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Constitutive Modeling
of Multistage Creep Damage
in Isotropic and Transversely
Isotropic Alloys With Elastic
Damage
In the pressure vessel and piping and power industries, creep deformation has continued
to be an important design consideration. Directionally solidified components have
become commonplace. Creep deformation and damage is a common source of component
failure. A considerable effort has gone into the study and development of constitutive
models to account for such behavior. Creep deformation can be separated into three dis-
tinct regimes: primary, secondary, and tertiary. Most creep damage constitutive models
are designed to model only one or two of these regimes. In this paper, a multistage creep
damage constitutive model is developed and designed to model all three regimes of creep
for isotropic materials. A rupture and critical damage prediction method follows. This
constitutive model is then extended for transversely isotropic materials. In all cases, the
influence of creep damage on general elasticity (elastic damage) is included. Methods to
determine material constants from experimental data are detailed. Finally, the isotropic
material model is exercised on tough pitch copper tube and the anisotropic model on a
Ni-based superalloy. [DOI: 10.1115/1.4005946]

Keywords: continuum damage mechanics (CDM), Kachanov, Rabotnov, Norton power
law, McVetty time-hardening, coupled creep damage

1 Introduction

Creep deformation is a major failure mode in the pressure ves-
sel and piping industry. Creep deformation is defined in three dis-
tinct stages: primary, secondary, and tertiary, as depicted in
Fig. 1. During the primary creep regime, dislocations slip and
climb. Eventually, a saturation of dislocation density coupled with
recovery mechanics in balance form the secondary creep regime.
Finally, the tertiary creep regime is observed where grain bounda-
ries slide, voids form, and coalescence, leading to rupture.

Depending on the material composition, component, and serv-
ice condition, each regime can become a critical design require-
ment. The earliest efforts to model creep focused on the short
term creep strain observed during the primary creep regime [1].
Later efforts focused on the balanced behavior observed in the
secondary creep regime [2], and more modern efforts focus on the
end of life behavior observed during the tertiary creep regime
[3,4].

While many authors focus on individual creep regimes, only a
few authors have produced fully developed multistage models,
i.e., a model that predicts the deformation for all three creep
regimes [5]. Little work has been done for modeling anisotropic
materials [6,7]. To that end, a multistage creep damage constitu-
tive model is developed [8]. It is initially designed for isotropic
materials and then extended for transversely isotropic materials.
Rupture and critical damage prediction methods are included.
Elastic damage is implemented using relevant theories. Analytical
methods to determine the material constants associated with each
regime of creep are provided. Creep deformation data obtained

from literature are used to verify the applicability of the isotropic
and transversely isotropic formulations.

2 Consitutive Model

Two forms of the multistage creep damage constitutive model
with elastic damage are proposed. Initially, an isotropic form is
derived. Then, using the creep potential hypothesis, a tensorial
transversely isotropic model is developed [9].

2.1 Isotropic Material. The isotropic multistage creep dam-
age model comprised two strain rate equations separated into pri-
mary, _epr, and secondary, _esc, portions

_ecr ¼ _epr þ _esc (1)

The primary creep strain equation is a power law extension of the
McVetty time-hardening primary creep law [10] as follows

epr ¼ Apr �rnpr 1� e�qtð Þ (2)

where Apr, npr, and q are primary creep material properties, which
vary with temperature, and �r is the von Mises equivalent stress.
Further examination shows that the two terms in the equation are
the constant stress deformations of Voigt and Maxell elements,
respectively [11]. Differentiation furnishes the primary creep
strain rate as

_epr ¼ qApr �rnpr e�qt (3)

Variations of this equation exist for strain-hardening and com-
bined time-strain-hardening [11].
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To predict secondary and tertiary creep, the Kachanov–
Rabotnov coupled creep-damage model is employed [3,4]. The
underlying foundation of this model is the concept of effective
stress and damage

