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ABSTRACT 
The classic Kachanov-Rabotnov isotropic creep damage 

constitutive model has been used in many situations to predict 

the creep deformation of high temperature components. 

Typically, the secondary creep behavior is determined by 

analytical methods; however, the tertiary creep damage 

constants are found using a mixture of trial and error and 

numerical optimization. These methods require substantial 

hand calculations and computational time to determine the 

tertiary creep damage constants. In this paper, a novel 

analytical method is developed to determine the tertiary creep 

damage constants. Comparisons between numerical optimized 

constants and those found using the analytical method are 

given for a Ni-based superalloy. Creep deformation, damage 

evolution, and rupture time predictions are compared. A 

detailed discussion of the analytical method is given.  

 

KEYWORDS: Ni-based Superalloy, Creep Rupture, Damage 
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1. INTRODUCTION 
Nickel-base superalloys are often used in the aerospace, 

power generation, and pressure vessel and piping industries 

where operating temperatures and loads necessitate materials 

with suitable creep resistance. Under some conditions the 

creep behavior of nickel-base superalloys is dominated by the 

tertiary creep regime, where primary and secondary regimes 

are subordinate [1]. 

Creep deformation is defined in three distinct stages: 

primary, secondary, and tertiary as depicted in Figure 1. Creep 

is sensitive to stress and temperature. Diffusion flow, 

dislocation slip and climb, and grain boundary sliding are all 

basic mechanisms of creep. Diffusion flow occurs under low 

stress and high temperature where atomic diffusion and the 

applied load lead to elongated grains. Dislocation slip and 

climb is the fundamental mechanism for primary and 

secondary creep stages where initially strain hardening occurs 

until a saturation of dislocation density together with high 

temperature provides a balancing recovery mechanic. Grain 

boundary sliding is the fundamental mechanism for tertiary 

creep where small cavities coalesce into large voids causing a 

non-linear reduction in creep strength ultimately leading to 

rupture [2,3]. 

Early work focused on modeling the minimum creep rate 

and predicting creep rupture through Norton‟s power law and 

either the Larson-Miller Parameter or Monkman-Grant 

method respectively [4-6]. In all three, the required material 

constants can be analytical determined from experimental 

data; however, the Norton power law is not appropriate for the 

creep behavior of nickel-base superalloys as it does not model 

the tertiary creep regime [7]. 

Thus Kachanov [8] and Rabotnov [9] developed 

constitutive equations which model both secondary and 

tertiary creep. The Kachanov-Rabotnov equations have been 

found to accurately model the creep behavior of a number of 

nickel-base alloys; however, an approach to determine the 

material constants analytically from experimental data has yet 

to be developed. Researchers often resort to computationally 

expensive numerical optimization or dexterous manual 

iteration to determine appropriate material constants [10]. This 

issue has severely limited the application of the Kachanov-

Rabotnov equations. 

A novel method has been developed to analytical 

determine the Kachanov-Rabotnov material constants from 

experimental data. Previous research has provided numerical 

optimized material constants for DS GTD-111 [10]. A 

comparison between these constants and those developed by 

the new approach is provided. The difference between the  
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Figure 1 – Creep Deformation 

 

creep deformation, damage evolution, rupture time prediction, 

and critical damage prediction produced using the two 

methods is discussed. 

2. CONSITUTIVE MODEL 
The classical approach to modeling the secondary creep 

behavior for materials is the Norton power law for secondary 

creep [4] 
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where A and n are the secondary creep constants, and   is an 

equivalent stress. The Norton power law is sometimes referred 

to as the Norton-Bailey law. The secondary creep constants A 

and n exhibit temperature-dependence. Stress provides a 

substantial contribution to the creep strain rate as the n 

secondary creep constant is an exponent of stress. The A and n 

constants can be determined by setting Norton‟s power law for 

secondary creep equal to the minimum creep strain rate. Dorn 

[11] suggests that temperature contributions can be accounted 

for by replacing the A constant with an Arrhenius equation 
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where B is the pre-exponential factor in units MPa
-1

 hr
-1

, Qcr is 

the apparent activation energy for creep deformation in units J 

mol
-1

, R is the universal gas constant 8.314 J mol
-1 

K, and T is 

temperature in units Kelvin. Introducing Eq. (1) into Eq. (2) 

