradation of 

  1E E m 
 

(4.77) 

And the hypothesis of strain-energy equivalence provides 

  
2

1E E m 
 

(4.78) 

It is clear that stiffness just before fracture is not zero and stiffness after fracture is zero; 

therefore, a step-function must be introduced to represent this near instantaneous loss of 

stiffness. The strain and strain-energy degraded stiffness’s becomes 
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(4.80) 

The selection of the either the strain or strain-energy hypothesis should be based on the response 

of the subject material. An analytical exercise of both approaches [Eqs. (4.79)-(4.80)] is provided 

in Figure 4.12 where the Y axis is normalized Young’s modulus.  
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Figure 4.12 - Analytical exercise of proposed degradation equations 

 

The mechanical degradation factor, m can be obtained in a number of ways. For strain 

equivalence, rearranging the effective stress produces 
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where the critical effective stress can be assumed equal to the ultimate tensile strength. For both 

strain and strain-energy hypothesis, measuring stiffness just before rupture,  
crE , and rearranging 

[Eqs. (4.79-(4.80)] gives 

Strain Equivalence 
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(4.82) 
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Using the assumption that damage is isotropic and scalar the elastic stiffness tensor becomes the 

following 
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 (4.84) 

where only two material properties are necessary to characterize the mechanical behavior; E , 

degraded Young’s modulus and  , Poisson’s ratio. Historically, the average Young's modulus has 

been used as a cumulative damage equation 

 
01i iD E E   (4.85) 

where 0E  and iE  are the initial and current respectively [212]. Numerous authors have studied 

the degradation of Young’s modulus [213-219]. 
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4.3 Summary of Constitutive Model 

The proposed constitutive model is completed. The model is multistage, able to model 

the primary, secondary, and tertiary creep regimes. The damage evolution equation mitigates 

stress- and as a results mesh-dependence. A representative stress accounts for anisotropic cavity 

damage induced by multiaxial stress. The strain and strain-energy equivalence approach to 

mechanical degradation has been created to model mechanical degradation more accurately. The 

constitutive model equations are collected and listed in Table 4.3. 

 

Table 4.3 – Summary of the Unified Mechanical Model for Creep 

Title Equation 

Creep Strain Rate 
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 A description of the material constants associate with each equation is provided below 

Table 4.4 – Primary creep constants 

Name Symbol Units

 Primary Creep coefficient B hr
-1

 

“   “  mechanism transition p  MPa 

“   “  exhaustion rate q hr
-1

 

 

Table 4.5 – Secondary creep constants 

Name Symbol Units

 Secondary Creep coefficient A hr
-1

 

“   “  mechanism transition s  MPa 

Natural logarithm of the final over minimum strain rate   unitless 

 

Table 4.6 – Damage constants 

Name Symbol Units

 Tertiary creep-damage coefficient M hr
-1

 

“   “  mechanism transition t  MPa 

“   “  exponent χ unitless 

“   “  trajectory constant   unitless 

mechanical degradation factor m unitless 

 

Table 4.7 – Representative Stress Constants 

Name Symbol Units

 Multiaxial rupture parameter   unitless 
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4.4 FEM Implementation 

The proposed constitutive model is implemented into the finite element analysis (FEA) 

software ANSYS
®
. The ANSYS

®
 program has an open architecture that allows linking of 

customized FORTRAN routines and subroutines, called user-programmable features (UPF’s). 

The usermat3d UPF allows the user to implement any 3D material constitutive law. For every 

Newton-Raphson iteration and every material integration point the USERMAT UPF is called. At 

the beginning of a time increment, the current stresses, strains, and state variables are inputs. The 

USERMAT must then provide updated stresses, inelastic strains, state variables, and the material 

Jacobian matrix as outputs [220]. The stress increment is determined using the radial return 

technique. The inelastic strain vector is determined from the multiaxial extension of the isotropic 

model. The material Jacobian matrix is determined through derivation. The following sections 

detail how to obtain these terms. 

 

4.4.1 Multiaxial Form 

It is necessary to convert the scalar isotropic constitutive model into a multiaxial form. 

This is required to model the general deformation of a three-dimensional body. Borrowing from 

the plastic potential theory, the creep potential hypothesis suggests that some creep-potential 

controls creep-flow 

  
,ij cr cr

ij

d
d d

d


 




σ
 (4.86) 

where crd  is the equivalent creep strain increment [221]. In the case of creep, the yield surface 

is zero such that the potential function is equal to the selected equivalent stress.  
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In the current study Hill’s anisotropic equivalent stress will be used [59]. Hill’s 

anisotropic yield criterion is an extension of the von Mises yield criterion that allows for 

anisotropic yield of materials 
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(4.87) 

where Hill  is Hill’s equivalent stress, s is the Cauchy stress vector, and M is the Hill compliance 

tensor consisting of the F, G, H, L, M, and N unitless material constants [170]. Hill’s equivalent 

stress reverts to von Mises when  

 1

2
F G H  

 

3

2
L M N  

 

(4.88) 

Using Hill’s potential function and the creep potential hypothesis, a general flow rule of the 

proposed isotropic constitutive model is produced 

 
,cr i cr

Hill

d t 


 
Ms

 

       3 2sinh exp sinh expcr Hill p Hill sB Aqt        

(4.89) 

where is the equivalent creep strain rate listed in Table 4.3. 
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4.4.2 Radial Return Mapping Technique 

Creep is considered an incompressible process [222] where 

 volumetric stress has no effect on the creep strain 

 stress has no effect on volumetric creep strain 

Using the above and the assumption of isotropy, the stress-strain law can be separated 

into spherical and deviatoric invariants 

 0

0 3

v

cr

e e e

p K

G



  

     
            

(4.90) 

where  is the elastic strain increment, cr is the creep strain increment, and K and G are the 

bulk and shear modulus respectively [223]. The deviatoric stress e  is equal to the equivalent 

stress Hill . The term is p  volumetric (hydrostatic) stress. In incremental form the equation 

becomes 

 

 
0

,0 3

v

cr
e e e e

p p K

G



   

  

     
(4.91) 

where 0 denotes the initial value. To find the updated values of spherical p  and equivalent e

stress the method of successive approximation is used. In this method, a problem is solved by a 

series of approximations which converge to a solution. An elastic predictor is used as the 

approximation 

 *

0

*

,0 3

v

cr

e e e

p p K

G



  

  

    
(4.92) 
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where * denotes the predictor value. By rearranging [Eqs. (4.91),(4.92)] the updated stress 

becomes 

 *

* 3 cr

e e e

p p

G  



    
(4.93) 

The volumetric stress does not change. For the equivalent stress, by moving everything to the 

right hand side, a function that can be solved by iteration is produced 

   * 3 0cr

e e e eF G       
 

(4.94) 

Using the Newton-Raphson method gives 

 
   

1

n
e en n

e n

F

dF

d

 




 

 
 
 

 (4.95) 

where n is the iteration count. The convergence criterion follows 

 

   

1

1

n n

e en n

F F 

  





 

   
(4.96) 

where   is the desired accuracy. The updated stress vector can be found using the following  

 *

*

e
ij ij ij

e

pI S





 
 

(4.97) 

where 
ijI  is the identity tensor, 

*

ijS  is the elastic predictor deviatoric stress tensor, and ij is the 

Cauchy stress. The elastic predictor stresses can be obtained from 

  * *

, , ,i EL ij EL j j IN jC      
 

(4.98) 

where 
,EL ijC  is the elastic stiffness matrix and 

*

j  is the given strain increment. 
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4.4.3 Material Jacobian Matrix 

The total strain rate, totε , is a summation of elastic and creep strain rates, eε  and crε  

respectively 

 
tot e crε ε ε=  (4.99) 

The rate-based Hooke’s law (the relationship between   the Cauchy stress rate and eε  the 

elastic strain rate) takes the following form 

  EL e EL tot cr  C ε C ε ε=  (4.100) 

where ELC is the elastic stiffness matrix. 

The material constitutive response (the relationship between   the Cauchy stress and 

totε  the total strain rate) is 

 
TOT tot C ε=  (4.101) 

where TOTC is the total stiffness matrix better known as the “material Jacobian matrix”. In 

“implicit” FEM, the material Jacobian matrix is needed to solve using Newton-Raphson at every 

integration point and each global iteration [224]. Mathematical manipulation furnishes 

 
TOT tot

EL e CR cr

TOT EL CR



  



C ε

C ε C ε

C C C

=

=

 (4.102)  

above demonstrates that TOTC  the material Jacobian matrix can be decomposed into elastic and 

creep stiffness matrices, ELC and CRC  respectively. 

The material Jacobian matrix is a vital part of the equilibrium equations used in FEM 

[220]. The material Jacobian can be described as a partial derivative 
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i

TOT

j








C =  (4.103) 

where i  is the change in the ith stress at the end of the time increment caused by the jth strain 

j  [225]. A closed-form solution to ELC  the elastic stiffness matrix always exists. A closed-

form solution to CRC  the creep stiffness matrix may or may not exist. If a closed-form solution 

exists, it greatly reduces computational costs. 

 To that end, inverting the creep stiffness matrix, CRC ,  will furnish the creep compliance 

matrix, CRS , as follows 

 
 

1 i
CR CR

j





 
 


S C  (4.104) 

The partial derivative of the proposed constitutive model (Table 4.3) can be found manually or 

by using symbolic computational algorithms. A partial derivative of a variable function is a 

derivative with respect to a constant such that 

  ,cr i

CR

j

d

d








σ
S  (4.105) 

introducing the proposed model furnishes 

    pr Hill sc Hill

CR

j j

CR PR SC

d d

d d

   

 

 
 

 

S

S S S

 (4.106) 

where PRS  and SCS  are the primary and secondary-tertiary parts of the creep stiffness matrix. A 

closed-form solution for both was found using the symbolic computation. The matrices were 

simplified to the following 
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 (4.107) 

where both matrices are symmetric and non-singular. To obtain the stiffness matrix the 

compliance tensors must be inverted 

    
1 1

CR CR PR SC

 
  C S S S  (4.108) 

In the current study, Gaussian elimination is used to find the inverse. 
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CHAPTER FIVE: UNIFIED MECHANICAL MODEL FOR CREEP-

FATIGUE 

 

5.1 Introduction 

While the creep constitutive model developed in the previous chapter is able to fully 

describe the creep deformation and damage process under constant load; it is unable to model 

monotonic tension and cyclic viscoplasticity observed during fatigue. Under creep-fatigue both 

creep and cyclic viscoplasticity contribute to the evolution of a material. This necessitates the 

development of a unified mechanical model for creep fatigue able to model: 

 primary, secondary, and tertiary creep 

 monotonic and cyclic viscoplasticity 

 hardening, softening, and saturation 

 damage and rupture prediction 

 mechanical and microstructural degradation 

In this “unified” mechanical model all inelastic strains are derived from a single viscous 

function. Creep and yielding viscoplasticity are not independent of each other; rather the state 

variables of the viscous function evolve such that both phenomena can be modeled.  

 The development of the unified mechanical model involves many steps. First appropriate 

state variable must be selected. Next, a viscous function must be found which models the 

secondary creep behavior and incorporates steady-state values of the state variables. Then, the 

primary creep, monotonic tensile,  and cyclic behavior can be model by converting the state 

variables into evolving functions. Then, coupled CDM-based creep and fatigue equations must 
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be developed to model tertiary and post-cyclic stress saturation behavior towards prediction of 

rupture. Finally, the influence of damage on the mechanical properties and microstructure of the 

material must be investigated. 

 

5.2 Proposed Constitutive Model 

Considerable effort has gone towards the development of unified viscoplasticity 

constitutive models [68,226]; however, only recently have researchers begun incorporating 

continuum damage evolution equations [227-229].  

The identification of appropriate state variables is key to the development of a 

viscoplasticity model capable of modeling the complex phenomena associated with inelastic 

deformation under transient mechanical loading. While the fundamental mechanisms which 

contribute to deformation are coupled at multiple time- and length- scales it is necessary to limit 

the complexity (depth of characterization) of the proposed model for brevity and simplicity of 

implementation; however, considerable effort is expended to correlate macro-scale behavior to 

microstructural mechanisms. 

  In the proposed model, the classical assumption of a static yield surface is not used. 

Instead, the yield surface is replaced by isotropic and kinematic equilibrium surfaces where 

plastic flow is resisted until some rate-dependent equilibrium stress is reached. Another 

assumption is that all forms of rate-dependent inelastic strain are inseparable, such that non-

recoverable strains due to creep, plasticity, etc. evolve from a single viscous function. The total 

strain rate,  , becomes  
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E IN     (5.1) 

where E  and IN  are the elastic and inelastic strain rates respectively. The inelastic strain rate is 

a viscous function which must include state variables to model: 

 isotropic hardening (uniform expansion of the equilibrium surface) 

 kinematic hardening (translation of the equilibrium surface the "Bauschinger" effect) 

 cyclic hardening, softening, and saturation 

 creep damage due to the nucleation and growth of cavities are grain boundaries 

 fatigue/plastic damage due to climb and slip of dislocations 

Towards these goals an inelastic viscous function of the following form is proposed 

      ,, , c ff g hR D T       (5.2) 

where  , R , and D  are the applied, rest (kinematic), and drag (isotropic) stresses, T is the 

temperature, and c  and 
f  are the creep and fatigue/plastic damage respectively. In this study 

the model is limited to isothermal conditions such that  g T  equals unity.  

 

5.2.1 Hybrid Viscoplasticity Constitutive Model 

As discussed in section 2.3.1, a number of viscoplasticity constitutive model have been 

developed to model the complex phenomena observed at high temperature. A series of studies 

[68,226,230-232] have been conducted to compare models developed by authors such as Bodner 

1975 [71], Hart 1976 [233], Miller 1976 [70,234-237], Chaboche 1977 [238], Robinson 1978 

[239], Krempl 1980 [72,240], Walker 1981 [241], etc. It has been found that most viscoplasticity 

constitutive models are initial developed to model a particular set of boundary conditions such as 
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monotonic tension, strain-controlled fatigue, stress-controlled fatigue, and then extended to 

model other phenomena such as ratcheting, relaxation, and creep. This extrapolation often results 

inaccuracy. Miller's MATMOD [70,234-237] equations on the other hand were developed to 

model monotonic, cyclic, and creep deformation and sets forth a methodology to obtain material 

parameters analytically from these experimental data sets. Unfortunately, the original MATMOD 

equations [236-237] do not replicate the nonlinear cyclic hysteresis loop of experimental data 

well and the more modern MATMOD equations [234] are too complex for easy determination of 

material parameters. The Walker model [241] produces an excellent fit to most cyclic hysteresis 

loops with the ability to model nonlinear asymmetry; however, the original equations produce 

purely fictitious creep curves above the apparent yield strength of the subject material. When an 

initial value of the rest stress is set, the Walker model produces fictitious negative inelastic strain 

rates upon loading. The Walker model incorporates strain directly in the drag stress equation. 

This results in the inelastic strain rate becoming sensitivity to the time increment; thus relatively 

small time-steps are required for stability. This is an unacceptable property especially when 

simulating long term creep (>10,000 hours). It is desirable to develop a hybrid model which 

incorporates the monotonic, cyclic, creep deformation data sets and is able to model them at high 

fidelity across a wide range of applied conditions while overcoming the issues found in the 

legacy models. 

First, the    , ,f gR D T   components of the viscous function must be found. Miller 

found that the viscoplasticity viscous function can be consider equivalent to a secondary creep 

viscous function used in traditional creep constitutive models. Miller uses the  Garofalo 1965[34] 

hyperbolic-sine function as follows 
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    sinh
n

sc cBg AT      (5.3) 

where B and n are the secondary creep coefficient and exponent,  g T  is a temperature-

dependent variable, and A is the secondary creep mechanism-transition ratio.  

 In the previous chapter the proposed creep constitutive model uses the 1943 McVetty 

[160] hyperbolic-sine function  

 
0 sinh c

sc

s

A





 
  

 
 (5.4) 

where 0A  is the secondary creep coefficient and s  is the secondary creep mechanism-transition 

stress. This form produces the best fit to minimum creep rate versus stress data as presented in 

the previous chapter. Following Gilman [66] and Rice [67], the rest and drag stresses are 

introduced into [Eq. (5.4)], and with considerations for Millers form [236-237], the hybrid 

viscous function becomes the following 

 
 0 sinh sgnIN

R
A R

D


 

  
  

 
 (5.5) 

where 0A  is the secondary creep coefficient, and R and D are the rest and drag stress 

respectively.  The function  sgn x  is the sign of a real number x  

 

 

1 0

sgn 0 0

1 0

for x

for xx

for x

 


 
 

 (5.6) 

Let it be assumed that both viscous functions [(5.4)] and [(5.5)] are exercised for a creep test. At 

the time step where the secondary creep regime has been reached ( sst t ), the inelastic strain rate 

becomes a constant equal to the minimum creep strain rate. Both the hybrid and McVetty viscous 
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functions become equal. This necessitates that the rest and drag stress become steady state 

values, ssR and ssD  respectively where 0R   and 0D  . Simplification furnishes the following 

“stress ratio” equation 

 
c ss c

ss s

R

D

 




  (5.7) 

where c  is the applied stress. This relationship must be enforced to produce the constant 

minimum creep strain rate observed during the secondary creep regime in a creep testing and the 

ultimate tensile strength of monotonic tension. 