~r ¼ r
A0

Anet

¼ r

1� A0 � Anet

A0

� � ¼ r
1� xð Þ (4)

where physical material damage (approximated as net area reduc-
tion) is equivalent to an effective increase in the stress in the
undamaged continuum. The secondary creep strain rate and dam-
age evolution equations of the Kachanov–Rabotnov [3,4] model
are

_esc ¼ A
�r

1� x

� �n

(5)

_x ¼ M�rv

1� xð Þ/
; 0 � x < 1 (6)

where the creep strain rate is equivalent to Norton’s power law for
secondary creep [2] with the same A and n secondary creep con-
stants, �r is von Mises stress, and M, v, and / are tertiary creep
damage constants. Tertiary creep arises within the secondary
creep equation due to the coupling damage term.

Using the principle of strain equivalence, elastic damage can be
introduced in linear elasticity in the following nonrigorous form

1D

~E ¼ E0 1� xð Þ where 0 � x � 1

2D

~E ¼ E0 1� xð Þ
� ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xð Þ

p
G ¼ G0 E=E0ð Þ �=�0ð Þ

(7)

where E0 is Young’s modulus, �0 is Poisson’s ratio, and G0 is the
shear modulus [12]. Sidoroff has shown that an alternative more
robust form can be derived using the hypothesis of elastic energy
equivalence [13]. A number of authors have extended this for
three-dimensional anisotropic damage accumulation [14].

Finally, the total strain can be added together as follows (for a
1D model)

e ¼¼ r
~E
þ _eprDtþ _escDt (8)

where Dt represents the time increment.
A rupture prediction can be found by integration of the damage

evolution [Eq. (6)] as follows

1� xð Þ/dx ¼ Mrv
r dt

� 1� xð Þ/

1þ /

�����
x

xo

¼ Mrv
r

��t
to

(9)

where stress and temperature are constant. Assuming initial time,
to, and initial damage, xo, equal zero leads to

t ¼ 1� 1� xð Þ/þ1
h i

/þ 1ð ÞMrv
r

� ��1
(10)

x tð Þ ¼ 1� 1� /þ 1ð ÞMrv
r t

� � 1
/þ1 (11)

To predict rupture time, tr, the critical damage, xcr, must be given.
Critical damage is assumed to be some value less than unity.

2.2 Transversely Isotropic Material. To account for multi-
axial states of stress and orthotropic material behavior, a tensorial
formulation is desired.

Using the creep potential hypothesis, a general flow rule can be
developed using a potential function. For example, using the von
Mises yield criterion, the following flow rule is obtained

deij;cr ¼
3

2

de�

r�
dw
drij

(12)

where de� is the equivalent strain increment, r� is the equivalent
stress, and w rij

� 	
¼ r�2



3 is the von Mises plastic potential func-

tion [9].
A potential function for anisotropic materials is needed. The

Hill’s potential theory is an extension of the von Mises yield crite-
rion that takes into account anisotropic yield of materials and
takes the following form

rHill ¼
ffiffiffiffiffiffiffiffiffiffiffi
sTMs
p

s ¼ VEC rð Þ

M ¼

Gþ H �H �G 0 0 0

�H Fþ H �F 0 0 0

�G �F Fþ G 0 0 0

0 0 0 2N 0 0

0 0 0 0 2L 0

0 0 0 0 0 2M

2
666666664

3
777777775

(13)

where rHill is Hill’s equivalent stress, s is the 6� 1 vector form of
the Cauchy stress tensor, r and M is the Hill compliance tensor
[15] consisting of the F, G, H, L, M, and N unitless material con-
stants that can be obtained from creep tests [16]. It should be
noted that Hill’s equivalent stress reverts to von Mises when

F ¼ G ¼ H ¼ 1

2

L ¼ M ¼ N ¼ 3

2

(14)

Using Hill’s potential function and the creep potential hypothesis,
a general flow rule of the time-hardening primary creep law [Eq.
(3)] is formulated for transversely isotropic material in the follow-
ing form

_epr ¼ qanisoAanisoPrHillP
nanisoP e�qanisot MPs

rHillP

(15)

Fig. 1 Creep deformation
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where AanisoP, nanisoP, and qaniso are material properties, which
vary with temperature and MP is a unique Hill compliance tensors
such that the unique Hill’s equivalent stress rHillP exists.