leads to 
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Using this equation, stress and temperature contributions to 

the strain rate are obtained. The secondary creep constants can 

be determined from uniaxial creep tests by rearranged Eq. (3) 

into the following form  

 
minln ln ln crQ

B n
RT

     (4) 

where the creep strain rate cr  is replaced with the minimum 

creep strain rate min . Plotting the log of the minimum creep 

strain versus 1/T, the apparent activation energy of creep, Qcr, 

can be determined as the slope. Plotting the log of the 

minimum creep strain versus von Mises equivalent stress, the 

secondary creep constant, n, is the slope. 

Creep damage takes the form of defects such as 

microcracks, cavities, voids, etc. within a material. The 

tertiary creep regime is where most creep damage occurs. 

Microstructurally, grain boundary sliding occurs where small 

cavities coalesce into large voids causing a non-linear 

reduction in creep strength ultimately leading to an 

accelerating creep strain rate and rupture [2]. Under high 

stress and temperature conditions the tertiary creep regime is 

dominant; therefore, a damage model is necessary. Kachanov 

[8] and Rabotnov [9] proposed interfacing the Continuum 

Damage Mechanics (CDM) framework with the proven 

Norton power law for secondary creep. In CDM, damage, ω, 

is assumed to be homogenous and irreversible. The Kachanov-

Rabotnov [9] coupled creep-damage constitutive equations are 

as follows 
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where A and n are the Norton power law constants,  is von 

Mises stress, and M, χ, and ϕ are tertiary creep damage 

constants. The Norton power law constants A and n can be 

easily determined using the analytical approach discussed 

previously. For the tertiary creep damage constants M, χ, and ϕ 

there is no analytical method; therefore, numerical 

optimization and/or manual iteration is implemented. There 

are many forms of the Kachanov-Rabotnov constitutive model 

found in literature [12,13,14]. It has been used for a number of 

materials [15]. 

A useful property of the Kachanov-Rabotnov constitutive 

equations is rupture can be predicted by integration of the 

damage evolution equation [Eq. (6)] as follows 
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(7) 

under the conditions that stress and temperature be constant. 

Assuming initial time, to, and initial damage, ωo, equal 0.0, 

simplification leads to rupture time and damage predictions 
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To predict rupture time, tr, the critical damage, ωcr, must be 

known. It is acceptable to assume that critical damage is equal 

to unity; however, MacLachlan and Knowles [16] suggest that 

critical damage is a function of the ultimate tensile strength 

t

ε
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Minimum creep rate

ε 0

Rupture

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 08/05/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 3  Copyright © 2010 by ASME 

(UTS) and net/effective stress, 
net . Rupture is reached when 

the net/effective stress, is equivalent to the UTS and takes the 

form 
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net f

UTS

UTS

 
 




  


 (10) 

In this paper, a 
cr of unity is assumed. 

The Kachanov-Rabotnov constitutive model [Eqs. (5) and 

(6)] was implemented in ANSYS a general-purpose finite 

element analysis (FEA) software. The equations were written 

into a FORTRAN subroutine formatted as an ANSYS user-

programmable feature (UPF). The Damage variable, , was 

defined as an internal state variable and initialized at 0.0. To 

prevent a singularity critical damage, cr was set to 0.90. 

Using the ANSYS parametric design language (APDL), 

an input deck was written which simulates a uniaxial creep 

experiment. A single 8-noded block element was used. 

Appropriate loads, temperatures, and displacements are 

applied to simulate a uniaxial specimen. Simulated creep 

deformation,  
cr

t , was recorded to a data file and 

subsequently compared with experiments. 

3. NUMERICAL OPTIMIZATION 
Numerical optimization is the most common method used 

to find the tertiary creep damage constants. The authors 

previously developed an automated optimization routine, 

called uSHARP[17], to determine M, χ, and ϕ tertiary creep 

damage constants. Boundary conditions were matched to those 

of experiments and simulations were carried out. The 

simulated creep deformations were then compared with that of 

experiments. ANSYS simulations were repeated with the 

tertiary creep damage constants being iterative optimized until 

the least squares value between simulate and experimental 

creep deformation was minimized. The least squares objective 

function was based on creep strain, and is presented as 
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where εFEM,i and εEXP,i are the strain values obtained by FEA 

simulation and experimental testing, respectively. The 

parameter m is the total number of data points in a simulation 

at a single iteration. The number of data points in the FEA and 

experimental data always differed, thus an automated 

smoothing routine was developed to unify the time basis of the 

data. 