 The above relationship suggests that the evolution of the rest and drag stresses take the 

form of a rate-dependent equilibrium surface. Armstrong and Frederick [242] proposed that 

nonlinear kinematic hardening should be described as 

 2

3

pC p X X  (5.8) 

where C is a constant. This rate-dependent equilibrium surface evolves from the difference 

between work-hardening, 2 3 pC  and (thermally-activated) dynamic recovery, pX  mechanics. 

Most legacy constitutive models have hardening laws can be regressed to a form of the 

Armstrong and Frederick rule [68]. The development of appropriate rest and drag stress rate-

dependent equilibrium equations is key to the accurate prediction of static and transient 

phenomena. Towards that goal, modified components of legacy constitutive models (listed at the 

begin of this section) are used to build the rest and drag stress equations of the hybrid model 

while following the Armstrong and Frederick rule. 
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 In literature, Walker model is observed to produce an excellent fit to the cyclic hysteresis 

loop data of superalloys compared to other legacy constitutive models [230-231]. This transient 

phenomena is mostly modeled by the kinematic hardening evolution equation equivalent to the 

rest stress as follows 

Walker 

   

 

1 2 0 1

1

3 4 5 6exp

IN IN
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IN IN

s

R n n R R n G
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G n n n n
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 

 



    

     

 (5.9) 

Unfortunately the kinematic hardening law is ill-defined. When 0R  is set to greater than zero 

fictitious negative inelastic strain rates are produced when upon initial loading. The inclusion of 

dependence on the inelastic strain, IN  results in time-step size dependence of the material 

constants. Static phenomena (such as creep) cannot be model when the rest stress is dependent 

on the inelastic strain. The nine material constants exhibit low dependencies suggesting that the 

model is ill-defined. To produce a high quality fit to both static and transient phenomena, the rest 

stress evolution equations of Walker most be heavily modified to the point of novelty. In the 

hybrid model, the novel rest stress evolution equation, R   becomes  

    

   

1 2

3 4exp sgn

IN d IN

d

R c R Q c c

c c c R Q R

 



      

     

 (5.10) 

where 1 2 3 4, , ,c c c c  and Q  are material constants. The R  equation removes four superfluous 

constants form the Walker model [Eq. (5.9)]. The term 1 INc   models work hardening. The 

portion dc  is a form of the variable work hardening coefficient original proposed by Krieg [243], 

then modified by Miller [244] to model "normal" and "anomalous" Bauschinger's effect where 
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"anomalous" effects include local reversals in curvature of the hysteresis loops. It is again 

modified and implemented in  2 d INc c   as a dynamic recovery term. The term Q replaces 0R  

(allowing 0R  to always equal zero). This eliminates the fictitious inelastic strain rates upon 

loading. The value Q  represents the initial anisotropy of the yield surface where when there is 

no pre-existing anisotropy equals zero. Inelastic strain does not appear in the model, thus time-

step size and static phenomena problems are overcome. The hybrid rest stress evolution equation 

can be regressed into a specialized form of the Armstrong and Frederick nonlinear kinematic 

hardening rule [242]. 

 In literature, the drag stress equation of Miller's model [236-237] is observed to control 

isotropic hardening, softening, and saturation through coupling the rest and drag stress terms 

within the drag stress equation.  

Miller    3 3

2 2 2 1 2 2 2sinh
n

IND H c R A A D H c B A D            (5.11) 

This coupling is only possible through the nature of the form of the rest and drag stress equations 

themselves. In the case of the hybrid model rest stress, the coupling method results in a overly 

complex drag stress equation. As an alternative, the drag stress equation of Krieg, Swearengen, 

and Rhode's [245] and the equation by James [230] are evaluated. 

Krieg  4 5 0

n

IND A A D D    (5.12) 

James 4 5IND C C D   (5.13) 

The Krieg equation is unable to model saturation due to the lack of a traditional dynamic 

recovery term and due to the way inelastic strain rate is used. The James equation exhibits 
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saturation but the drag stress continuously evolves in the absence of plasticity due to the 5C D  

term. To produce a high quality fit to isotropic hardening, softening, and saturation, a hybrid 

drag stress incorporating components of the Miller, Krieg, and James model is developed to the 

point of novelty. In the hybrid model, the novel drag stress evolution equation, D   becomes  

    
33

5 7 0 6 0 IND c c D c D D     
 

 (5.14) 

where 5c , 6c , and 7c  are material constants. The terms  3

5 7 0c c D  is a work hardening term 

which controls hardening/softening while the term  
3

6 0c D D  is a dynamic recovery term 

which controls saturation. Miller [236-237] suggested that during warm-working experiments 

(where specimen are warm-worked to approximately 100% strain) the rest stress remains 

relatively small while the drag stress evolves. A semi-linear relationship exists between the 

warm-working stress and the resulting room temperature yield strength at a ratio of 1 to 3 for 304 

stainless steel. By replacing the stress in the viscous function [Eq. (5.5)] with the yield strength 

and setting R=0, it is observed that stress to drag stress carries an exponent of 3. This exponential 

is introduce into the drag stress evolution equation. Cyclic saturation is model through the 

dynamic recovery term. When dynamic recovery,  
3

6 0c D D  overcomes the linear work 

hardening the drag stress rate becomes zero. Cyclic hardening and softening can be model 

through the relationship in the  3

5 7 0c c D  term where a positive net value results in hardening 

and a negative net value results in softening. This suggests that if the initial drag stress is greater 

than some saturation value ( *

0 0D D ) then softening will occur. The speed of saturation depends 
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on the evolving ratio between the hardening and dynamic recovery terms. The term IN  is used 

to enforce accumulation of the drag stress only during yielding and without regard to asymmetry. 

The initial value of the drag stress, 0D  must exist as a value greater than zero. Miller 

developed a phenomenological calculation which can be used to "estimate" 0D  from monotonic 

data [236-237]. Let it be assumed that a single time step is used to reach the 0.2% yield strength 

at 0.002 strain offset, 0D  does not change significantly, inelastic strain rates are equal to the 

mechanical values, and the quantity Q is zero. Under these conditions the following 

approximations are made 
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 (5.15) 

introducing the above terms into the viscous function [Eq. (5.5)] and solving for 0D  produces the 

following “initial drag stress for displacement control” as 

 
1

0

0

0

0.002

asinh

Y c
D

A






 
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 

 
(5.16) 

where Y is the 0.2% yield strength and 0  is the corresponding tensile-test strain rate. This value 

can be considered approximately equal to the "characteristic" drag stress of the material [66]. A 

more complex form of the initial drag stress can be calculated when less assumption are made; 

however, it increases the accuracy of modeling monotonic behavior at the expensive of fatigue 

and creep. An “initial drag stress for load control” still needs to be developed.  
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The rest and drag stress become steady-state ( ,ss ssR D ) in a creep test when the secondary 

(steady-state) regime is reach and in a monotonic tensile test when the ultimate tensile strength is 

reached. The steady-state rest stress can be calculated by taking the rest stress rate [Eq. (5.10)] 

setting it equal to zero and solving for ssR   

     1 2 3 40 expss ssc R Q c c c R Q         (5.17) 

where a nonlinear solver can be used to solve for ssR  and assumes  sgn R  equals unity. The 

steady-state drag stress can be calculated by taking the drag stress rate [Eq. (5.14)] setting it 

equal to zero and solving for the “real portion” of ssD   

 1 3
3

5 7 0
0

6

ss

c c D
D D

c

 
  
 

 (5.18) 

where a direct solution for ssD  is found. For a creep test, the time at which the secondary 

(steady-state) creep regime is reached occurs when the current “stress ratio” equals the steady-

state “stress ratio” of [Eq. (5.7)] 

  

 
c c ss

ss

R Rt

D Dt

  
  (5.19) 

where c  is the applied creep stress. For a monotonic tensile test, the ultimate tensile strength is 

reached at the steady-state “stress ratio”. The ultimate tensile strength is not implicit stated 

within the equations. It can be calculated analytically through manipulation of the viscous 

function. Replacing , R  and D  with , ssUTS R  and ssD  in the viscous function [Eq. (5.5)] and 

solving for UTS  produces   
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 
 (5.20) 

where UTS  is the ultimate tensile strength and 0  is the corresponding tensile-test strain rate. 

The above equation can be used to obtain rest and drag stress constants that produce an 

appropriate ultimate tensile strength for the subject material. 

 The hybrid viscoplasticity constitutive model is summarized below 
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    
 

 (5.21) 

where 0 1 2 3 4 5 6, , , , , , ,A c c c c c c Q  and Y  are material constants. The rest stress is a kinematic 

hardening law which controls transient phenomena, initial yield surface asymmetry, and 

"normal" and "anomalous" Bauschinger's effect. The drag stress is a isotropic hardening law 

which controls monotonic hardening, isotropic cyclic hardening and softening, and saturation. 

Drag and rest stress are not physical stress but represent the expansion and translation of 

equilibrium surfaces. 

 An analytical exercise of the hybrid model is performed for creep and fatigue type 

mechanical tests. A schematic of the change in ,IN R  and D during a simulated creep test is 

provided in Figure 5.1. The inelastic strain depicts the primary and secondary creep regimes of 

creep deformation.  The rest and drag stress saturate to equilibrium quickly. According to [Eq. 

(5.7)], the secondary creep regime is reached when both the rest and drag stress are fully 
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saturated. It should be noted that in the simulation, the drag stress appears to soften towards 

saturation instead of hardening. This behavior can be attributed to the fictitious low applied 

strain rate used to approximate an initial drag stress under creep. A schematic of the change in 

,R D  and   during a simulated softening and hardening fatigue test is provided in Figure 5.2 

and Figure 5.3 respectively. In both figures asymmetry is observed in the rest stress where the 

constant Q is indentified as the average value of the rest stress during a cycle.  The nonlinearity 

of the rest stress evolution is greatly influenced by the dc  term.  Cyclic hardening and softening 

are controlled by the evolution of the drag stress towards a saturation value.  During cyclic 

hardening (Figure 5.2) the drag stress evolves from a low value to the higher saturation value.  

During cyclic softening (Figure 5.3) the drag stress evolves from a high value to a lower 

saturation value.  Cyclic hardening and softening are clearly observable in the stress graph of 

each figure. 
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Figure 5.1 - Schematic of the change in ,IN R  and D during a simulated creep test 
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Figure 5.2 - Schematic of the change in ,R D  and   during a simulated hardening fatigue test  
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Figure 5.3 - Schematic of the change in ,R D  and   during a simulated softening fatigue test 



 

147 

 

5.2.2 Numerical Optimization 

 In determination of the material constants of the hybrid constitutive model, the secondary 

creep and monotonic behavior can be incorporated through analytical techniques [Eq. (5.5)] and 

[Eq. (5.16)] respectively; however, the complexity of the transient phenomena (primary creep 

and cyclic behavior) necessitates numerical optimization. Previous work in the Mechanics of 

Materials Research Group at the University of Central Florida by Hogan et al. produced the 

uSHARP 1.0 a local optimization software [246]. The software was extended by DeMarco and 

colleagues resulting in uSHARP 2.0 a global optimization software [247]. Both versions of the 

software offer a convenient method by which the constants of a viscoplasticity constitutive 

model can be determined; however, these software required enormous computational time to 

obtain the optimal constants. Towards, reducing the computational time required to converge to 

an optimal set of constants, uSHARP 3.0 multithreaded software is developed for this study. 

 

 
Figure 5.4 – General Framework of uSHARP 3.0 
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uSHARP 3.0 takes the general framework depicted in Figure 5.4. It has been auto-

parallelized to generate a multithreaded code for loops, which enables parallel execution on a 

multiprocessing system. This enables the software to take advantage of multi-CPU, multi-core, 

and cluster computing solutions. An initial guess set of constants must be selected by the user. 

Next simulations are conducted of the mechanical tests under consideration. Afterwards, 

interpolation to the experimental datasets is conducted. Then a least squares calculation is 

performed and summed across the datasets under consideration to produce an objective value. 

The least squares objective function follows 

 

 
 

2

, ,

1 ,max

100m
FEM i EXP i

i EXP
SUM

W i

m

 




 
 
  


 

(5.22) 

where FEM,i and EXP,i are the strain values obtained by FEM simulation and experimental 

testing, respectively and  W i  is a weight function vector. The parameter m is the total number 

of data points resulting from an individual simulation used to determine the least squares value. 

The integer n represents the number of datasets under evaluation. The weight function vector, 

 W i  is filled with unity for creep and 50 for fatigue. This is done to produce comparable least 

square values between the two types of tests such that the optimization converges to constants 

which match both types of tests equally. A convergence check is performed. If convergence has 

not been reached then the optimization algorithm is executed which produces a new set of guess 

constants. This procedure is repeated until convergence has been reached. The optimization 

algorithm is selectable such that local or global optimization can be performed. 
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 In the previous versions of uSHARP the mechanical tests are simulated externally. A 

batch file is executed which runs the ANSYS general-purpose finite element analysis (FEA) 

software. ANSYS requires two things to perform the simulation. First, the constitutive equations 

under considerations must be implemented into ANSYS. The equations are written into a Fortran 

subroutine (user-programmable feature) in ANSYS and then either a new executable (exe) file is 

compiled or a dynamic-link library (.dll) file is created to incorporate the modified code. 

Secondly, a input file in the ANSYS Parametric Design Language (APDL) must be written to 

provide the guess constants, geometry, and boundary conditions to the ANSYS solver. This 

approach using ANSYS has a high cost in terms of the time required to converge to optimal 

constants. The ANSYS executable must be executed and terminated multiple times. Running a 

simulation produces multiple arrays and temporary files which must be written and erased from 

random-access memory and read/write storage. As ANSYS is often run as a client software with 

license files available through a server, extended interruptions of internet can cause the uSHARP 

optimization software to crash. The only advantage of the ANSYS approach is that non-uniform 

geometry (notched specimen, multi-element bodies) can be more easily considered. It is highly 

desirable to develop an internal FORTRAN subroutine that is able to simulate the mechanical 

tests as it would greatly reduce the computational overhead involved in interfacing with ANSYS. 

An advantage of such an approach is scale and portability. As a standalone application, it could 

be executed across multiple computers within a network or executed remotely in the cloud. It 

could possibly be used to deal with situations where a vast number of datasets must be evaluated 

quickly. 
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Figure 5.5 - Operation of the MATMOD Fortran Subrountine 

 

 Towards that goal, an internal Fortran code was developed for uSHARP 3.0. The 

resulting "HYBRID.F" subroutine, is outlined in Figure 5.5. This routine is an 1D isotropic finite 

element routine able to exercise constitutive equations to simulate a mechanical test. The 

mechanical test is assumed to have been conducted on a uniform specimen such that a 1D 

calculation can be performed to evaluate the properties. The recorded applied boundary 

conditions from the mechanical test (experiment) are imported into the routine. These boundary 

conditions are used in the 1D calculation to produce the simulation results. These results are then 

return to the main uSHARP routine. This procedure is relatively simple for load control tests 

where the applied load is used to directly evaluate the constitutive equations. However, for 

displacement controlled experiments, the following equation must be solved for stress before the 

constitutive equations can be evaluated 

 
 0 IN IN Mt

E


         (5.23) 

where M  is the applied mechanical strain. Newton's Method is used to solve this equation. 

Convergence is meet when 
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 5

1 10i i  

    (5.24) 

or when the maximum number of iterations 50 is exceed. The HYBRID.F subroutine only works 

for 1D isotropic conditions. A majority of mechanical tests are performed on uniform specimen 

where 1D calculations are possible. In the future a more complex version of HYBRID.F could be 

developed to incorporate, notched specimen using the analytical solution of the notched 

geometry; however, this is not necessary for the present study.  

The Corana et al. implementation of the simulated annealing multimodal algorithm was 

selected as the optimization algorithm in this study [248]. It is a robust global optimizer which 

has the capability to explore a function's entire surface by both uphill and downhill moves. This 

capability allows it to effectively climb out of local minima when necessary. The method is 

suitable for problems with a high number of variables (tens of thousands) . The simulated 

annealing algorithm is motivated by metallurgy. Consider a material heated above the re-

crystallization temperature. The cooling rate will greatly influences the resulting thermodynamic 

free energy of the material. A quenched material might not escape the local minima energy state. 

A slow cooled material is more likely to reach a lower energy state.  Slow cooling is used in the 

simulated annealing algorithm to control the probability of accepting worse solutions in a 

solution space [249]. As temperature decreases, the probability is reduced, resulting in more 

evaluation of the function in areas where the global minima should be present. This allows for a 

transition from evaluating the "gross behavior" to evaluating the finer "wrinkles" within a 

function.  