This approach is repeated for the Kachanov–Rabotnov second-
ary creep strain rate [Eq. (5)], yielding the following

_ecr ¼ Aaniso ~rHill
naniso

Ms

rHill

(16)

where Aaniso and naniso are anisotropic material properties, which
vary with temperature, M is the Hill compliance tensor with six
constants, and ~rHill is the effective Hill’s equivalent stress, a func-
tion of the effective stress vector, ~s, which will be further exam-
ined later [17].

A problem becomes apparent when attempting to implement
the general flow rule in the damage evolution [Eq. (6)]. The use of
the variable current damage, x, in the denominator prevents the
simple approach used previously. Damage evolution must be split
into two submatrices as follows

b ¼ Manisor
vaniso

Hillb

Mbs

rHillb
k ¼ /aniso

Mks

rHillk
(17)

and combined in the following damage rate vector

_xi ¼
bij j

1� xið Þ kij j
(18)

where Maniso, vaniso, and /aniso are anisotropic tertiary creep dam-
age constants. The tensors Mb and Mk are unique Hill compliance
tensors of the same form as Eq. (13) such that unique Hill equiva-

lent stresses rHillb and rHillk may arise. The six constants required
for each tensor can be found from creep tests [16].

Rabotnov [18] proposed a generalized fourth order tensor that
relates the effective and Cauchy stress vectors

~s ¼ XðxÞ � s (19)

where X, the damage applied tensor, is a function of damage.
Extending the fundamental effective stress approach, [Eq. (4)],
the effective stress vector becomes

~s ¼ I� Dð Þ�1
s; D ¼ diag x1;x2;…;xnð Þ

D ¼

x1 0 0 0

0 x2 0 0

0 0 . .
. ..

.

0 0 � � � xn

2
66664

3
77775

(20)

where x is the damage vector and I and D represent a fourth rank
identity tensor and damage tensor, respectively.

General linear elasticity can be described by the Hooke’s law
as

s¼Ce

e¼Ss
(21)

where s and e are the Cauchy stress and strain tensors and C and S
are the stiffness and compliance tensors, respectively. Taking cues
from the principle of strain equivalence and the hypothesis of
elastic energy equivalence, the isotropic elastic damage, Eq. (7),
is extended for transversely isotropic materials into the form of

e1¼ ~Ss

e11

e22

e33

e12

e23

e31

2
666666664

3
777777775
¼

1

Ep 1�x1ð Þ � �p

Ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p � �zp

Ez

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x1

p 0 0 0

� �p

Ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x2

p 1

Ep 1�x2ð Þ � �zp

Ez

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x1

p 0 0 0

� �pz

Ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x3

p � �pz

Ep

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x1

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�x3

p 1

Ez 1�x3ð Þ 0 0 0

0 0 0
1þ �p

Ep 1�x4ð Þ 0 0

0 0 0 0
1

2Gzp 1�x5ð Þ 0

0 0 0 0 0
1

2Gzp 1�x6ð Þ

2
6666666666666666666664

3
7777777777777777777775

s11

s22

s33

s12

s23

s31

2
666666664

3
777777775

(22)

where the Young’s moduli, Poisson’s ratios, and shear modulus
are Ep, Ez, �p, �zp, �pz, and Gzp, respectively.