 The nature of the simulated annealing algorithm suggests that slowing the temperature 

reduction will result in a lower global minima. Slowing the temperature reduction has an added 
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impact of increasing the number of evaluations of the function. uSHARP 2.0, when used to 

evaluate the current study, produced approximately 1,000 evaluations per day. Using uSHARP 

3.0, this has been increased to greater than 1,000,000 evaluations per day. Thus uSHARP 3.0 

allows a slower temperature reduction which will produce a lower global minima and can 

converge to that minima faster. 

 A number of internal parameters are key to obtaining the global minima while 

minimizing the total evaluations needed [249]. The initial temperature, iT  must be set high 

enough to allow an evaluation of the "gross behavior" of the model within the solve space. As 

temperature decreases the probability of a downhill move is reduced leading to evaluations of the 

"wrinkles" within a function. An initial temperature, iT , that is too high will result in excess 

evaluations while a value that is too low will results in convergence at a local minima. After SN  

times N evaluations, 50% of all moves are accepted. The terms SN  and N  represent the number 

of steps through N and the number of unknown variables respectively. This step is repeated TN  

times. Temperature is therefore reduced when S TN N N   evaluations have occurred in the 

following manor 

 
1i i TT T r   (5.25) 

where Tr  is the temperature reduction factor commonly set to 0.85 units. Decreasing the 

temperature reduction factor, Tr  will result in a quicker transition from "gross behavior" to an 

evaluation of "wrinkles" in the function. Assuming that the quantity S TN N N   is large enough 

to identify the potential global minima sites quickly, the value of Tr  can be decreased to improve 



 

153 

 

speed of convergence. The term SN  is commonly set to 20 while the recommended value for 

TN  is max(5 ,100)N . The term SN  is often not adjusted. The term TN  can be reduced to a 

quantity much less than 5N  without significantly hindering global optimization; however, close 

evaluation of the behavior at intermediate temperature reductions are important. Convergence is 

controlled by the constants EPS and NEPS. Convergence is reached when the final function 

value of the last NEPS temperature reductions (including the current) change by less than EPS. 

EPS and NEPS are often set to 1E-05 and 4 respectively. 

 The uSHARP 3.0 software, requires that initial guess constants be input by the user. It is 

desirable to obtain initial guess constants that closely fit the experimental data. This allows the 

simulated annealing algorithm to identify the most promising area within the solve space early 

on and gives the opportunity to evaluate it in comparison to other local minima more often. The 

best methodology to find initial guess constants is to perform 1D calculations of the constitutive 

model in comparison to creep experimental data. The constants 0A  and 0D  are given from 

secondary creep and monotonic test data. The drag stress evolution, D  can be set to zero, as 

Gilman found that drag stress represents a macroscopic constants called the "characteristic" drag 

stress [66]. Thus the initial values of 5c , 6c  and 7c  are zero. For simplification set 4c  to zero and 

3c  to unity such that dc  becomes unity. Assume Q is zero. The simplified model becomes 

 
 0

0

sinh sgnIN

R
A R

D


 

  
  

 
 (5.26) 

    1 2 1IN INR c R c        (5.27) 
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Rearranging the simplified viscous function [Eq.(5.26)] and solving for R. Using experimental 

data an analytical approximation of the rest stress, *R  (under load control) can be obtain as 

 
*

0 asinh INR D
B




 
   

 
 (5.28) 

Now consider the condition where the secondary creep regime has been reached such that the 

rest stress evolution becomes 0R  . Take [Eq. (5.27)], set to zero, and solve for 2c  

 
1

2 1IN

ss IN

c
c

R




   (5.29) 

where ssR equal to *R  at sst t . Using the above relationship 1c  can be manually adjust until the 

minimum creep strain rate of the 1D calculation fits to creep experimental data. Initial guess 

constants for 5c , 6c  and 7c  can be obtained by curve fitting the normalized drag stress to the 

normalized peak stress during a fatigue test; however, it is acceptable to set all equal to zero. An 

example of curve fitting to obtain initial guess constants is provided in Figure 5.6.  
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Figure 5.6 - Normalized peak stress used to determine initial guess constants for the drag stress 

evolution 

 

Table 5.1 – Parameters of 1% and 1.4% fatigue tests 

Parameter Units 1% 1.4%

 T  % 1 1.4 

f Hz 0.5 -- 

0  1/s 0.001 -- 

E KSI 21313.89 21059.85 

ν  0.29 -- 

Y KSI 36.886 40.163 

N  694 495 
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To demonstrate the capabilities and limitations of the model, simulations of creep, 

monotonic tension, and fatigue experiments must be compared to experimental data. Creep 

curves of 304 stainless steel at 300 and 320 MPa at 600°C are available from literature as 

depicted in Figure 4.5 [129]. Note, the significant scatter of the creep observe in the duplicate 

tests. Unfortunately, the author of the article does not include the 0.2% yield strength of the 

specimen nor the displacement rate used to initial load the material. Because the initial drag 

stress [Eq. (5.16)] has two unknowns, the yield strength is set equal to that of a fatigue test and 

the displacement rate becomes a variable which must be optimized. A method to back calculate 

the yield strength of the creep tests is provided later. The parameters associated with the fatigue 

tests are listed in Table 5.1. The yield strength of the 1% fatigue test was used for the initial drag 

stress of the creep simulations. The creep and fatigue data come from different studies; therefore, 

it can be assumed that the mechanical behavior will exhibit scatter. This is due to different 

chemical composition, industrial processing, and product types between the two studies. 

Nevertheless, an attempt is made to optimize across both studies to demonstrate the capabilities 

of the hybrid constitutive model.  

 

Table 5.2 – Simulated annealing settings 

Material Constant Value

 N 8 

Tr  0.5 

SN  20 

TN  N 

T 100 

EPS 1E-3 

NEPS 4 
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The uSHARP 3.0 software was configured to accept each dataset of the available 

experimental data. Optimization was attempted for each individual dataset, and was also  

performed on all four datasets simultaneously. This was done so that the capabilities of the 

hybrid model can be evaluated in the absence and presence of scatter (due to the stochastic 

nature of mechanical behavior). The upper and lower bounds of the possible material constants 

are zero and 1E5 units respectively. The eight material constants 1 2 3 4 5 6 7, , , , , ,c c c c c c c  and Q are 

optimized for all datasets while a special 0  is optimized for the two creep datasets to produce an 

initial drag stress, 0D  using the yield strength, Y of the CF01 dataset. The special 0  is used 

because the actual yield strength and applied stress rate of the creep tests are unknown. The 

upper and lower bounds of the special 0  are fixed between unity and zero strain per second to 

promote optimization of the datasets. The creep datasets also use the young's modulus, and 

Poisson's ratio of the CF01 dataset. The simulated annealing algorithm is configured using the 

settings listed in Table 5.2. When optimization was performed on each individual dataset, it was 

observed that the simulated annealing algorithm produce numerically unstable fits to 

experimental data where the optimal material constants carried low dependencies.  Further 

operation of USHARP prove that the hybrid model requires at least one creep and fatigue dataset 

to produce valid optimized constants. This can be attributed to a requirement of knowledge of 

both the static and transient nature of the subject material. Due to the stochastic nature of 

mechanical behavior, any mechanical test repeated under the exact same boundary conditions 

while produce a probabilistic response. An attempt is made to obtain a single set of constants for 
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the collection of datasets. The goodness of fit will demonstrate the models ability to handle a 

probabilistic response. The simulated annealing algorithm was configured using the settings 

listed in Table 5.2. Temperature reduction occurred every 1620 evaluations. Convergence 

occurred at a final temperature of 0.11921E-04 with a total of 38881 evaluations. Of the 38881 

evaluations, 18129 were accepted and 300 out of bounds. The initial least square sum was 

10454.61 while the final sum reached 936.25 units. The optimal constants of the hybrid model 

for 304 stainless steel at 600°C are listed in Table 5.3. The sum of the least square for each 

dataset are provided in Figure 5.7. It is observed that the creep datasets converge to a low least 

square value. This can be attributed to the static boundary conditions. The fatigue datasets 

converge towards a higher value which is logical considering the dynamic boundary conditions. 

The least square values produced in the attempt to optimize all datasets are substantially larger 

than those producing when optimizing each dataset individual. This can be attributed to the 

stochastic nature of mechanical behavior and requirement of the constitutive equations to 

accommodate both static and transient phenomena simultaneously. Examining Figure 5.7 it is 

clear that the simulated annealing algorithm works for multiple datasets; however, better settings 

could be found to reduce the number of evaluations performed before convergence is reached. 

The results of the 300 and 320 MPa creep deformation data are provided in Figure 5.8 and 

Figure 5.9 respectively. Both simulated datasets fit within the bounds of the experimental data. 

The minimum creep strain rate is simulated perfectly while the primary creep strain is slightly 

under predicted. The current version of the hybrid model lack the ability to model the tertiary 

creep regime. This will be remedied in the next section. The simulated results for the fatigue test 

at 1%T   and 600°C are provided in Figure 5.10. It is observed that the hybrid model slightly 
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under-predicts the monotonic behavior of the material. This can be attributed to the simplifying 

assumptions made in the initial drag stress approximation [Eq. (5.16)]. The model captures the 

shape of the hysteresis but under predicts the amount of hardening before saturation. The 

simulated results for the fatigue test at 1.4%T   and 600°C are provided in Figure 5.11. It is 

observed again, the hybrid model slightly under-predicts the monotonic behavior of the material. 

The model captures the shape of the hysteresis but under predicts the amount of softening. The 

cyclic stress saturation data of the 1%T   and 1.4%T   fatigue tests are provided in Figure 

5.12 and Figure 5.13 respectively. Specimen CF03 shows very slow saturation atypical for 

304SS under the applied conditions. Normally, much less softening is observed and saturation 

occurs quickly. Disregarding this irregularity, the hybrid model approximates the hardening, 

softening, and saturation behavior fairly well when compared to the abilities of other constitutive 

models [230]. The hybrid model lack the ability to model the rapid softening that occurs at the 

end of the fatigue tests. This will be remedied in the next section. The current hybrid constitutive 

model is able to produce most of the static and transient phenomena associated with creep and 

fully-reversed fatigue tests. The hybrid model with creep damage is used to simulate a 

monotonic tensile test at 0.001/ s   and 600°C as depicted in Figure 5.14. The large and small 

figures are cross-head and extensometer displacement respectively. A good prediction of the 

experimental data is obtained. The simulation produced the same ultimate tensile strength as the 

prediction [Eq. (5.20)] equation. A small negative slope is observed beyond the UTS that can be 

attributed to rest and drag stress contributions to softening. A plastic damage model is needed to 

better fit the softening observed in monotonic data. Optimization was performed with only creep 
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and fatigue experimental data available yet the hybrid model was able to produce a good fit to 

monotonic experimental data.  

 

 Table 5.3 – Simulatenously optimized constants for the hybrid model  

Material Constant Units Initial Guess Final Value

 0A  1/s N/A 1.464E-12 

1c  KSI 2000 5838.3 

2c   72 239.64 

3c   0 511.96 

4c  KSI
-1

 0 0.86806E-01 

5c  KSI 0 11.876 

6c  KSI
-2

 0 1087.4 

7c  KSI
-2

 0 5.0569 

Q KSI 0 2.1772 

0  1/s 0.000833 0.49118E-08 
*

0  1/s N/A 0.000833 

* the simulation strain rate for the 300 and 320 MPa creep tests 
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Figure 5.7 – Least square values during simulatenous optimization 
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Figure 5.8 – Simultaenously simulated creep at 300 MPa and 600°C 
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Figure 5.9 – Simultaenously simualted creep at 320 MPa and 600°C 
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Figure 5.10 – Simultaenously simulated stress-strain curve 1%T   fatigue test at 600°C: (a) 

experiment (b) simulated 
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Figure 5.11 – Simultaenously simulated stress-strain curve 1.4%T   fatigue test at 600°C: (a) 

experiment (b) simulated 
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Figure 5.12 – Simultaenously simulated cyclic stress saturation of 1%T   fatigue test 
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Figure 5.13 – Simultaenously simulated cyclic stress saturation of 1.4%T   fatigue test 
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Figure 5.14 - Monotonic Tensile simulated at 0.001/ s   and 600°C using the hybrid model 

(large-crosshead, small extensometer) 
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5.2.3 Damage Evolution and Microstructural Degradation 

Under the conditions of creep-fatigue, in general, three microstructural mechanisms cause 

the accumulation of damage and plastic strain: the nucleation and growth of internal and grain 

boundary cavitation, the slip and climb of dislocations, and the formation of persistent slip bands 

during cyclic loading. These microstructural mechanisms are strongly correlate to creep, 

plastic/ductile, and fatigue damage, c , 
p , and  

f  respectively. The purpose of the damage 

evolution equations are to model the softening phenomena observed in mechanical tests and 

track the evolution of microstructural defects. These damage terms can be associated with the 

observable softening phenomena apparent in creep, monotonic tensile, and fatigue tests as 

depicted in Figure 5.15. During creep, softening is observed in the creep deformation history. 

Creep damage is represented by homogenous nucleation, growth, and coalescences of cavities 

near the end of life. A large number of micro-voids nucleate on grain boundaries. Creep damage 

produces the tertiary creep regime. During monotonic tension, plastic/ductile softening is 

observed after the ultimate tensile strength has been exceeded. This plastic-ductile damage is 

represented by the rapid (when compared to creep damage) nucleation, growth, and coalescences 

of microvoids [250]. Plastic damage produces necking in monotonic specimen and is often 

characterized by some critical plastic strain or stress. During strain-controlled fatigue, softening 

occurs in the stress amplitude in cycles proceeding cyclic-stress saturation. This fatigue damage 

occurs due to crack nucleation, growth, and fast fracture where cycling creates striations and 

extension of the crack length.   
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Figure 5.15 - Schematic of softening observed in (a) creep (b) monotonic tension (c) and fatigue 
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 To model these softening phenomena the hybrid model viscous function must be 

extended as follows 

      , ,, , c f pf g hR D T      (5.30) 

where the function h describes how creep and plastic/fatigue damage influence the strain rate. 

Oxidation damage does not appear in an explicit form but is considered as an inseparable portion 

of the creep, plastic/ductile, and fatigue terms.  

Iino studied the plastic zone around notched specimen of 304 stainless steel under creep 

and high-cycle fatigue conditions at elevated temperature [251-254]. High cycle fatigue tests 

were chosen over low-cycle fatigue because high-cycle fatigue tests are less susceptible to the 

creep effect. The recrystallization technique was used to observe the plastic zones [252,253].  

 

 
Figure 5.16 – Macroscopic recrystallization zone of 304 stainless steel at 650°C creep (a) 

130MPa, t=2hr (b) 105 MPa and fatigue, t=5 hr (c) 130 MPa,  R=7/130, 300cpm, t=0.6hr (d) 105 

MPa,  R=7/105, 300 cpm, t=1.5 hr [251] 

 

(a)                                  (b)                                   (c)                                   (d) 
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In this technique, a specimen which has experienced some load history is annealed at 

high temperature for 24 hours. The microstructure after annealing will show that recrystallization 

takes place only in regions where plastic strain has exceeded some threshold (for 304SS between 

-196 to 850°C, 0.02p  and above 950°C 0.06p  ) [254]. The recrystallization technique 

reveals both the plastic zone (regions of recrystallization) and the amount of plastic deformation 

within a body (intensity of recrystallization). Comparing the macroscopic recrystallization of 

creep and high-cycle fatigue tests at approximately the same time, Iino found that the plastic 

zones are of comparable size as depicted in Figure 5.16 [251]. If the plastic zone indicates a 

region of damage and the creep and fatigue plastic zones are of comparable size, then creep and 

fatigue damage can be assumed to have one-to-one mapping where 

 c f p       (5.31) 

This theory has been utilized by various researchers to produce good results for several materials 

[46]. It should be noted, that one-to-one mapping does not correspond to the physical nature of 

damage (i.e. slip and climb, cavitation). Only the net mechanical degradation induced by each 

mechanism is added together. Iino found that while the plastic zones of creep and high-cycle 

fatigue are of similar size, the gradient of plastic strain (intensity of recrystallization) is not the 

same with notch cracks initiating faster under fatigue [251].  This suggests that each damage 

mechanism influences the viscous function differently 

        1 2 3
, ,c p f p fch h h h      (5.32) 



 

171 

 

Under Iino's boundary conditions the variation of fatigue damage 
f  with an infinitesimal 

variation of stress  t  is larger than the variation of creep damage (under the same maximum 

stress, R=0) at a given time 

 f c     (5.33) 

where creep and fatigue tests have a interruption time delta of 1.4-3.6 hours equal to an 

additional 2.7E04 to 6.48E04 cycles (assuming plastic damage is negligible). This suggests that 

the frequency of cycling loading controlled by the applied strain rate,   significantly accelerates 

the initiation of cracks. Under fatigue, plasticity is highly localized near the crack tip, while 

under creep, plasticity is more distributed. This can be attributed to the microstructural 

mechanisms associated with each behavior. Fatigue damage is primarily a dislocation process 

where dislocations move towards low energy free surfaces and form fine and coarse slip bands. 

Under cyclic loading the slip bands create intrusions and extrusions, with intrusions becoming 

stress concentrations (potential crack initiation sites) [51]. The collective motion of dislocations 

is the microstructural principal behind rate-dependent plastic flow embodied by the isotropic and 

kinematic hardening variables. Fatigue damage exhibits a damage surface (where the endurance 

limit must be exceed before damage accumulates). The above suggests that fatigue damage 

evolution is dependent on stress, stress rate, rest and drag stresses, temperature, current damage, 

and fatigue limit as follows 

  , , , , , ,f ff R D T      (5.34) 

While plastic/ductile and creep damage have a similar fundamental microstructural mechanism 

(void formation), plastic/ductile damage occurs under dynamic loading (subject to isotropic and 
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kinematic hardening), exhibits a damage surface (critical strain or stress must be exceeded) and 

at a higher intensity in a short period of time. This necessitates that the plastic/ductile damage 

evolution be dependent on stress, stress rate, rest and drag stresses, temperature, current damage, 

and UTS as follows 

  , , , , , ,p f R D T UTS     (5.35) 

Creep damage is primarily a cavitation process where cavities form inside grains and along 

weakened grain boundaries. Cavities are unable to migrate but grow in radius eventually 

coalescing. Clearly, dislocations become localized early while cavities are more distributed and 

coalesce towards the end of life. In the unified mechanical model for creep (Chapter Four), it has 

been demonstrate that creep damage evolution is dependent on stress, temperature, and the 

current damage state. 

  , ,c f T    (5.36) 

The evolution of creep damage and the associated microstructural cavitation were demonstrate to 

interface with the viscous function in the following manor 
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(5.37) 

where these equations produced an excellent correlation to creep data at 300 and 320 MPa as 

depicted in Figure 4.9. Due to similarities between the viscous function in the previous chapter 

and that of the hybrid model it is reasonable to introduce the creep damage model into the hybrid 

viscoplasticity constitutive model as follows 
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(5.38) 

The above represents a hybrid model with creep damage. The creep damage evolution, c  is a 

function of the total damage   term [Eq. (5.31)]. The rupture prediction material constants 

, tM   and    and damage-interface   term do not change and are given subscript c to denote 

creep. The constant   can exhibit a slight change. This is associated with time-scale issues 

where the size of the average time-increment affects the precision of the creep damage evolution 

equation. This can become a serious problem when studying long-term creep and high cycle 

fatigue. The creep damage constants are optimized at the time-scale of creep and while fatigue 

damage constants are optimized at the fatigue time-scale; therefore, the precision of each damage 

model is preserved when phenomena is most dominant. 

 This partial model will help determine the form of the fatigue damage evolution equation. 

The hybrid model with creep damage can be used to analytical extract the fatigue damage. This 

is done by comparing the results of the hybrid model with creep damage to experimental data 

and recording the remaining error where the error represents fatigue damage. The amount of 

damage related to fatigue damage at rupture can be simply found as  

 1 1r c f f ct t          (5.39) 

when the critical stress to activate plastic/ductile damage is not exceeded. 



 

174 

 

Using the creep damage constants listed in Table 4.2, the hybrid model with creep 

damage is used to simulate creep under 300 and 320 MPa at 600°C depicted in Figure 5.17 and 

Figure 5.18 respectively. It is clear that the model produces reasonable results when compared 

with the experimental data. The primary, secondary, and tertiary regime regimes are well 

represented. Ductility is slightly over-predicted but not to the point of impossibility considering 

the scatter in experimental data. Next, the hybrid model with creep damage is used to simulate 

fatigue under 1%T   and 1.4%  at 600°C as depicted in Figure 5.19 and Figure 5.20 

respectively. It is observed that the creep damage law has minimal impact on the fatigue 

behavior. It has been previously stated that fatigue damage is a highly localized process that 

occurs early in a material while creep damage is a homogenous damage which occurs later in 

life. Creep damage does not have a chance to develop due to the intensity of the fatigue damage 

in the experimental data. This suggests that fatigue damage is the dominant mechanism attributed 

to cyclic softening in the current dataset at 600°C. It should be noted that this relationship is 

temperature-dependent, such that increasing the temperature will reduce the dominance of the 

fatigue damage and enhance creep damage.  The hybrid model with creep damage is used to 

simulate a monotonic tensile test at 0.001/ s   and 600°C as depicted in Figure 5.21. Creep 

damage has no visible influence on the mechanical evolution during the current monotonic test. 

It is reasonable to project that creep damage becomes highly influential at lower strain rates, 

where the extended runtime allows cavity growth, homogenization, and coalescence.  A 

parametric study on the influence of applied strain rate will be provided in the next chapter. 
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Figure 5.17 – Simulated (a) creep deformation and (b) damage at 300 MPa and 600°C using the 

hybrid model with creep damage 
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Figure 5.18 – Simulated (a) creep deformation and (b) damage at 320 MPa and 600°C using the 

hybrid model with creep damage 
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Figure 5.19 - Simulated fatigue tests 1%T    and 600°C (a) stress-strain (b) damage-strain (c) 

cyclic stress-cycles and (d) damage-cycles using the hybrid model with creep damage 
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Figure 5.20 - Simulated fatigue test 1.4%T   and 600°C (a) stress-strain (b) damage-strain (c) 

cyclic stress-cycles and (d) damage-cycles using the hybrid model with creep damage 
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Figure 5.21 - Monotonic Tensile simulated at 0.001/ s   and 600°C using the hybrid model 

with creep damage (large-crosshead, small extensometer) 
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It has been shown that the creep damage can be implemented in the hybrid model to 

produce the tertiary creep regime observed in creep deformation data without negatively 

impacting the ability to model fatigue behavior. The next step is to develop plastic/ductile and 

fatigue damage laws which produce the ductile and cyclic stress softening observed in 

mechanical testing. Towards, development of a plastic/ductile and fatigue damage law, an 

extensive literature review of existing continuum damage mechanics-based fatigue damage laws 

was conducted in section 2.3.2. Review papers by Fatemi and Yang show that a considerable 

effort has been expended in the development of fatigue damage models [73,212]. While many 

researchers have focused on, life-curve modifications methods, crack growth methods, and 

energy-based methods relatively few have investigate the continuum damage mechanics 

approach. One of the most commonly implemented CDM-based fatigue models was developed 

by Chaboche and Lesne as follows 

 
 
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 (5.40) 

where 0, , M  and b are material constants, M  is the maximum stress, and   is the mean 

stress [255]. This model has been extended to account for the stress ratio [256,257], fatigue limit 

[258], and frequency [259]. The classical CDM model is an excellent design tool which can 

provided life prediction for stable, sequential, and random stress or strain loading conditions; 

however, to model the constitutive response due to fatigue damage the equation must be 

interfaced with constitutive equations. Recently, a number of authors have attempted to develop 

unified viscoplasticity models with CDM-based fatigue damage [93,227]. In a model by Yang 

and Wei [93] the sum of the plastic, creep, and fatigue damage are interfaced with the 
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viscoplasticity constitutive model; however, evolution of isotropic and kinematic hardening 

internal variables is not considered. The fatigue limit is also not considered. Chow [227] 

developed a multiaxial unified viscoplasticity model where only plastic and fatigue damage are 

considered. The obstacles observed in literature will be overcome in the present work. 

The development of the fatigue damage equation requires two components 

 An equation describing how fatigue damage evolves 

 An equation describing how fatigue damage interfaces with the viscous function 

In the later, considering the work by Iino [251-254], it is observed that the gradient of the 

plastic zone under a fatigue test is much higher than during creep suggesting the general h 

function described in [Eq. (5.32)]. The following h function is proposed 

  3 2 3 2exp
c c p p f f

h          (5.41) 

where ,c p   and 
f  are the damage-viscous function interface terms. 

In the former, it is assumed that fatigue damage can be represented by the softening that 

occurs after cycle-stress saturation is reached. Literature shows that the stress range can be used as 

accumulative damage equation 

 
01i iD      (5.42) 

where 0  and i  are the initial and current stress range [260,213]. A normalized analytical 

damage, *D , derived from the stress amplitude is more appropriate and is described as follows 
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 (5.43) 
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where i  is the current stress amplitude, 0  is the cyclic saturated stress amplitude, and 

f  is the final stress amplitude before rupture. This damage includes contributions from creep 

and fatigue damage. The stress amplitude can be separate into peak stresses max  and min  such 

that two damage curves are produced 

 
max, min,max, min,* *

max, min,

max,0 max,0 min,0 min,0

1 1 1 1 ,
f fi i

i iD D
  

   
       (5.44) 

This allows damage to be predicted with respect to time instead of cycle number at the cost of 

scatter between the 
*

max,iD  and 
*

min,iD  curves respectively. Scatter is observed in materials that 

exhibit pre-existing asymmetry which results in asymmetric evolution of maximum and 

minimum peak stresses. Equation (5.44) is exercised for the 1% and 1.4% fatigue tests, with the 

results plotted in Figure 5.22. It is observed in the 1% fatigue tests Figure 5.22(a) that fictitious 

large values of analytical damage appear before cyclic saturation is reached due to initial 

hardening. After saturation, damage exponentially grows with a similar trajectory to creep 

damage (examining Figure 5.17 and Figure 5.18 in comparison). In the cases of the 1.4% fatigue 

test, Figure 5.22(b) fictitious large and negative values of analytical damage appear before cyclic 

saturation is reached due to initial softening. An almost linear damage evolution is observed 

beyond this point, dissimilar to the 1% fatigue test. Both behaviors can be modeled using a 

damage rate equation that includes an exponential function of the current damage state. 
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Figure 5.22 - Analytical damage using peak stresses (a) 1% and (b) 1.4% strain range fatigue 

tests at 0.001/ s   and 600°C 
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 As discussed in the background (section 2.4), the activation of creep and fatigue damage 

depend on the applied boundary conditions (see Figure 2.9 and Figure 2.10).This is also true for 

plastic/ductile damage. Under isothermal temperature and when temperature is above the creep 

activation limit, creep will always be active, as long as stress is greater than zero 0  . Fatigue 

damage is active when the fatigue limit is exceeded (a criterion of 
f   ) and only during 

transient boundary conditions ( 0, 0   ). Plastic damage is active when the ultimate 

tensile strength has been exceed ( UTS   and remains active thereafter utst t  ) and only 

during transient boundary conditions ( 0, 0   ). In the presence of load or displacement 

holds ( 0, 0   ), the only active damage mechanism is creep. In the absence of load, there 

is no damage ( 0   ). Schematics of the mechanical response of metal subject to various 

applied boundary conditions are provided in Figure 5.23 and Figure 5.24. Using the schematics a 

special activation term is developed to enable fatigue and plastic/ductile damage when transient 

boundary conditions are observed. The transient activation equation,  ,f   , takes the 

following form 

 

     

1 1
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1 1
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 (5.45) 

The activation equation can be extended for anisotropic materials by using Hill’s analogy or by 

replacing the scalar stress and strain rates with vectors. 
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Figure 5.23 - Schematic of hybrid model response under (a) tensile and compressive monotonic 

tension (b) and tensile and compressive unload during fatigue 
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Figure 5.24 - Schematic of hybrid model response under (a) load-controlled tensile hold (b) and 

displacement-controlled tensile hold 
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 In the current study, the fatigue damage law is proposed as follows 

  
 0

1 exp
sinh exp

f
f

ff

f

R
A

D




 

  



   

 
 

 (5.46) 

where 
f  is the damage trajectory constants of the fatigue damage. Similar to the damage 

trajectory constant of the creep damage model [Eq. (4.35)], the fatigue version controls size of 

the variation of  f t  with an infinitesimal variation of stress  t . When 
f  is increased, 

the stress sensitivity of the damage model increases. The irreversible portion of the viscous 

function [Eq. (5.5)] is used to build the damage law, similar to the technique used by Gurson 

[250]. This was done, because indefinite integration of the above equation under the conditions 

of fatigue results in a complex solution which cannot be easily used to predict rupture time a 

priori. Using the inelastic strain rate reduces complexity.  

 A simple fatigue damage criterion is proposed as follows 

 
,

2 4

f UTS
 

    (5.47) 

where   is an equivalent stress (such as von Mises) and 
f  is the fully reversed fatigue limit. 

The fatigue limit is assumed to equal 50% of the ultimate tensile strength. Asymmetry of the 

fatigue damage criterion can be assumed by incorporating an anisotropic equivalent stress such 

as Hill’s anisotropic analogy [59] or by determine a fatigue limit vector which can be converted 

into an equivalent fatigue limit. The ultimate tensile strength can be found using [Eq. (5.20)]. 

Two separate optimizations must be performed to obtain:  

 The coefficient of the fatigue-damage/viscous-function interface 
f  

 The fatigue damage constants, 
f  and 

f  
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The former is obtained by using the regressed analytical fatigue damage (of Figure 5.22) 

to replace fatigue damage in the h function [Eq. (5.41)] of the viscous function [Eq. (5.5)]. The 

constant 
f  is optimized by comparing the final peak stress before rupture of the 1% fatigue 

experimental data (Figure 5.19c) to the simulated. The least square function for the final peak 

stress takes the following form 

  
2

100 EXP SIM

EXP

SUM
 




 
 
 

 (5.48) 

where EXP  and SIM  are the experimental and simulated final peak stresses respectively. The 

regressed analytical damage equation follows 

 * 25 60.02714 1.37 10D t
    (5.49) 

The simulated annealing algorithm settings of Table 5.2 were used with the exception that only 

one constants 
f  (N=1) is optimized. The lower LB and upper bound UB of 

f  is restricted to 0 

and 100 units respectively. The initial guess value was set to equivalent to the 1  constant. The 

final SUM was 1.13860E-05 units with the least squares evolution depicted in Figure 5.25. A 

total of 321 evaluations where conducted with 121 accepted and 0 rejected. The final 

temperature is 0.305175E-02 units. The optimal value of 
f  is 17.332 shown in Table 5.4. 

To obtain the later, using the newly discovered 
f , USHARP 3.0 is reconfigured to 

optimize 
f  and 

f  of the fatigue damage evolution [Eq. (5.46)] to the analytical damage data 

for the 1% fatigue test depicted in Figure 5.22(a). The simulated annealing algorithm settings of 

Table 5.2 were used with the exception that two constants (N=2) are optimized. The initial guess 

constants where set equivalent to those of the creep damage law (Table 4.2). The lower LB and 
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upper bound, initial guess and final values are provided in Table 5.4. The final SUM was 

8.626256 units with the least squares evolution depicted in Figure 5.26. A total of 1681 

evaluations where conducted with 594 accepted and 22 rejected. The final temperature is 

0.953674E-04 units.  

The results of monotonic, creep, and fatigue simulations (with creep and fatigue damage 

enabled) are provided in Figure 5.27 to Figure 5.31. Examining the results of the creep 

simulations (Figure 5.27 and Figure 5.28), it is observed that fatigue damage has negligible 

influence on the damage evolution rate. The fatigue component is only active during the load 

ramping phase of the creep tests where the stress has exceeded. Examining the monotonic tensile 

test (Figure 5.29), it is observed that fatigue damage has negligible influence on the stress-strain 

curve. The post ultimate tensile strength softening suggests that a plastic/ductile damage 

equation is required. In the 1% fatigue simulation (Figure 5.30), the model is able to closely 

predict the stress range softening which occurs after cyclic saturation. Using a critical damage of 

unity, it is found that the model accurately predicts the cycles to failure for both 1 and 1.4% 

fatigue tests. The model does not accurately predict the cyclic stress softening observed in the 

1.4% fatigue test (Figure 5.31). This can be attributed to the atypical mechanical behavior 

produced in this particular specimen.  

 

Table 5.4 – Optimal fatigue damage constants  

Material Constant Units 
Lower 

Bound 
Upper Bound Initial Guess Final Value

 
f   1 25 22.790 19.376 

f   0 1 0.95704 0.91691 

f   0 100 3.586404 17.332 
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Figure 5.25 - Least square values during optimization of the 

p  constant 
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Figure 5.26 - Least square values during optimization of 

f  and 
f  constants 
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Figure 5.27 - Simulated (a) creep deformation and (b) damage at 300 MPa and 600°C using the 

hybrid model with creep and fatigue damage 
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Figure 5.28 - Simulated (a) creep deformation and (b) damage at 320 MPa and 600°C using the 

hybrid model with creep and fatigue damage 
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Figure 5.29 - Monotonic Tensile simulated at 0.001/ s   and 600°C using the hybrid model 

with creep and fatigue damage (large-crosshead, small extensometer) 
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Figure 5.30 - Simulated fatigue tests 1%T    and 600°C (a) stress-strain (b) damage-strain (c) 

cyclic stress-cycles and (d) damage-cycles using the hybrid model with creep and fatigue 

damage 
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Figure 5.31 - Simulated fatigue tests 1.4%T    and 600°C (a) stress-strain (b) damage-strain 

(c) cyclic stress-cycles and (d) damage-cycles using the hybrid model with creep and fatigue 

damage 
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An analytical value of plastic/ductile damage must be determined from monotonic data. 