Finally, the total strain in vector form can be added together as
follows

ei ¼ ~Sijsj þ _epr
i Dtþ _esc

i Dt (23)

where Dt represents the time increment.
Similar to the isotropic approach, a rupture prediction can be

found by integration of the damage evolution [Eq. (18)] leading
to

tri
¼ 1� 1� xcrð Þ kij jþ1
h i

kij j þ 1ð Þ � bij j½ ��1

tr ¼ min tri
f g

xcri
tri
ð Þ ¼ 1� 1� kij j þ 1ð Þ � bij j � tri

½ �
1

kij jþ1

xr ¼ min xcri
f g

(24)

where the stress tensor and temperature are constant. The rupture
time and critical damage, tr and xr , are the minimum values
found in the respective vectors. Again, a value of critical damage
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is required to produce rupture predictions. It should be noted that
this rupture prediction method is based on limited data. A more
robust methodology would be based on a creep rupture loci that is
formed from uniaxial and multiaxial creep test data at various
orientations.

3 Determination of Creep Material Properties

There are ten material constants required to model elastic, pri-
mary, secondary, and tertiary creep for an isotropic material. The
number is increased to 30 when dealing with transversely iso-
tropic materials. In this section, the method to determine the iso-
tropic creep constants is formulated. Then, an analytical method
for transversely isotropic material properties is outlined.

3.1 Isotropic Material. The isotropic constitutive model
requires ten (when npr¼n is assumed, this reduces to nine) material
constants (Table 1). The creep material constants can be determined
from a single constant load and temperature creep experiment. The
constants are found in the following order: secondary creep, pri-
mary creep, and, finally, tertiary creep damage constants.

3.1.1 Secondary Creep. Secondary creep is characterized by
a balance between strain-hardening and recovery mechanics,
which leads to a steady strain rate. This steady rate _emin is
described as the minimum creep strain. The derivative (via finite
difference) of strain versus time can furnish a value of the mini-
mum strain rate.

Assuming that damage is zero and replacing _esc with the mini-
mum creep strain rate _emin, the Kachanov–Rabotnov strain rate
[Eq. (5)] equates to

_emin ¼ A�rn (25)

where A and n are the secondary creep coefficient and exponent,
respectively, and �r is the equivalent stress. The secondary creep
coefficient and exponent can be determined from uniaxial creep
tests by rearranging Eq. (25) into the following form

ln _emin ¼ ln Aþ n ln �r (26)

Plotting the natural log of the minimum creep strain versus the log
of equivalent stress, the requisite linear function can be found. A
variation of this method can be used to eliminate temperature-
dependence from the constants [19].

3.1.2 Primary Creep. The primary creep constants can be
determined using the reverse creep approach [10,11]. Assume the
following creep strain

ecr ¼ epr þ esc; t < t0 (27)

where t0 is the time at which the minimum creep strain rate, _emin

is reached. Rearranging Eq. (27) and applying the primary creep
strain law [Eq. (2)] produce

epr ¼ ecr � esc ¼ Apr �rnpr 1� e�qtð Þ; t < t0

where emax
pr ¼ ecr � _eminDt ¼ Apr �rnpr ; t ¼ t0

(28)

where Dt ¼ t0 � 0 is the time increment. The AP and nP primary
creep coefficient and exponent can be found from uniaxial creep
tests using the maximum primary creep strain, emax

pr in the follow-
ing form

ln emax
pr ¼ ln ecr � _eminDtð Þ ¼ ln Apr þ npr ln r (29)

Plotting the natural log of the maximum primary creep strain ver-
sus the natural log of equivalent stress, the requisite linear func-

tion can be found. Similarly, assume the following creep strain
rate

_ecr ¼ _epr þ _esc; t < t0 (30)

Rearranging Eq. (30), applying the primary creep strain rate [Eq.
(3)], and replacing _esc with the minimum creep strain rate _emin

produce

_epr ¼ _ecr � _emin ¼ qApr �rnpr e�qt; t < t0 (31)

where there are two methods to find the q constant. The above
equation can be directly implemented in a nonlinear equation
solver or implemented in regression analysis and solved for the q
constant.