Consider the evolution of the engineering stress after the ultimate tensile strength has been 

reached. The material continuously softens to zero stress at rupture. A normalized analytical 

damage, derived from stress is described as follows 

 * 1 i
i

UTS

D



   (5.50) 

where UTS  is the ultimate tensile strength and i  is the current stress. Equation (5.50) is 

exercised using the available monotonic data with the results plotted in Figure 5.32. Fictitious 

values of damage are produced before the ultimate tensile strength is reached.  

 

 
Figure 5.32 - Analytical damage of monotonic damage using ultimate tensile strength 
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 In the current study, the plastic/ductile damage law is proposed as follows 

  
 0

1 exp
sinh exp

p
p

pp

p

R
A

D




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  
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
   
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 

 (5.51) 

where 
p  is the damage trajectory constants of the plastic/ductile damage. The plastic/ductile 

damage evolution, 
p  is a function of the total damage   term [Eq. (5.31)].  

 The key to predicting the onset of plastic/ductile damage is indentifying the material 

constants and/or internal state variable associated with the onset of ductile softening. Traditional 

methods involve using yield surfaces or critical strain to predict the onset and accumulation of 

plastic/ductile damage [250,261]. In the current study, it is postulated that plastic/ductile damage 

doesn’t arise until the ultimate tensile strength has been exceeded such that 

 UTS   (5.52) 

where   is an equivalent stress and UTS is the ultimate tensile strength. Once the plastic/ductile 

damage surface is violated, plastic/ductile damage can occur at anytime utst t  but only when 

transient boundary conditions are applied given by   . An approximation of the UTS can be 

analytically calculated using [Eq. (5.20)].  

For the plastic/ductile damage, two optimizations must be performed for:  

 The coefficient of the fatigue-damage/viscous-function interface 
p  

 The fatigue damage constants, 
p  and 

p  

The former is obtained by using the regressed analytical plastic/ductile damage (of Figure 

5.32) to replace plastic/ductile damage in the h function [Eq. (5.41)] of the viscous function [Eq. 
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(5.5)]. The constant 
p is optimized by comparing the experimental final stress to the simulated. 

The least square function for the final stress takes the following form 

  
2

100 EXP SIM

EXP

SUM
 




 
 
 

 (5.53) 

where EXP  and SIM  are the experimental and simulated final stresses respectively. In the real 

world, the final stress is zero; however, to avoid divide by zero the time step just before zero 

stress is reached is selected. The regressed analytical damage equation follows 

 * 12 0.022650.00196 9.395 10 tD t t 
     (5.54) 

as depicted in Figure 5.32. The simulated annealing algorithm settings of Table 5.2 were used 

with the exception that only one constants 
p  (N=1) is optimized. The lower LB and upper 

bound UB of 
p  is restricted to 1 and 50 units respectively. The initial guess value was set to 

equivalent to 25 units. The final SUM was 4.9275107 units with the least squares evolution 

depicted in Figure 5.33. A total of 441 evaluations where conducted with 190 accepted and 4 

rejected. The final temperature is 0.476837E-04 units. The optimal value of 
p  is 38.806 listed 

in Table 5.5. 

To obtain the later, using the newly discovered 
p , USHARP 3.0 is reconfigured to 

optimize 
p  and 

p  of the plastic/ductile damage evolution [Eq. (5.51)] to the regressed 

analytical damage [Eq. (5.54)]. The simulated annealing algorithm settings of Table 5.2 were 

used with the exception that two constants (N=2) are optimized. The initial guess constants 

where set equivalent to those of the fatigue damage law (Table 5.4). The lower LB and upper 

bound UB, initial guesses, and final values are provided in Table 5.5. The final SUM was 
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30.72955 units with the least squares evolution depicted in Figure 5.34. A total of 2001 

evaluations where conducted with 758 accepted and 0 rejected. The final temperature is 

0.5960464E-05 units. 

The results of creep, monotonic, and fatigue simulations are provided in Figure 5.35 to 

Figure 5.39. In the monotonic simulation (Figure 5.37) the large figure is the cross head 

displacement, while the small figure is the displacement recorded using an extensometer. The 

optimization was conducted using simulated boundary conditions that produce a constant strain 

rate of 0.001/ s  . The scatter observed in the experimental data is due to inaccuracy in 

temperature control. The induction heating control exhibited temperature oscillations which 

produce fluttering records of displacement. The plastic/ductile damage model produces a 

reasonable prediction of elongation. An interesting feature of the constitutive model is that the 

stress cannot soften below the value of the steady-state rest stress, ssR . Both the creep (Figure 

5.35 and Figure 5.36) and fatigue behavior (Figure 5.38 and Figure 5.39) are unchanged due to 

plastic/ductile softening condition not being exceeded. The plastic damage successfully models 

the monotonic behavior of the subject material. 

 

Table 5.5 – Optimal plastic damage constants  

Material Constant Units 
Lower 

Bound 
Upper Bound Initial Guess Final Value

 
p  unitless 1 100 19.376 50.786 

p  unitless 1 100 1.1 1.2042 

p  unitless 1 50 25 38.806 
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Figure 5.33 - Least square values during optimization of the 

p  constant 

 
Figure 5.34 - Least square values during optimization of 

p  and 
p  constants 
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Figure 5.35 - Simulated (a) creep deformation and (b) damage at 300 MPa and 600°C using the 

finalized hybrid model 
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Figure 5.36 - Simulated (a) creep deformation and (b) damage at 320 MPa and 600°C using the 

finalized hybrid model 
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Figure 5.37 - Monotonic Tensile simulated at 0.001/ s   and 600°C using the finalized hybrid 

model (large-crosshead, small extensometer) 
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Figure 5.38 - Simulated fatigue tests 1%T    and 600°C (a) stress-strain (b) damage-strain (c) 

cyclic stress-cycles and (d) damage-cycles using the finalized hybrid model 



 

205 

 

Mechanical Strain, 

-0.008-0.006-0.004-0.0020.000 0.002 0.004 0.006 0.008

S
tr

e
s
s
, 


 (
K

S
I)

-60

-40

-20

0

20

40

60

EXP

SIM

Mechanical Strain, 

-0.008-0.006-0.004-0.0020.000 0.002 0.004 0.006 0.008

T
o
ta

l 
D

a
m

a
g
e
, 


0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

SIM

Cycles, N
i

0 100 200 300 400 500

M
a
x
im

u
m

 a
n
d
 M

in
im

u
m

 S
tr

e
s
s
, 


 (
K

S
I)

-60

-40

-20

0

20

40

60

EXP

FIT

Cycles, N
i

0 100 200 300 400 500

T
o
ta

l 
D

a
m

a
g
e
, 


0.0

0.2

0.4

0.6

0.8

1.0

1.2

SIM

(a) (b)

(c) (d)

 

Figure 5.39 - Simulated fatigue tests 1.4%T    and 600°C (a) stress-strain (b) damage-strain 

(c) cyclic stress-cycles and (d) damage-cycles using the finalized hybrid model 
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The multiple possible combination of damage for creep, monotonic, and fatigue 

conditions now follow. During a creep test, creep damage is always active. Fatigue damage 

becomes active when / 4UTS   but remains very small and only occurs during the primary 

creep regime. Fatigue damage disappears at constant stress (due to the unit step function) thus 

fatigue damage can only occur during transient loading. Plastic/ductile damage does not occur 

becomes the stress rate is zero. 

During a monotonic test, creep damage is always active. The amount of creep damage is 

dictated by the applied strain rate where decreasing the strain rate increases the accumulated 

creep damage. Fatigue damage is active when / 4UTS   but remains very small due to the size 

of the fatigue damage constants. Plastic/ductile damage is active when the ultimate tensile 

strength is exceeded. 

During a fatigue test, three possibilities exist. In all three, creep damage is always active. 

In the first option, / 4UTS  and UTS   are such that no fatigue or plastic/ductile damage 

occur. In the second option, / 4UTS  and UTS   fatigue damage occurs with negligible 

plastic/ductile damage. In the third option, / 4UTS  and UTS   both fatigue and 

plastic/ductile damage occur.  

Both the fatigue and plastic/ductile damage equations include the irreversible portion of 

the viscous function [Eq. (5.5)]. Indefinite integration cannot be used to predict fatigue or 

monotonic rupture time a priori; therefore, the equation must be numerically optimized to 

determine appropriate material constants. 
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The importance of tracking the microstructural evolution cannot be overlooked. In the 

previous chapter, the cavity area density,   (number of cavities within a set area) and the 
pA -

Parameter (number of cavitated grain-boundaries) were correlated to the CDM damage variable 

[Eq. (4.49)] repeated below 

 
,

3
sin( )

2

p

p cr cr

A

A





   (5.55) 

The above equation remains valid where total damage [Eq. (5.31)] controls evolution. The creep 

and plastic/ductile damage components of total damage correlate directly to the above equation. 

The fatigue damage is a dislocation process which causes the formation of external cracks. When 

the external cracks are treated as external cavities the above microstructural evolution equation 

remains valid. 
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Figure 5.40 - Micrographs of re-crystallized structures for notched creep and fatigue specimen 

(a)-(c) creep, (d) fatigue (a) 130 MPa t=2 hr (b) 105 MPa t=5 hr (c) 105 MPa t=54 hr (d) 

N=25000 300 cpm t=1.4 hr [251] 

(a) 

(c) 

(b) 

(d) 



 

209 

 

5.2.4 Notch Strengthening and Weakening 

Iino studied the high temperature cracking of 304 stainless steel in the presence of a 

notch [251]. Micrographs of notched creep (a-c) and fatigue (d) specimen where taken as 

depicted in Figure 5.40. Comparing the observation time associated with (c) and (d) it is clear 

that cracks initiate and grows earlier in the fatigue specimen than the creep specimen and 

damage is localized at the crack tip. This is indicative of transgranular cracking. In the creep 

specimen cracks initiation and grow after a homogenous field of cavities nucleate, grow, and 

begin to coalesce about the crack tip. This is indicative of intergranular cracking. Comparing the 

crack tips of (c) and (d) it is observed that fatigue has a notched sharpening effect while creep 

has a notch blunting effect. In the proposed model, the notch sharpening effect during fatigue is 

taken into account by the fatigue damage trajectory constant 
f  which controls the variation of 

fatigue damage  f t  with respect to an infinitesimal variation of stress  t  (i.e. the 

damage gradient near the notch tip). The relatively larger 
f  causes fatigue damage to be highly 

localized at stress concentrations. An equivalent stress based on distortion energy theory (von 

Mises) drives fatigue damage evolution. The constants 
f  controls how fatigue-damage 

enhances the inelastic strain rate. The relatively large value of 
f  induces high plasticity 

localized near the crack tip. The notch blunting effect during creep is taken into account by the 

creep damage trajectory constant c  which controls the variation of fatigue damage  c t  with 

respect to an infinitesimal variation of stress  t  (i.e. the damage gradient near the notch tip). 

The relatively small c  causes creep damage to be more distributed in the presences of stress 

concentrations. The Sdobyrev representative stress [Eq. (4.53)] is used to decrease the equivalent 
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stress of the creep damage evolution equations [Eqs. (5.38)] to replicate the notch strengthening 

where the presence of a notch increases creep rupture life  [192]. The c  constant controls how 

creep damage enhances the inelastic strain rate. The relatively small value of c  cause’s 

intermediate plasticity in the vicinity of the crack tip. 

 

5.2.5 Mechanical Degradation 

The same framework outlined in section 4.2.5 is repeated. The individual creep, plastic, 

and fatigue damages be linearly summed in the following form 

  
c p f       

(5.56) 

Total damage can then be introduced into either the hypothesis of strain equivalence or the 

hypothesis of strain-energy equivalence as follows 

  (Strain)        1E E m   

(Strain-Energy)        
2

1E E m   (5.57) 

where E  is the initial young’s modulus, E  is the current young’s modulus, and m is the 

mechanical degradation factor. The mechanical degradation factor, m is assumed equal to 0.25 

units. The simulations conducted in the previous section used the hypothesis of strain 

equivalence. All results depicted in the plots in the previous section demonstrate that the 

inclusion of stiffness degradation is key to predicting stress saturation and cycles to failure. 
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Table 5.6 – Summary of the Unified Mechanical Model for Creep-Fatigue (Hybrid Model) 

Title Equation 

Viscous Function    3 2 3 2

0 sinh sgn expIN c c p p f f

R
A R

D


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 
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0
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 
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 1 1rep vm      

Transient 

Activation  
     

1 1

sgn sgn sgn , sgn 0 0

1 1

x

xx

x

  

 


    
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 
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D




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A

A







 
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2

1E E m   
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5.3 Summary of Constitutive Model 

The proposed constitutive model is completed. The hybrid constitutive model with creep, 

plastic/ductile, and fatigue damage is able to model the hardening and softening observed in 

creep, monotonic, and fatigue experiments. The CDM-based damage laws produce an a 

posteriori prediction of rupture time via iterative execution of the constitutive equations. A 

representative stress accounts for anisotropic cavity damage induced by multiaxial stress for both 

creep and plastic/ductile damage laws. The Normalized Ap-parameter is related to the cavitation 

driven creep and plastic/ductile damage. The strain and strain-energy equivalence approach to 

mechanical degradation has been created to model mechanical degradation more accurately. The 

constitutive model equations are collected and listed in Table 5.6. A description of the material 

constants associate with each equation is provided in Table 5.7 through Table 5.13. 

 

Table 5.7 - Viscous function constants 

Name Symbol Units

 Secondary creep coefficient 0A  s
-1

 

Natural logarithm of the final over minimum 

strain rate during creep 
c  unitless 

Coefficient of the fatigue-damage/viscous-

function interface 
f  

unitless 

Coefficient of the plastic-damage/viscous-

function interface 
p  

unitless 

 

Table 5.8 - Fatigue damage constants 

Name Symbol Units

 Fatigue limit f  mm/mm 

Fatigue damage trajectory constant f  unitless 

“  “ exponent f  unitless 
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Table 5.9 - Drag stress constants 

Name Symbol Units

 1
st
 work hardening coefficient 5c  KSI 

2
nd

 work hardening coefficient 7c  KSI
-2

 

Dynamic recovery coefficient 6c  KSI
-2

 

Initial drag stress 0D  KSI 

Yield strength Y KSI 

Ultimate Tensile Strength UTS KSI 

 

Table 5.10 - Creep damage constants 

Name Symbol Units

 Tertiary creep-damage coefficient cM  s
-1

 

“   “  mechanism transition t  KSI 

“   “  exponent c  unitless 

Damage trajectory constant c  unitless 

Mechanical degradation factor m unitless 

 

Table 5.11 - Representative stress constant 

Name Symbol Units

 Multiaxial rupture parameter   unitless 

 

 

Table 5.12 - Plastic/ductile damage constants 

Name Symbol Units

 Plastic/ductile damage trajectory constant p  unitless 

“   “   exponent p  unitless 

 

Table 5.13 - Rest stress constants 

Name Symbol Units

 Work hardening coefficient 1c  KSI 

1
st
 dynamic recovery coefficient 2c  unitless 

2
nd

 dynamic recovery coefficient 3c  unitless 

3
rd

 dynamic recovery coefficient 4c  KSI
-1

 

initial anisotropy of the yield surface Q KSI 
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5.4 FEM Implementation 

The same technique outlined in the previous chapter will be used for the finalized hybrid 

model.  The constitutive equations will be programmed into an ANSYS usermat3d UPF file. The 

stress increment is determined using a 3D radial return technique. The inelastic strain vector is 

determined from the multiaxial extension of the isotropic model. The material Jacobian matrix is 

determined through derivation. The following sections detail how to obtain these terms. 

 

5.4.1 Multiaxial Form 

The development of a multiaxial form can be conducted in two ways: 

 The conversion of the isotropic model until a general multiaxial extension 

 The conversion into an anisotropic model able to account for kinematic yield 

surface distortions 

The first case only requires that the viscous function be converted into a vector. 

Borrowing from the plastic potential theory, the creep potential hypothesis suggests that some 

creep-potential controls creep-flow 

  
,ij cr cr

ij

d
d d

d


 




σ
 (5.58) 

where crd  is the equivalent creep strain increment [221]. In the case of creep, the yield surface 

is zero such that the potential function is equal to the selected equivalent stress.  

In the current study Hill’s anisotropic equivalent stress will be used [59]. Hill’s 

anisotropic yield criterion is an extension of the von Mises yield criterion that allows for 

anisotropic yield of materials 
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 
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(5.59) 

where Hill  is Hill’s equivalent stress, s is the Cauchy stress vector, and M is the Hill compliance 

tensor consisting of the F, G, H, L, M, and N unitless material constants [170]. Hill’s equivalent 

stress reverts to von Mises when  

 1

2
F G H  

 

3

2
L M N  

 

(5.60) 

Using Hill’s potential function and the creep potential hypothesis, a general flow rule of the 

proposed isotropic constitutive model is produced 

 
   3 2 3 2

, 0 sinh sgn expHill
IN i c c p p f f

Hill

R
d A tR

D


      



 
   

 

Ms
 (5.61) 

In the cases of yield surface distortions, the kinematic hardening variable must be converted in to 

a vector. Helling and Miller [70] and Kagawa and Asada [235] show that major modifications to 

the viscous function and rest stress equation of most viscoplastic constitutive models must be 

performed to produce an appropriate response. A multiaxial form of the hybrid model is 

provided in Table 5.14 (only the modified equations listed) where IN ,  R  , M, and Hill  
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are the equivalent inelastic strain rate, equivalent over stress, Hill’s compliance tensor, and Hill’s 

equivalent stress respectively. For simplicity the term Q  is consider a scalar. No proof is 

provided to suggest that Q  should not become a iQ  vector. Multiple experiments and numerical 

optimization must be performed to make a determination. This is outside the scope of this study. 