3.1.3 Tertiary Creep Damage. The authors have proposed an
analytical method to determine the tertiary creep damage con-
stants for the Kachanov–Rabotnov constitutive model [20]. First,
the creep strain rate is found from experimental data using finite
differencing

_eiþ1
cr ¼

eiþ1
cr � ei

cr

tiþ1 � ti
(32)

Algebraic manipulation of the Kachanov–Rabotnov creep strain
rate [Eq. (5)] leads to the following

x _ecrð Þ ¼

_ecr

A

� �1=n

� r

_ecr

A

� �1=n
(33)

At time zero, the values of damage found will be high. This is
attributed to the high creep strain rate observed in the primary
creep regime. The Kachanov–Rabotnov constitutive model does
not account for the strain hardening of primary creep. The damage
data should be modified such that damage is set to zero until the
minimum creep strain rate is reached. Next, the rupture prediction
model [Eq. (10)] with time set to tr is algebraically manipulated to
find an M constraint as follows

M ¼ 1� 1� xcrð Þ/þ1

/þ 1ð Þ�rvtr
(34)

where the critical damage, xcr, is equal to the final value found
from finite differencing the experimental data, and tr is the rupture
time. This M constraint is introduced into the damage prediction
equation [Eq. (11)], furnishing

x tð Þ ¼ 1� t

tr
1� xrð Þ/þ1 � 1

h i
þ 1

� � 1
/þ1

(35)

where equivalent stress, �r, and both the M and v tertiary creep
damage constants are eliminated. The constants M and v are de-
pendent while / is independent. When using this approach, the
constant v should be chosen arbitrarily. The constant M should be
found using the constraint equation [Eq. (34)]. These steps pro-
duce a well-defined equation designed to satisfy experimental
conditions. Finally, using suitable regression analysis software,
the modified damage evolution equation [Eq. (35)] can be written
as a user-defined equation and the tertiary creep damage constants
are determined.

3.2 Transversely Isotropic Constants. The transversely
isotropic constitutive model requires 30 (when
nLP ¼ nL; nTP ¼ nT ; and n45P ¼ n45 are assumed this reduces to
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27) material constants (Table 1). The creep material constants can
be determined from three constant load and temperature creep
experiments: longitudinal-, transverse-, and 45 deg-grain orienta-
tions. The constants are found in the following order: secondary
creep, primary creep, and, finally, tertiary creep damage constants.

3.2.1 Secondary Creep. The anisotropic secondary creep con-
stants, Aaniso and naniso, and the Hill constants F, G, H, L, M, and N
found in Eq. (16) can be derived from three constant load and tem-
perature specimen [17]. The isotropic secondary creep constants A
and n are determined for each experiment [21] and are of the form

_emin
33 ¼ ALr

nL

_emin
33 ¼ ATrnT

_emin
33 ¼ A45 degr

n45 deg

(36)

where _emin
33 describes the minimum creep strain rate found on the

load axis x3 of each specimen.
To determine the anisotropic secondary creep constants, damage

evolution [Eq. (18)] is disabled by setting x and _x equal. The creep
strain rate equation [Eq. (16)] can then be rewritten as follows

ecr ¼ Aaniso

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTTMTTs

p naniso TMTTsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sTTMTTs
p

M ¼

Gþ H �H �G 0 0 0

�H Fþ H �F 0 0 0

�G �F Fþ G 0 0 0

0 0 0 2N 0 0

0 0 0 0 2L 0

0 0 0 0 0 2M

2
666666664

3
777777775

(37)

where T represents a material orientation transformation tensor
about the x1 axis. The desired constants can be found by rotating
the material orientation and/or state of stress.