 

Table 5.14 – Multiaxial Unified Mechanical Model for Creep-Fatigue (The Hybrid Model) 

Title Equation 

Viscous 

Function 

 
 

   
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5.4.2 Radial Return Mapping Technique 

For one dimensional viscoplasticity, the radial return mapping function is simplified to 

   * 0e e e INF E       
 

(5.62) 

where the isotropic viscous function [Eq. (5.61)] is used. The updated stress vector is obtained 

using the same method developed in the previous chapter (see section 4.4.2). This is a method 

similar to the original work by Wilson [262]. For three dimensional viscoplasticity the entire 

stress vector must be solved [263]. The trial stress vector, *

1nσ  becomes 

 *

1n n EL   σ σ C ε
 

(5.63) 

where 
nσ  is the given stress at step n , ELC  is the elastic stiffness matrix, and ε  is the strain 

increment provided by the parent FEM code. The updated stress can be calculated using the 

following 

 *

1 1 , 1n n EL IN n    σ σ C ε
 

(5.64) 

where 
, 1IN nε  is the inelastic strain increment calculated using the updated 1nσ  stress. By 

moving everything to the right hand side, a function that can be solved by iteration is produced 

   *

1 1 1 , 1 0m n n n EL IN n       F σ σ σ C ε
 

(5.65) 

Using the Newton-Raphson method gives 
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σ σ F

σ  
(5.66) 

where m is the iteration count. The derivative of mF  is provided below 
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where 
, 1IN nS  is the inelastic compliance matrix. The inverse of the derivative becomes 
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(5.68) 

The convergence criterion follows 
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(5.69) 

where   is the desired accuracy. 

 

5.4.3 Material Jacobian Matrix 

The material Jacobian can be described as a partial derivative 

 
i

TOT EL IN

j






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
C C C=  (5.70) 

where i  is the change in the ith stress at the end of the time increment caused by the jth strain 

j  [225]. A closed-form solution to ELC  the elastic stiffness matrix always exists. A closed-

form solution to INC  the inelastic stiffness matrix may or may not exist. If a closed-form 

solution exists, it greatly reduces computational costs. 

 To that end, inverting the inelastic stiffness matrix, INC , will furnish the inelastic 

compliance matrix, INS , as follows 
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S C  (5.71) 

The partial derivative of the viscous function can be found manually or by using symbolic 

computational algorithms. The partial derivative of a variable function is a derivative with 

respect to a constant such that 
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
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S  (5.72) 

Using the multiaxial form of the hybrid constitutive model (Table 5.14), the incremental inelastic 

strain is introduced, derivation performed, and the resulting condensed matrix provided below 
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the matrix is symmetric and non-singular. To obtain the stiffness matrix the compliance tensors 

must be inverted 

  
1

IN IN


C S  (5.74) 

In the current study, Gaussian elimination is used to find the inverse. 
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CHAPTER SIX: FINITE ELEMENT SIMULATIONS 

 

6.1 Introduction 

This chapter presents and discusses finite element simulations produced using the unified 

mechanical model for creep-fatigue. The simulations are conducted to demonstrate the 

capabilities of the unified mechanical model in comparison to experimental data and 

parametrically exercise the model to characterize the response under service like conditions. A 

series of simulations are conducting using the isotropic form of the model as summarized in 

Table 5.6. For convenience, the material constants developed in the previous chapter that will be 

used in the simulations are listed together in Table 6.1. The one dimensional simulations are 

conducting using the “HYBRID.F” 1D isotropic finite element code (provided in APPENDIX 

A:HYBRID.F) developed for the uSHARP 3.0 software using the isotropic constitutive 

equations (Table 5.6). The applied boundary conditions are stored as an array and feed into 

“HYBRID.F” which determines the updated stress [see section 5.4.2], strain, and internal 

variables at each time interval. Simulations based on service-like conditions are performed to 

evaluate the capabilities of the model under the typical boundary conditions are industrial gas 

turbine may undergo. These tests include; creep, continuous strain cycling, strain-hold cycling, 

continuous stress cycling, and stress-hold cycling. Simulations based on atypical load histories 

are performed to evaluate the unified mechanical model under unusually combinations of load to 

determine if the model lacks the ability to model certain phenomena. These tests include: creep 

to cycling, cycling to creep, stepped creep, and sequential fatigue blocks and creep. 
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Table 6.1 – Viscous function constants 

Name Symbol Value Units

 Secondary creep coefficient 0A  1.464E-12 s
-1

 

Natural logarithm of the final over minimum strain rate 

during creep c  3.586404 unitless 

Coefficient of the fatigue-damage/viscous-function interface f  17.332 unitless 

Coefficient of the plastic-damage/viscous-function interface p  38.306 unitless 

Work hardening coefficient 1c  5838.3 KSI 

1
st
 dynamic recovery coefficient 2c  239.64 unitless 

2
nd

 dynamic recovery coefficient 3c  511.96 unitless 

3
rd

 dynamic recovery coefficient 4c  0.86806E-01 KSI
-1

 

Initial anisotropy of the yield surface Q 2.1772 KSI 

1
st
 work hardening coefficient 5c  11.876 KSI 

2
nd

 work hardening coefficient 7c  5.0569 KSI
-2

 

Dynamic recovery coefficient 6c  1087.4 KSI
-2

 

Initial drag stress 0D  * KSI 

Young's Modulus E * KSI 

Mechanical degradation factor m 0.25 unitless 

Yield strength Y  * KSI 

Ultimate Tensile Strength UTS  * KSI 

Tertiary creep-damage coefficient cM  5.272E-10 s
-1

 

“   “  mechanism transition t  12.676080 KSI 

“   “  trajectory constant c  3.703911 unitless 

“   “  exponent c  3.09 unitless 

Multiaxial rupture parameter   0.75 unitless 

Fatigue limit f  0.5UTS mm/mm 

Fatigue damage trajectory constant f  19.376 unitless 

“  “ exponent f  0.91691 unitless 

Plastic/ductile damage trajectory constant p  50.786 unitless 

“   “   exponent p  1.2042 unitless 

* varies based on the experiment 
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6.2 Service-Like Conditions 

Creep deformation and damage continuously accumulate when a material is subject to a 

temperature above the creep limit. It is important to demonstrate the capability of the unified 

mechanical model to accurately predict the creep deformation and rupture. Towards, those goals 

a series of creep simulations are conducted. First the creep rupture prediction [Eq. (4.32)] is 

evaluated and compare to available experimental data. The results are plotted in Figure 6.1 and 

show that the model accurately predicts the available creep rupture data at 600°C for 304SS. 

When compared to temperatures above and below 600°C it is clear the extrapolated prediction at 

low stress follows the general trend for 304SS. The high stress extrapolations are not accurate 

with life predict above the ultimate tensile strength. This error is due to the fact that the creep 

damage law does not model plastic damage but a separate equation is used [Eq. (5.51)]. When 

plastic damage is enabled, the high stress behavior is better prediction with rapid rupture once 

the UTS is reached. Additional experiments should be conducted to better demonstrate and 

calibrate the creep damage model for stress rupture. 

 A series of creep deformation simulations at 220, 240, 260, 280, 300, and 320 MPa and 

600°C are performed and plotted in Figure 6.2. The unified mechanical model produces the 

appropriate primary, secondary, and tertiary creep responses for all stress levels. The primary 

creep strain increases with stress. The minimum creep strain rate observed in the secondary creep 

regime increases as stress increases. The amount and rate of tertiary creep strain increases with 

stress. The damage evolution and normalized cavity area density plots show that damage evolves 

to a critical value at any stress level. Stiffness is observed to degrade as typical of metals. 
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Figure 6.1 - Parametric Exercise of the Creep Rupture Prediction
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Figure 6.2 - Isotropic Creep at 50, 100, 150, 200, 250, 300, 320 MPa (a) deformation (b) total 

damage (c) normalized cavity area density (d) stiffness 
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Figure 6.3 - Schematic of service-like hysteresis loops (a) continous strain cycling (b) strain-hold 

cycling (c) continous stress cycling (d) stress-hold cycling [264] 

 

 

Table 6.2 – Monotonic properties of the fatigue tests 

Strain Range, 

   

Hold Time, 

ht   

Young's Modulus, 

E 
Yield 

Strength, Y

 

Ultimate Tensile Strength, 

UTS* 

% s KSI KSI KSI 

1 0 21313.89 36.886 46.19043 

1 60 15641.96549 30.1597 40.624418 

1.4 0 21059.85327 40.163 47.362529 

1.4 60 23034.0935 48.2939 59.615004 

stepped  20821.34352 35.5987 45.25925 

* obtained using the analytical equation [Eq. (5.20)] 
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Gas turbine superalloys are subject to complex load histories; the simplest of which 

consists of isothermal temperature with mixed transient and constant mechanical loading. These 

dynamic boundary conditions make modeling the constitutive response of components using 

traditional modeling techniques difficult. It is necessary to demonstrate the capabilities of the 

unified mechanical model to predict the constitutive response under typical boundary conditions. 

Coffin developed a schematic of the hysteresis loops observed during creep-fatigue under 

various mechanical loads, depicted in Figure 6.3[264]. These hysteresis loops consists of (a) 

continuous strain, (b) strain-hold (c) continuous stress, and (d) stress-hold cycling. The unified 

mechanical model was developed and calibrated based on type (a) experimental data, the results of 

which are presented in Figure 5.38 and Figure 5.39. Compared to the experimental data the unified 

mechanical model is able to accurately predict the constitutive response and rupture under continuous 

strain cycling. The next step is to examine the unified mechanical models performance when 

modeling strain-hold cycling. Experimental fatigue data for 304SS at 600°C subject to 60s tensile 

strain holds for  1%T   and 1.4%T    at 0 0.001 s  were obtained. The monotonic 

properties are listed in Table 6.2. Simulations of both 1%T   and 1.4%T    fatigue tests were 

conducted with the results provided in Figure 6.4(a)-(d) and Figure 6.5(a)-(d) respectively. 

Examining the resulting hysteresis loops (a) it is clear that the model is able to capture the strain 

hardening that occurs during transient loading and the stress relaxation that occurs during strain 

holds. Examining the cyclic stress-life data (b), it is observed that he model produces an expect fit to 

1.4%T   but a terrible fit to 1%T  . This is believed to be due to either the specimen 

being defective or human error when conducting the mechanical test. When life is compared 

between the continuous strain and strain-hold fatigue tests, it is observed that the strain-hold 
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1.4%T   tests exhibits a large reduction in life that is not observed in the 1%T   test. At 

the test frequency with the 60s hold time, this dramatic reduction in life is not expected to occur 

because creep damage will not be dominant. With this consideration, it can be said the unified 

mechanical model performs well in modeling strain hold cycling. 

An equation which approximates the initial drag stress for load control has not been 

developed yet. The problem was briefly discussed in the previous chapter (section 5.2.1). Under 

displacement control, the approximation is based on the conditions of a strain-controlled 

monotonic tensile test. For load control, the approximation is that of a stress-controlled 

monotonic tensile test. Let it be assumed that a single time step is used to reach the 0.2% yield 

strength at 0.002 strain offset, that 0D  does not change significantly and the quantity Q is zero. 

Under these conditions the following approximations are made 

 

min

0 min

1 0

0

0.002

IN

Y

t

R c

D D



 

 







  





 (6.1) 

The minimum creep strain rate, min  can be calculated using the secondary creep law [Eq. (5.4)] 

and replacing constant stress with the yield strength 

 

min 0 sinh
s

Y
A



 
  

 
 (6.2) 

where 0A  and s  are material constants. Introducing the above conditions into the viscous 

function [Eq. (5.5)] and solving for 0D  produces the “initial drag stress for load control” as 



 

228 

 

  1

0

0.002s Y c
D

Y

 
  (6.3) 

where Y is the 0.2% yield strength at  , the applied tensile-test stress rate. Using this approach, 

the yield strength of the 300 and 320 MPa creep tests is calculated as 40.13236 KSI. This value 

compares well to those obtained from the displacement controlled fatigue tests. For the following 

load-controlled simulations the above method is used. 

In the case of continuous stress cycling and stress-hold cycling, experimental data is not 

available. It is still however necessary to examine how the unified mechanical model performs under 

these conditions. Towards that goal continuous stress cycling simulation is performed with the 

following boundary conditions max 40ksi   , 1R   , 0.04ksi s   using the material constants 

listed in Table 6.1 where Q=2.1772 units. The simulations are conducted using a Young’s 

modulus of E = 21313.89 KSI, yield strength of Y = 40.13236 KSI, and the ultimate tensile 

strength is UTS = 51.0166061851541 KSI. The plot depicted in Figure 6.6 shows that negative 

ratcheting occurs where during the fully reversed cycle more compressive inelastic strain 

accumulates than tensile. This behavior does not occur naturally in 304SS; therefore, either the 

constitutive model is inaccurate or one of the material constants needs further optimization. The 

later is true. The initial asymmetry of the yield surface constant Q is the culprit for the error. The 

constants Q is a persistent value which controls asymmetry of the yield surface. To further 

evaluate the influence of Q, continuous stress cycling simulations with Q equal to -2.1772 and 0 

are performed and plotted in Figure 6.7 and Figure 6.8 respectively. The effect of Q on the yield 

surface is depicted in Figure 6.9. When 0Q   the yields surface is initially translated in the 

positive direction; therefore, yield occurs at a lower stress in compression than tension. This 
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results in an accumulation of more compressive strain then tensile during fully reversed stress 

cycling. When 0Q   the yield surface is initially translated in the negative direction; therefore, 

yield occurs at a lower stress in tension than compression. This results in an accumulation of 

more tensile strain then compressive during fully reversed stress cycling. When 0Q  , the yield 

surface is symmetric. The strain controlled experimental data (Figure 5.38-5.39, and Figure 6.4-

6.5) suggests that 0Q   because yield appears to occur at a lower stress in compression. 

Literature shows that under load-control, ratcheting strain is always positive under fully reversed 

cycling; suggesting that 0Q  . Because ratcheting is an important process that often occurs in 

gas turbine components subject to creep-fatigue; perhaps the constant Q should be reoptimized to 

better predict the ratcheting process. 

The final set of experimental data available for this study is a stepped-strain range test 

conducted at 0 0.001 s   and 600°C. The purpose of this type of test is to generate the 

stabilized stress amplitude at multiple strain ranges in order to determine the cyclic stress-strain 

curve [265]. A simulation of this test is performed with the results plotted in Figure 6.10 using 

the monotonic properties listed in Table 6.2 and Q=2.1772 units. Examining the results it is 

observed that the model perfectly predicts the strain hardening during compression and under 

predicts the strain hardening during tension. The simulation is performed again for Q equal to 0 

and -2.1772, with results plotted in Figure 6.11(a) and (b) respectively. With Q=-2.1772, the 

model under predicts the strain hardening during compression and perfectly predicts the strain 

hardening during tension (the exact opposite of Q=2.1772). With Q=0, the model only slightly 

under predicts the strain hardening in tension. This suggests that the previously optimized Q 

should be reoptimized to the stepped-strain data to produce the appropriate response. 
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To obtain a better value of Q the USHARP 3.0 is reconfigured to compare the simulated 

stress to the experimental stress of the stepped-strain fatigue test. The simulated annealing 

algorithm settings of Table 5.2 are used. The lower LB and upper bound UB are -2.1772 to 0 

respectively. The final SUM was 32.39493 units with the least squares evolution depicted in 

Figure 6.12. A total of 401 evaluations where conducted with 177 accepted and 101 rejected. The 

final temperature is 0.1907349E-03 units. The optimal Q value is found to be -0.12140 units. The 

UTS is recalculated to 48.71801 KSI. A comparison plot of the stepped strain experimental data 

and optimized simulation is provided in Figure 6.13. The reoptimized Q produced a higher 

quality fit to the experimental data. The results of a load-controlled simulation (depicted in 

Figure 6.14) shows that the unified mechanical model produces an appropriate ratcheting strain 

accumulation. Changing the Q constant does not negatively impact the ability to model the 

strain-controlled experiments. The change translates the hysteresis loops but does not change the 

cycles to rupture significantly (<0.5%). 