For an L-oriented specimen, the longitudinal behavior is
aligned with the x3 normal while the transverse behavior is
observed on x1 and x2 normals. In the T tensor, a¼ 0 deg, leading
to a creep strain rate in the x3 normal of

_e33 ¼ ALr
nL ¼ Aaniso Gþ Fð Þ

nanisoþ1

2 rnaniso

33 (38)

where it is assumed that F¼G and G is chosen arbitrarily. Setting
G to 0.5 results in Aaniso and naniso equaling AL and nL,
respectively.

For an T-oriented specimen, a¼ 90 deg, thus the creep strain
rate in the x3 normal resolves into the following

_e33 ¼ ATrnT ¼ Aaniso Gþ Hð Þ
nanisoþ1

2 rnaniso

33 (39)

where rearranging Eq. (38) to solve for Aaniso and applying it into
Eq. (39) allow H to be found

H ¼ 2t1 � 1ð ÞG

t1 ¼
ATrnT

ALrnL

� �2= nanisoþ1ð Þ (40)

where t1 is a unitless anisotropy factor.
For a 45 deg-oriented specimen, a¼ 45 deg, thus, the creep

strain rate in the x3 normal resolves into the following

_e33 ¼ A45 degr
n45 deg ¼ Aaniso 0:25Gþ 0:25H þ 0:5Mð Þ

nanisoþ1

2 rnaniso

33

(41)

Using Eq. (39) to solve for Aaniso and applying it into Eq. (41)
allow M to be found

M ¼ G 4t2 � t1ð Þ

t2 ¼
A45 degrn45 deg

ALrnL

� �2= nanisoþ1ð Þ (42)

where, due to symmetry, it is assumed that L¼M, and t2 is a unit-
less anisotropy factor. To determine the final constant, N, a sym-
bolic plane stress rotation is applied. This approach uses the
concept of equivalent stress. Initially, the state of stress is set as

r ¼
r0 0 0

0 �r0 0

0 0 r33

2
4

3
5 (43)

where the Hill equivalent stress resolves to the following

rHill ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2G r33 þ r0ð Þ2 þ 4Hr0

2

q
(44)

In the case where the state of stress is rotated by 45 deg about the
x3 axis, pure shear stress develops in the x1–x2 plane of the form

r0 ¼ QrQT ¼
0 �r0 0

�r0 0 0

0 0 r33

2
4

3
5 (45)

where the Hill equivalent stress resolves to the following

rHill ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Gr2

33 þ 2Nr2
0

q
(46)

By equating Eqs. (44)–(46), the N constant can be determined.

N ¼ 4t1 � 1ð ÞG (47)

3.2.2 Primary Creep. The anisotropic primary creep constants
Aanisop, nanisop, and qaniso, and the Hill constants for the MP compli-
ance can similarly be derived from three constant load and tempera-
ture specimen [17]. First, isotropic primary creep constants AP, nP,
and q are determined from each experiment [21] and are of the form

_epr;33 ¼ qLALP �rnLP e�qLt

_epr;33 ¼ qTATP �rnTP e�qT t

_epr;33 ¼ q45A45P �rn45P e�q45t

(48)

where _epr;33 is the primary creep strain rate found on the load axis
x3 of each specimen.

The same approach used to determined the secondary creep
behavior furnishes the following

AanisoP ¼ ALP; nanisoP ¼ nLP; qaniso ¼ qL

t1 ¼
qTATP �rnTP e�qT t

qLALP �rnLP e�qLt

� �2= nanisoPþ1ð Þ

t2 ¼
q45A45P �rn45P e�q45t

qLALP �rnLP e�qLt

� �2= nanisoPþ1ð Þ

(49)

where the same relations for F, G, H, L, M, and N are used to find
the constants for MP through the replacement of t1 and t2.

3.2.3 Tertiary Creep Damage. The anisotropic tertiary creep
damage constants, Maniso, vaniso, and /aniso, and the Hill constants
for the Mb and Mk compliance can be similarly be derived from
three constant load and temperature specimen [17]. The isotropic
creep damage constants ML, MT, M45, vL,vT, v45, /L, /T, and /45

are determined using the isotropic approach.
As previously stated, the classic Kachanov–Rabotnov damage

behavior was separated into two vectorized damage constants
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tensors [Eq. (17)]. To determine constants for the Mb compliance
tensor the numerator of Kachanov–Rabotnov damage evolution
[Eq. (6)] was equated to the associated component of the b tensor.
In the case of the Mk compliance tensor, the /i constants were
directly related to the associated component of the k tensor. With
these changes, the same approach used to determined the second-
ary creep behavior furnished the following

Maniso ¼ ML; vaniso ¼ vL; /aniso ¼ /L

Mb Mk

t1 ¼
MTrvT

MLrvL

� �2= vanisoþ1ð Þ

t2 ¼
M45 degrv45 deg

MLrvL

� �2= nanisoþ1ð Þ

t1 ¼
/T

/L

� �2

t2 ¼
/45 deg

/L

� �2

(50)

where the same relations for F, G, H, L, M, and Nare used to find
the constants for Mb and Mk through the replacement of t1 and t2.

4 Results and Discussion

Both the isotropic and anisotropic constitutive models with
elastic damage were implemented into a general-purpose finite
element analysis (FEA) software, ANSYS. A USERMAT3D user-
programmable feature (UPF) is coded in FORTRAN. In USER-
MAT3D, the strain increment, strain, and stress vectors are pro-
vided. An updated stress vector must be output. An input deck
using the ANSYS parametric design language (APDL) has been cre-
ated. In the input deck, a single element is used to approximate a
uniaxial creep test. Appropriate displacement constraints are
applied. Constants load and temperature boundary conditions are
set. The input deck is flexible such that boundary conditions can
be parametrically exercised. It should be noted that this constitu-
tive model can be utilized in any appropriate FEM software
package.

4.1 Copper—Isotropic Model. Copper was selected as the
material to verify the isotropic constitutive model. Copper exhib-
its all three regimes of creep. Numerous studies on the creep
behavior of copper have been performed [22,23].

Literature has provided creep deformation curves for tough pitch
copper tube [23]. Creep deformation data are given in Table 2. The
Young’s modulus and Poisson ratio of tough pitch copper at 250 �C
are 103 GPa and 0.31, respectively. Using the approach outlined in
Sec. 3, the creep properties of copper were determined and are
given in Table 3. Observation shows that n ¼ v for each stress
level; therefore, the number of independent constants required
(including elasticity) is reduced to nine. Creep deformation and
damage evolution simulations of these experiments were performed
and are shown in Figs. 2 and 3.

Experimental data are represented by symbols and simulations
by lines. It is observed that the constitutive model accurately mod-
els the creep strain during each creep regime. The damage experi-
mental points were obtained through analytical method [Eq. (33)].
This analytical method creates erroneous values during the

Fig. 2 Creep deformation of tough pitch copper tube: (a) primary and secondary regimes
and (b) all regimes

Table 1 List of multistage model constants

Material model
Isotropic
constants

Transversely
isotropic constants

Elasticity E; � Ep;Ez; �p; �zp; �pz;Gzp

Primary creep Apr ; npr ; q ALP;ATP;A45P; nLP; nTP; n45P; qL; qT ; q45

Secondary creep A; n AL;AT ;A45; nL; nT ; n45

Tertiary creep
damage

M; v;/ ML;MT ;M45; vL; vT ; v45;/L;/T ;/45

Total 10 30

Table 2 Creep deformation data for copper [23]

Temp.,
T (�C)

Stress, r
(MPa)

Min
strain rate

(%/h)

Rupture
strain
(%)

Rupture
time
(h)

Approx.
critical
damage

250 40 2.3790� 10�5 7.826 1112 0.3794
250 50 9.0913� 10�5 7.069 442.7 0.4058
250 60 1.8710� 10�4 7.184 233.6 0.3361