Finally, a stress-hold cycling simulation is performed with the following boundary 

conditions max 40ksi   , 1R    , 0.04ksi s   with 
ht 3.333 hours hold using the material 

constants listed in Table 6.1 where the reoptimized Q=-0.12140 is used. The plot depicted in 

Figure 6.15 shows an excellent representation of mixed cycling ratcheting and creep deformation 

which would likely occur in 304SS. It can be said with the modification made to the Q constant, 

the unified mechanical model successfully, models the most basic of service-like conditions an 

industrial gas turbine component could face when under creep-fatigue. 
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Figure 6.4 - Simulated fatigue tests 1%T    with 60s tensile hold at 600°C (a) stress-strain (b) 

damage-strain (c) cyclic stress-cycles and (d) damage-cycles 
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Figure 6.5 - Simulated fatigue tests 1.4%T    with 60s tensile hold at 600°C (a) stress-strain 

(b) damage-strain (c) cyclic stress-cycles and (d) damage-cycles 
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Figure 6.6 - Simulation of load-controlled fatigue at max 30ksi   , 1R    , 0.03ksi s   (a) 

stress-strain (b) total damage-cycles with Q=2.1772 
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Figure 6.7 - Simulation of load-controlled fatigue at max 30ksi   , 1R    , 0.03ksi s   (a) 

stress-strain (b) total damage-cycles with Q=-2.1772 
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Figure 6.8 - Simulation of load-controlled fatigue at max 30ksi   , 1R    , 0.03ksi s   (a) 

stress-strain (b) total damage-cycles with Q=0 
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Figure 6.9 - Schematic of yield surface translation due to Q 
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Figure 6.10 - Cyclic stress-strain curve (stepped strain range) of 304SS at 600°C (a) experiment 

(b) simulation Q=2.1772 
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Figure 6.11 - Cyclic stress-strain curve (stepped strain range) of 304SS at 600°C (a) Q=0           

(b) Q=-2.1772 
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Figure 6.12 - Least square values during optimization of the Q  constant 
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Figure 6.13 - Cyclic stress-strain curve (stepped strain range) of 304SS at 600°C using the reoptimized Q=-0.12140 
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Figure 6.14 - Simulation of load-controlled fatigue at max 40ksi   , 1R    , 0.04ksi s   (a) 

stress-strain (b) total damage-cycles with reoptimized Q= -0.12140 
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Figure 6.15 - Simulation of load-controlled fatigue at max 40ksi   , 1R    , 0.04ksi s   

with 3.333 hour holds (a) stress-strain (b) total damage-cycles with reoptimized Q= -0.12140 
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6.3 Atypical Load Histories 

The unified mechanical model is exercised for a number of atypical load histories as 

depicted in Figure 6.16 to demonstrate the models ability to deal with complex load histories and 

the interactive effects of creep, plastic, and fatigue damage on the constitutive response. 

 

 

Figure 6.16 - Schematic of Atypical Load Histories  
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A single set of material properties are used for the atypical load histories. The unified 

mechanical model properties listed in Table 6.1 are used with the exception that the reoptimized 

Q=-0.12140 is used. The simulations are conducted using a Young’s modulus of E = 21313.89 

KSI, yield strength of Y = 40.13236 KSI, and the ultimate tensile strength is UTS = 48.71801 KSI. 

A max =40 KSI creep and  =40 KSI,  =0.04 KSI/s, pulsating tensile fatigue 

simulations are performed for comparison as depicted in Figure 6.17a and b respectively. The 

creep simulation reached rupture at 265.556 hours with creep damage as the dominant damage 

mechanism. The pulsating tensile simulation rupture at 3592.5 cycles or 1995.83 hours with 

fatigue damage as the dominant damage mechanism. Fatigue damage does not become dominant 

until near the end of life. 

The first atypical load history simulated (Figure 6.16a) is a creep test followed by 

pulsating tensile cycling R=0 the results of which are depicted in Figure 6.18. The peak stress is 

max =40 KSI, the stres range  =40 KSI, and the stress rate,  =0.04 KSI/s.  The purpose of the 

first load history is to examine how prior creep damage influences fatigue cycles to failure. The 

creep test is held for 150 hours followed by continuous cycling until rupture. Compared to a pure 

creep simulation, the creep to cycles simulation produced a much longer life, a 168.464% 

increase. Creep damage evolves throughout the simulation, but the rate is greatly reduced when 

cycling beings. The inelastic strain rate dramatically reduces when cycling begins. Compared to 

pure cycling, the creep to cycles simulation produces a much shorter life, a 64.279% decrease. 

Fatigue damage does not appreciably accumulate until near the end of life and becomes the 
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dominant damage mechanism. This large period of minimal fatigue damage can be associated 

with the cycles necessary for the fatigue crack to nucleate and initiate. 

The second atypical load history simulated (Figure 6.16b) is pulsating tensile cycling R=0 

followed by creep the results of which are depicted in Figure 6.19. The purpose of this load 

history is to examine how prior cycling influence creep rupture time. The peak stress is max =40 

KSI, the stres range  =40 KSI, and the stress rate,  =0.04 KSI/s. Cycling occurs for iN =3000 

cycles followed by a creep held until rupture. Compared to a pure creep simulation, the creep to 

cycles simulation produced a much longer life, a 561.714% increase. Creep damage is the 

dominant damage mechanism. the inelastic strain rate dramatically increases when creep loading 

begins. Compared to pure cycling, the creep to cycles simulation produces a much shorter life, a 

11.955% decrease. Fatigue damage is minimal. 

The third atypical load history simulated (Figure 6.16b) is an stepped isostress method 

(SSM) creep tests with the stress rate,  =0.04 KSI/s the results of which are depicted in Figure 

6.20. The purpose of the third load history is to examine how the primary creep and secondary 

creep regime change as the stress level is increased. The stress starts at 40 KSI and increases in 

1.6 KSI increments at a stress rate of  =0.04 KSI/s every 
ht 5 hours. The unified mechanical 

model produces the appropriate response when compared to results of SSM in literature for 

various materials [266]. A near instantaneous increase in the strain is associated with increased 

primary creep strain. The minimum creep strain rate increases due to the applied stress. Given 

SSM experimental data to rupture, it may be possible to determine the viscous function constants 

0A  and s   and the creep damage constants , tM   and   respectively. 
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The fourth atypical load history simulated (Figure 6.16b) is mixed sequential creep-

fatigue test where 500 cycles blocks are interrupted with 40 hours of creep. The tests is 

performed with  max =40 KSI,  =40 KSI,  =0.04 KSI/s the results depicted in Figure 6.21. 

The purpose of the third load history is to examine how damage evolves during mixed loading 

conditions. It is observed that the inelastic strain rate continuously increases and decreases in 

during creep and cycling respectively. It is possible that the reduction in inelastic strain rate 

during fatigue can be associated with the transgranular cracking process. For a majority of life, 

creep damage is dominant. At the end of life, fatigue damage rapidly evolves and becomes 

dominant. Again, this large period of minimal fatigue damage can be associated with the cycles 

necessary for the fatigue crack to nucleate and initiate. 
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Figure 6.17 - Simulation of (a) creep and (b) pulsating tensile fatigue test with  =40 ksi, 
=0.04 ksi/s 
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Figure 6.18 - Creep for 150 hours followed by pulsating tensile cycling to rupture (a) 

deformation (b) stress-strain (c) damage 
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Figure 6.19 - Pulsating tension for 3000 cycles followed by creep to rupture (a) deformation (b) 

stress-strain (c) damage 
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Figure 6.20 - Stepped isostress method (SSM) creep tests (a) deformation (b) stress-strain (c) 

damage 
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Figure 6.21 - Mixed sequential fatigue test (a) deformation (b) stress-strain (c) damage 
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CHAPTER SEVEN: CONCLUSIONS AND FUTURE WORK 

 

7.1 Conclusions 

 A novel unified mechanical model for the creep-fatigue of a gas turbine superalloy has 

been developed. A hybrid constitutive model which incorporates continuum damage mechanics 

has been derived, analytically and numerically fit to experimental data, and proven to model the 

constitutive response of the subject material. A linearly-coupled continuum damage mechanics 

law for creep, fatigue, and plasticity/ductility has been derived which allows the monitoring of 

microstructural damage through a body under consideration. A mechanical degradation equation 

is implemented to allow the reduction of the stiffness of a body until a crack is produced within 

that body. Progress interaction of the constitutive, damage, and mechanical degradation provide 

a method by which crack initiation, propagation, and rupture can be predicted in a body. 

Extensive parametric simulations of the unified mechanical model have been performed to 

validate the applicability of the unified model. It has been proven that the novel unified 

mechanical model for creep-fatigue of a gas turbine superalloy meets the research objectives 

stated in the introduction.  
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7.2 Future Work 

While considerable effort has been expended in the completion of this dissertation, the scale 

of the unified mechanical model precluded inclusion of additional experiments, numerical 

implementations, derivations which could enhance the capabilities of the unified mechanical 

model. Below are listed topics of future work pertaining to the improvement of the unified 

mechanical model: 

 

Implement the Unified Mechanical Model in a Commercial FEM Code 

While, the model has been implemented in a custom 1D FEM code; implementation in a 

commercial FEM software, would demonstrate that the model could be used by practicing 

engineers in industry who are familiar with commercial software. This is a important future topic 

because it can lead to adaptation of the unified mechanical model within industry or at the least, 

collaboration between academia and industry. 

 

Evaluate the Multiaxial and Anisotropic Form 

 Multiaxial equations for the unified mechanical model for creep-fatigue were derived but 

not evaluated. An anisotropic form was suggested by using Hill’s anisotropic analogy. A series 

of creep, fatigue, and monotonic tensile tests for an anisotropic superalloy should be conducted 

and compared to simulations using the anisotropic multiaxial equations. The result of these 

simulations would prove useful in determining the unified mechanical models ability to model 

the mechanical behavior of directionally solidified turbine blades under service. 
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Conduct Creep-Fatigue Cracking Experiments 

The current study has emphasized the constitutive response and rupture prediction using 

the unified mechanical model. A lack of creep-fatigue crack initiation and propagation data 

precluded the evaluation of crack growth using the CDM-based damage variables. A series of 

experiments which produce crack quantities for a superalloy would demonstrate the capabilities 

(or lack thereof) of the unified mechanical model in predicting crack growth. The inclusion of 

variables such as mean stress and notched geometry would further evaluate the model and 

provide opportunity for improvement. Possible improvements include using an alternative 

damage quantity to better predict crack growth [267]. 

 

Optimize the Constant Determination Process 

In the current study, a significant number of experiments are required to determine the 

material properties of the unified mechanical model for creep-fatigue. The determination process 

involves a series of numerical optimization for sets of constants associated with each experiment. 

The determination process could be simplified by developing “specialized” mechanical tests 

which exercise the material over a wide range of boundary conditions. This would reduce the 

number of experiments needed and thus reduce the costs associated with calibrating the unified 

mechanical model for creep-fatigue for any particular material. 
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Simplify the Unified Mechanical Model for Creep-Fatigue 

As depicted in Table 5.6, the unified mechanical model for creep-fatigue includes many 

internal state variables which require a significant number of material parameters. This becomes 

a serious problem when simulations are needed under non-isothermal conditions. Simplify the 

unified mechanical model would improve the chance of the model being adopted by industry. 

Possible avenues of simplification include: 

 developing a singular damage law for creep, fatigue, and plastic/ductile damage 

 total damage interfaces with the viscous function instead of each individual 

damage mechanism.  

 

7.3 Alternative Topics 

 Considerable literature review has been performed in the conduction of this study. During 

this process, a number of alternative topics where evaluated and have potential as future work.  

Towards the execution of these alternative topics, grant-formatted abstract have been constructed 

and are provided below 

 

Multiscale Energy-Based Model of Metals Subject to Irreversible Processes 

 As our world becomes more complicated and the demands on materials increase, multiple 

active failure mechanisms have become the norm. This is particularly the case for anisotropic 

superalloys subject to dynamic thermomechanical fatigue where a combination of creep, fatigue, 

and oxidation cause degradation. As a response there arose unified viscoplasticity constitutive 

models that incorporate multiple strain hardening and softening mechanisms to model 
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complicated history. Unfortunately, numerous experiments are needed to identify the history of 

the internal variables which represent each mechanism. These phenomenological internal 

variables must be functionalized then introduced into the viscous function to describe the 

constitutive response. The practical implementation of these constitutive models is exceptionally 

difficult. It is hypothesized that energy or entropy can be used to replace the phenomenological 

internal variables which represent physical mechanisms. Barasan and Nie [268] have shown that 

entropy can be used to represent the damage mechanics of solids. Biegler and Mehrabadi [269] 

developed an energy-based anisotropic constitutive model for rate-independent solids subject to 

damage. Energy is an excellent multiscale parameter. At the atomic-scale there exists bond and 

dislocation energy, at the micro-scale there is grain boundary energy, at the meso-scale grain 

size, distribution, and morphology create unit cells with unique strain energy release rates, and at 

the macro-scale strain-energy represents the maximum energy per unit volume before failure. It 

is my desire to develop a multiscale energy-based constitutive model to represent the multiple 

irreversible processes in solids which lead to failure. To achieve this goal, I will collaborate with 

faculty at the university to purchase commercial licenses for software necessary for finite 

element simulations. While this project is both accessible to undergraduate and graduate level 

researchers, I will also seek a post doc collaborator through the NSF Fellowships for 

Transformative Computational Science using CyberInfrastructure (CI TraCS). For large 

simulations, I will work with the National Center for Supercomputing Applications (NCSA) at 

the University of Illinois at Urbana-Champaign to complete complex jobs. 
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Keywords: Multiscale, Energy-Based, Anisotropic, Constitutive Model, Damage, Life 

Prediction, Thermomechanical Fatigue (TMF), Oxidation 

 

Stochastic CDM Model for the Prediction of Initial/Current Damage Distribution 

 Traditionally solids are modeled as homogenous volumes with uniform strength; 

however, in practice materials exhibit a non-uniform distribution of strength. Defects of 

unknown scale, dimension, geometry, and position make the strength, deformation, and rupture 

of solids a statistical variable [270]. The manufacture of solids is a stochastic process, where the 

damage state of the “product” is based on both predictable actions and some randomness. The 

distribution of initial damage can be uniform or localized [271]. Processes such as solidification, 

aging, surface machining, environment, etc. can influence the state of damage. Damage is a 

multi-scale problem where crystallographic defects on all scales influence the bulk constitutive 

response [272]. In some cases, extremely heterogeneous materials exist where a high order of 

multiscale complexity leads to enormous computational costs. For example, metallic woven wire 

mesh; on the wire-scale individual wires exhibit different residual deformations (due to the 

drawing and weaving process) and coefficients of friction, on the meso-scale weave pattern and 

orientation influence contact friction, and on the macro-scale miss-weaves, rips, tears, and the 

environment influence damage accumulation [273]. A multiscale model of such a material would 

require large-scale parallel multi-body dynamics computation to deal with the interaction of 

these variables. For in vivo biological materials it can be difficult to quantify the defects and 

mechanical properties accurately and at multiple scales. Clearly, in some cases it is necessary to 

take a phenomenological approach to degradation. In continuum damage mechanics, the solid is 

assumed to be initially undamaged and evolve to a ruptured state ( 0 1  ). The evolution of 
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damage is deterministic. As an alternative, I plan to develop stochastic CDM models to represent 

the probabilistic natural of damage within solids. The macro-scale properties will be extracted 

using traditional mechanical testing and stochastically implemented in the constitutive model. 

Both an a priori and a posteriori approach to predict the initial damage distribution will be 

conducted. The a priori approach involves predicting the initial damage distribution (intensity 

and location) via global numerical optimization to a given constitutive response. The a posteriori 

approach involves acquiring an X-ray microtomograph (μ-CT) of the initial undamaged material 

and replicating that distribution in simulation. To achieve this goal, partnerships with various 

industries could be formed to investigate methods by which the current damage state of an in-

service part could be determined via simulation. 

 

Keywords: stochastic, continuum damage mechanics, a priori, a posteriori, initial damage 

distribution, in-service, damage state, microtomography  
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APPENDIX A: HYBRID.F 
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!---------------------------------------------------------! 

! THIS FUNCTION IS A 1D EVALUATION OF THE HYBRID MODEL    ! 

! CONSTITUTIVE EQUATIONS FOR STRESS AND STRAIN-CONTROL    ! 

!---------------------------------------------------------! 

 

subroutine HYBRID(X,N,ANSTIME,ANSDATA,NDIMA,set1,set2,PRNTR) 

 

IMPLICIT NONE 

 

  INTEGER*4 N,I,J 

  INTEGER*4 NDIMA 

  INTEGER*4 set1, set2 

  REAL PRNTR 

   

  REAL ANSTIME(NDIMA),ANSDATA(NDIMA),X(N) 

  DOUBLE PRECISION b,n0,c1,c2,c3,c4,c5,c6,c7,c8,cd,rate,D_sat,sgn, conv 

  DOUBLE PRECISION Q, E1,E2 

  DOUBLE PRECISION young,poisson,yield,dtime, tmp, var, temp1, temp2, tmp2 

  DOUBLE PRECISION R_rate(NDIMA), D_rate(NDIMA), 

E_rate(NDIMA),R(NDIMA),D(NDIMA) 

  DOUBLE PRECISION E(NDIMA), EM(NDIMA), STRESS(NDIMA), NSTRESS, OSTRESS, F, 

FP 

  DOUBLE PRECISION W(NDIMA), W_rate(NDIMA), M,chi,phi,sig_t, hfunc, lamda 

  DOUBLE PRECISION MF,phiF,chiF, lamdaF, WF(NDIMA), W_rateF(NDIMA), Ffd, 

STR_rate 

  DOUBLE PRECISION WT(NDIMA), md, Ravg(NDIMA), UTS, ACTIVE 

  DOUBLE PRECISION WP(NDIMA), W_rateP(NDIMA), phiP, chiP, lamdaP, Tuts, Fpd 

!---------------------------------------------------------! 