Table 3 Creep properties of copper

Stress,
r (MPa)

Apr

(MPa�np) npr q (h�1)
A

(MPa�n h�1) n
M

(MPa�v h�1) v /

40 1.3245� 10�5 1.6759 1/3 2.6929� 10�11 3.8459 5.6077 3.8459 10.00
50 – – – – – 5.9831 – –
60 – – – – – 5.5799 – –
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primary creep regime that can be discounted. The damage evolu-
tion simulations closely match the experimental data once pass
the primary creep regime. Figure 3(b) demonstrates elastic dam-
age represented by reduction in the Young’s moduli.

4.2 DS Ni-Based Superalloy—Anisotropic Model. A DS
Ni-based superalloy was selected as the material to verify the ani-
sotropic constitutive model. Literature provides very few studies
on the creep behavior of DS Ni-based superalloys [19,24]. Creep
deformation data for a DS Ni-based superalloy are given in Table 4.

Fig. 3 Damage evolution of tough pitch copper tube: (a) damage and (b) Young’s moduli

Table 4 Creep deformation data for Ni-based DS superalloy
[24]

Orient,
a (deg)

Temp.,
T (�C)

Stress,
r (MPa)

Min
strain rate

(h�1)
Rupture

strain (%)
Rupture
time (h)

Critical
damage

0 870 250 2.4889� 10�5 4.464 901.4 0.375
45 870 250 1.4869� 10�5 2.530 955.9 0.500
90 870 250 1.5378� 10�5 3.376 890.9 0.478

Table 5 Creep properties of Ni-based DS superalloy

Orient,
a (deg)

Ap

(MPa�np) np

q
(h�1)

A
(MPa�n h�1) n

M
(MPa�v h�1) v U

0 2.8800� 10�10 3 1/8 1.5929� 10�12 3 1.5324� 10�11 3 2.889
45 1.4400� 10�10 3 1/7 9.5160� 10�13 3 9.7973� 10�12 3 5.771
90 1.6000� 10�10 3 1/6 9.8417� 10�13 3 2.0088� 10�11 3 2.100

Table 6 Anisotropic creep properties of Ni-based DS superalloy

Aanisop (MPa�np) nanisop qaniso, (h�1) Aaniso (MPa�n h�1) naniso Maniso (MPa�v h�1) vaniso /aniso

2.8800� 10�10 3 1/8 1.5929� 10�12 3 1.5324� 10�11 3 2.889

Fig. 4 Creep deformation of DS Ni-based superalloy: (a) primary and secondary regimes
and (b) all regimes
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The Young’s modulus and Poisson ratio are not given; therefore,
elastic damage will not be modeled. Using Sec. 3.2, the creep
properties were determined and are given in Tables 5 and 6. Ob-
servation shows that npr¼n¼v are equal for all orientations;
therefore, the number of independent constants required (includ-
ing elasticity) is reduced to 24.

Creep deformation and damage evolution simulations of these
experiments were performed and shown in Figs. 4 and 5. The con-
stitutive model accurately models both creep strain and damage
evolution.

5 Conclusion

In conclusion, an isotropic and anisotropic multistage creep
damage constitutive model has been developed. Taking cues from
the principle of strain equivalence and the hypothesis of elastic
energy equivalence, an elastic damage formulation has been
developed. A method to determine the required material proper-
ties has been outlined in detail. Creep deformation data for copper
and a DS Ni-based superalloy was obtained from literature and
the relevant constitutive models applied. Results show that the
constitutive models accurately model creep deformation and dam-
age evolution for both materials. Future work will focus on devel-
oping an appropriate critical damage criterion for anisotropic
materials such that failure is reached based on some critical dam-
age equivalence. Alternatively, a creep rupture loci could be
developed based on extensive mechanical testing.
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