! SET MATERIAL CONSTANTS                                  ! 

!---------------------------------------------------------! 

if(PRNTR.eq.1) then 

 

    X(1)=-2.1772 

 

endif 

 

b=0.000000000001464 

n0=1 

 

c1=5838.3  

c2=239.64  

c3=511.96 

c4=0.86806E-01 

c5=11.876  

c6=1087.4 

c7=5.0569  

Q=-0.12140 !2.1772 

 

lamda=3.586404 

phi=3.703911 

chi=3.09 

M=5.272E-10 

sig_t=12.676080 
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phiF=19.376 

chiF=0.91691 

MF=b 

lamdaF=17.332 

Ffd=46.1904300124828/4 

if (set2.eq.1) Ffd=47.3625289632271/4 

 

phiP=50.786 

chiP=1.2042 

lamdaP=38.806 

Tuts=0 

 

md=0.25 

 

young=21313.89 !1% fatigue 

poisson=0.29 

yield=36.886 !1% fatigue 

 

if (set2.eq.1) young=21059.85327 !1.4% fatigue 

if (set2.eq.1) yield=40.1629311 !1.4% fatigue 

 

!1% 60s 

!Ffd=40.6244175248538/4 

!Young=15641.96549 

!yield=30.1597761 

 

!1.4% 60s 

!Ffd=59.6150047165328/4 

!Young=23034.0935 

!yield=48.29390197 

 

!stepped 

!Ffd=45.2592500158258/4 

!Young=20821.34352 

!yield=35.59864735 

 

!30ksi load controlled *uses the 1% data 

!Ffd=40.6244175248538/4 

!Young=15641.96549 

!yield=30.1597761 

 

!young=15133       !Monotonic Tension 

!yield=41.3928256  !Monotonic Tension 

!Ffd=50.4231913605892/4 !Monotonic Tension 

 

Ffd=48.7180061851541/4 ! Load Control 

UTS=FFD*4*1 !.92 

Ravg=0 

ACTIVE=0 

 

IF (set1.EQ.0) THEN 

!---------------------------------------------------------! 

! CREEP LOOP  / Load Control                              ! 

!---------------------------------------------------------! 
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yield=40.132363500546453487 

rate=b*sinh(yield/4.035) 

tmp=c1*0.002 

D(1)=(yield-tmp)/asinh((rate/B)**(1/n0)) 

R(1)= 0 

W(1)= 0 

WF(1)= 0 

WP(1)= 0 

WT(1)= 0 

D_Rate(1)=0 

R_Rate(1)=0 

W_rate(1)=0 

W_rateF(1)=0 

W_rateP(1)=0 

 

dtime=ANSTIME(1) 

str_rate=ANSDATA(1)/dtime 

 

tmp=ANSDATA(1)-R(1) 

var=1 

hfunc=exp(lamda*W(1)**(1.5)+lamdaP*WP(1)**(1)+lamdaF*WF(1)**(1.5)) 

CALL NN(tmp,sgn) 

E_rate(1)=b*sinh(abs(tmp)/D(1))**n0*sgn*hfunc 

E(1)=E_rate(1)*dtime 

EM(1)=ANSDATA(1)/(young*(1-md*WT(1)))+E(1) 

 

W_rate(1)=M*(1-exp(-phi))/phi*sinh(abs(ANSDATA(1))/sig_t)**chi*exp(phi*WT(1)) 

 

temp1=(EM(1)-ANSDATA(1)/Young)/dtime 

CALL NN(abs(temp1),temp1) !strain rate 

CALL NN(abs(str_rate),temp2) !stress rate 

Tuts=temp1*temp2 

CALL NN(temp1*temp2,tuts) 

 

W_rateF(1)=0 

if (Tuts.gt.0) then 

    if (abs(ANSDATA(1)).ge.Ffd) W_rateF(1)=MF*(1-exp(-

phiF))/phiF*sinh(abs(tmp)/D(1))**chiF*exp(phiF*WT(1)) 

endif 

W_rateP(1)=0 

if (abs(ANSDATA(1)).ge.UTS) ACTIVE=1 

if (ACTIVE.ge.1) THEN 

    IF (TUTS.gt.0) W_rateP(1)=MF*(1-exp(-

phiP))/phiP*sinh(abs(tmp)/D(1))**chiP*exp(phiP*WT(1)) 

endif 

 

W(1)=W_rate(1)*dtime+W(1) 

WF(1)=W_rateF(1)*dtime+WF(1) 

WP(1)=W_rateP(1)*dtime+WP(1) 

WT(1)=W(1)+WF(1)+WP(1) 

 

!Simulation 

do i=2,NDIMA 
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if (WT(i-1).gt.1.or.E(i-1).gt.1) then 

R(i)=R(i-1) 

D(i)=D(i-1) 

E(i)=E(i-1) 

W(i)=W(i-1) 

WF(i)=WF(i-1) 

WP(i)=WP(i-1) 

WT(i)=WT(i-1) 

goto 77 

endif 

 

dtime=ANSTIME(i)-ANSTIME(i-1) 

str_rate=(ANSDATA(i)-ANSDATA(i-1))/dtime 

 

tmp=ANSDATA(i)-R(i-1) 

hfunc=exp(lamda*W(i-1)**(1.5)+lamdaP*WP(i-1)**(1)+lamdaF*WF(i-1)**(1.5)) 

CALL NN(tmp,sgn) 

E_rate(i)=b*sinh(abs(tmp)/D(i-1))**n0*sgn*hfunc 

cd=c3*exp(-c4*(R(i-1)-Q)*sgn) 

R_rate(i)=c1*E_rate(i-1)-(R(i-1)-Q)*( (c2+cd)*abs(E_rate(i-1))) 

D_rate(i)=(c5-c7*D(1)**3)*abs(E_rate(i-1))-c6*((D(i-1)-

D(1))**3)*abs(E_rate(i-1)) 

 

E(i)=E_rate(i)*dtime+E(i-1) 

EM(i)=ANSDATA(i)/(young*(1-md*WT(i-1)))+E(i) 

 

if(WT(i-1).ge.1) then 

    W_rate(i)=0 

    W_rateF(i)=0 

    W_rateP(i)=0 

    else 

W_rate(i)=M*(1-exp(-phi))/phi*sinh(abs(ANSDATA(i))/sig_t)**chi*exp(phi*WT(i-

1)) 

 

temp1=(EM(i)-EM(i-1))/dtime 

CALL NN(abs(temp1),temp1) !strain rate 

CALL NN(abs(str_rate),temp2) !stress rate 

Tuts=temp1*temp2 

CALL NN(temp1*temp2,tuts) 

 

W_rateF(i)=0 

if (tuts.gt.0) then 

    if (abs(ANSDATA(i)).ge.Ffd) W_rateF(i)=MF*(1-exp(-

phiF))/phiF*sinh(abs(tmp)/D(i-1))**chiF*exp(phiF*WT(i-1)) 

endif 

W_rateP(i)=0 

if (abs(ANSDATA(i)).ge.UTS) ACTIVE=1 

if (ACTIVE.ge.1) THEN 

    IF (TUTS.gt.0) W_rateP(i)=MF*(1-exp(-phiP))/phiP*sinh(abs(tmp)/D(i-

1))**chiP*exp(phiP*WT(i-1)) 

endif 

 

endif 
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R(i)=R_rate(i)*dtime+R(i-1) 

ravg(i)=(R_rate(i)*dtime)/(ANSTIME(i))+ravg(i-1) 

D(i)=D_rate(i)*dtime+D(i-1) 

W(i)=W_rate(i)*dtime+W(i-1) 

WF(i)=W_rateF(i)*dtime+WF(i-1) 

WP(i)=W_rateP(i)*dtime+WP(i-1) 

WT(i)=W(i)+WF(i)+WP(i) 

 

77 continue 

!PRINT *,ANSTIME(I),' ',ANSDATA(i),' ',W(i),' ',WF(i) 

enddo 

 

!Store Results 

if (PRNTR.eq.1) OPEN (UNIT=45, FILE='CREEP.TXT') 

    do i=1,NDIMA 

        IF (isnan(E(I))) THEN 

            ANSDATA(I)=10 

        ELSEIF (E(i).gt.1) then 

            ANSDATA(I)=10 

        ELSE 

            ANSDATA(i)=EM(i) 

        ENDIF 

         

        !if (PRNTR.eq.1) WRITE (45,*) ANSDATA(i),' ', WT(i) 

        if (PRNTR.eq.1) WRITE (45,*) W(i) ,' ',WF(i),' ',WT(i) 

    enddo 

if (PRNTR.eq.1) CLOSE (45) 

 

ELSE 

 

!---------------------------------------------------------! 

! FATIGUE LOOP    / Displacement Control                  ! 

!---------------------------------------------------------! 

!Initialize 

rate=0.001 

tmp=c1*0.002 

D(1)=(yield-tmp)/asinh((rate/B)**(1/n0)) 

R(1)= 0 

W(1)= 0 

WF(1)= 0 

WP(1)= 0 

WT(1)= 0 

D_Rate(1)=0 

R_Rate(1)=0 

W_rate(1)=0 

W_rateF(1)=0 

W_rateP(1)=0 

Stress(1)= 0.658698669 

if (set2.eq.1) stress(1)=0.368968822 

 

dtime=ANSTIME(1) 

str_rate=stress(1)/dtime 

 

tmp=STRESS(1)-R(1) 
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var=1 

hfunc=exp(lamda*W(1)**(1.5)+lamdaP*WP(1)**(1)+lamdaF*WF(1)**(1.5)) 

CALL NN(tmp,sgn) 

E_rate(1)=b*sinh(abs(tmp)/D(1))**n0*sgn*hfunc 

E(1)=E_rate(1)*dtime 

EM(1)=Stress(1)/(young*(1-md*WT(1)))+E(1) 

 

W_rate(1)=M*(1-exp(-phi))/phi*sinh(abs(Stress(1))/sig_t)**chi*exp(phi*WT(1)) 

 

temp1=(EM(1)-stress(1)/Young)/dtime 

CALL NN(abs(temp1),temp1) !strain rate 

CALL NN(abs(str_rate),temp2) !stress rate 

Tuts=temp1*temp2 

CALL NN(temp1*temp2,tuts) 

 

W_rateF(1)=0 

if (Tuts.gt.0) then 

    if (abs(Stress(1)).ge.Ffd) W_rateF(1)=MF*(1-exp(-

phiF))/phiF*sinh(abs(tmp)/D(1))**chiF*exp(phiF*WT(1)) 

endif 

W_rateP(1)=0 

if (abs(Stress(1)).ge.UTS) ACTIVE=1 

if (ACTIVE.ge.1) THEN 

    IF (TUTS.gt.0) W_rateP(1)=MF*(1-exp(-

phiP))/phiP*sinh(abs(tmp)/D(1))**chiP*exp(phiP*WT(1)) 

endif 

 

W(1)=W_rate(1)*dtime+W(1) 

WF(1)=W_rateF(1)*dtime+WF(1) 

WP(1)=W_rateP(1)*dtime+WP(1) 

WT(1)=W(1)+WF(1)+WP(1) 

 

!Simulation 

do i=2,NDIMA 

 

dtime=ANSTIME(i)-ANSTIME(i-1) 

NSTRESS=Stress(i-1) 

 

DO j=1,100 

    OSTRESS=NSTRESS 

    tmp=OSTRESS-R(i-1) 

    CALL NN(tmp,sgn) 

    hfunc=exp(lamda*W(i-1)**(1.5)+lamdaP*WP(i-1)**(1)+lamdaF*WF(i-1)**(1.5)) 

    E_rate(i)=b*sinh(abs(tmp)/D(i-1))**n0*sgn*hfunc 

 

    F=OSTRESS/(young*(1-md*WT(i-1)))+E_rate(i)*dtime+E(i-1)-ANSDATA(i) 

     

    CALL NN(tmp,sgn) 

    CALL HH(tmp,temp1) 

 CALL HH(tmp-1,temp2) 

  

    FP=1/(young*(1-md*WT(i-1)))+2*(temp1-temp2)*b*hfunc*sinh(abs(tmp)/D(i-

1))**n0*dtime+(b*n0*hfunc*sgn*sgn*cosh(abs(tmp)/D(i-1))*sinh(abs(tmp)/D(i-

1))**(n0-1))*dtime/D(i-1) 
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    NSTRESS=OSTRESS-F/FP 

     

    conv=abs(NSTRESS-OSTRESS) 

    IF (conv.lt.1E-05) exit 

ENDDO 

 

STRESS(I)=NSTRESS 

 

str_rate=(stress(i)-stress(i-1))/dtime 

 

tmp=STRESS(I)-R(i-1)  

hfunc=exp(lamda*W(i-1)**(1.5)+lamdaP*WP(i-1)**(1)+lamdaF*WF(i-1)**(1.5)) 

CALL NN(tmp,sgn) 

E_rate(i)=b*sinh(abs(tmp)/D(i-1))**n0*sgn*hfunc 

cd=c3*exp(-c4*(R(i-1)-Q)*sgn) 

R_rate(i)=c1*E_rate(i-1)-(R(i-1)-Q)*( (c2+cd)*abs(E_rate(i-1))) 

D_rate(i)=(c5-c7*D(1)**3)*abs(E_rate(i-1))-c6*((D(i-1)-

D(1))**3)*abs(E_rate(i-1)) 

 

E(i)=E_rate(i)*dtime+E(i-1) 

EM(i)=Stress(i)/(young*(1-md*WT(i-1)))+E(i) 

 

if(WT(i-1).ge.1) then 

    W_rate(i)=0 

    W_rateF(i)=0 

    W_rateP(i)=0 

    else 

W_rate(i)=M*(1-exp(-phi))/phi*sinh(abs(Stress(i))/sig_t)**chi*exp(phi*WT(i-

1)) 

 

temp1=(EM(i)-EM(i-1))/dtime 

CALL NN(abs(temp1),temp1) !strain rate 

CALL NN(abs(str_rate),temp2) !stress rate 

Tuts=temp1*temp2 

CALL NN(temp1*temp2,tuts) 

 

W_rateF(i)=0 

if (tuts.gt.0) then 

    if (abs(Stress(i)).ge.Ffd) W_rateF(i)=MF*(1-exp(-

phiF))/phiF*sinh(abs(tmp)/D(i-1))**chiF*exp(phiF*WT(i-1)) 

endif 

W_rateP(i)=0 

if (abs(Stress(i)).ge.UTS) ACTIVE=1 

if (ACTIVE.ge.1) THEN 

    IF (TUTS.gt.0) W_rateP(i)=F*(1-exp(-phiP))/phiP*sinh(abs(tmp)/D(i-

1))**chiP*exp(phiP*WT(i-1)) 

endif 

 

endif 

 

R(i)=R_rate(i)*dtime+R(i-1) 

D(i)=D_rate(i)*dtime+D(i-1) 

W(i)=W_rate(i)*dtime+W(i-1) 
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WF(i)=W_rateF(i)*dtime+WF(i-1) 

WP(i)=W_rateP(i)*dtime+WP(i-1) 

WT(i)=W(i)+WF(i)+WP(i) 

     

!PRINT *,ANSTIME(i),' ',ratio(i) 

 

enddo 

 

!Store Results 

if (PRNTR.eq.1) then 

    if (set2.eq.0) then 

        OPEN (UNIT=55, FILE='FATIGUE05.TXT') 

    else 

        OPEN (UNIT=55, FILE='FATIGUE07.TXT') 

    endif 

endif 

    do i=1,NDIMA 

        IF (isnan(STRESS(I))) THEN 

            ANSDATA(I)=0 

        ELSE 

            ANSDATA(i)=STRESS(i) 

        ENDIF 

         

        if (PRNTR.eq.1) WRITE (55,*) ANSTIME(i),' ',ANSDATA(i),' ',WT(i) 

    enddo 

if (PRNTR.eq.1) CLOSE (55) 

 

endIF 

 

    RETURN 

END 

! Subroutine returns the sgn of the variable 

      SUBROUTINE NN(Var,sgn) 

        DOUBLE PRECISION  :: Var, sgn 

         

      sgn=0.0 

 

 If (Var .lt. 0.0) then 

 sgn=-1.0 

 ENDIF 

 

 IF (Var .gt. 0.0) then 

 sgn=1.0 

 ENDIF 

 

  RETURN 

 END 

  

! Subroutine is a heavyside function 

      SUBROUTINE HH(Var,sgn) 

        DOUBLE PRECISION    :: Var, sgn 

         

      sgn=1/2 
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 If (Var .lt. 0.0) then 

 sgn=0 

 ENDIF 

 

 IF (Var .gt. 0.0) then 

 sgn=1.0 

 ENDIF 

 

  RETURN 

 END   
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