To optimize the tertiary creep damage constants the 

simulated annealing multimodal (SAM) algorithm was 

implemented in the uSHARP routine [18,19]. The SAM 

algorithm is a global optimizer capable of both uphill and 

downhill moves; therefore, it is capable of climbing out of 

local minima. 

The uSHARP routine executes ANSYS at each iteration; 

ANSYS runs the input deck and runs a single simulation; 

uSHARP evaluates the objective function, then issues the 

SAM algorithm and updates the guess for the material 

constants. This process is repeated until the difference 

between least square values meets termination criteria. 

To reduce solve time, a suitable solve space needed to be 

resolved. The highest and lowest temperature experiments 

were optimized first. Using these experiments the target range 

for tertiary creep damage constants was set as 0.0 ≤ M ≤ 700, 

1.7 ≤ χ ≤ 2.3, and 0.0 ≤ ϕ ≤ 60. To produce initial guess 

constants, the rupture prediction model [Eq. (8)], was 

compared with experimental data. Manual iteration was 

performed until the initial guess constants produced a rupture 

time equal to the experiment. 

The Kachanov-Rabotnov constitutive equations do not 

account for primary creep. Primary creep strain was 

approximated from experimental data and added to the 

simulate creep deformation within uSHARP. 

4. ANALYTICAL METHOD 
A novel analytical method has been developed to 

determine the tertiary creep damage constants for the 

Kachanov-Rabotnov constitutive model. Examining the 

constitutive model, it is observed that while the constants for 

the creep strain rate equation [Eq. (5)] can be found directly 

from experimental data (using the minimum creep strain rate 

as previously mentioned), the constants for the damage 

evolution equation [Eq. (6)] cannot. The damage evolution 

equation is a function of damage; therefore, a method is 

needed to find damage from creep deformation. First the creep 

strain rate is found from experimental data using differencing 
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Next using algebraic manipulation of the creep strain rate [Eq. 

(5)], the damage, , at each time step can be determined 
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Depending on the accuracy of the selected A and n constants 

(determined from the minimum creep strain rate) and quantity 

and quality of time steps available, the finite differenced 

damage data may exhibit some non-uniformity. At time zero, 

the values of damage found will be high. This is attributed to 

the high creep strain rate observed in the primary creep 

regime. The Kachanov-Rabotnov constitutive model does not 

account for the strain hardening of primary creep. To fix this 

issue, the damage data should be modified such that damage is 

set to zero until the minimum creep strain rate is reached. 

With the damage at each time step known, the damage rate 

can be easily derived using differencing 
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With both the damage and damage rate found, enough 

information is known to model damage evolution.  
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Figure 2 – Analytical Method 

 

Using suitable regression analysis software the damage 

evolution equation [ Eq. (6)] can be written as a user-defined 

equation and the tertiary creep damage constants be 

determined. 

When the damage evolution equation is parametrically 

exercised, it is observed that three tertiary creep damage 

constants far exceeds the number necessary to accurately fit 

data. This excess number of constants reduces the individual 

dependency resulting in an ill-defined equation. Further 

simplification can be done to reduce the number of 

independent constants. To that end, the rupture prediction 

model is algebraic manipulated to find an M constraint as 

follows 
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where the critical damage, 
cr  is equal to the final value 

found analytical from the experimental data, and tr is the 

rupture time. This M constraint is introduced into the damage 

evolution equation [Eq. (6)] furnishing 
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(16) 

where equivalent stress, , and both the M and χ tertiary creep 

damage constants are eliminated. Comparing the updated 

damage evolution equation to that of Kachanov-Rabotnov, it is 

determined that the constants M and χ are dependent while ϕ is 

independent. When using the Kachanov-Rabotnov approach, 

the constant χ should be chosen arbitrarily. The constant M 

should be found using the constraint equation [Eq. (15)]. 

These steps produce a well-defined equation designed to 

satisfy experimental conditions. 

Difficultly arises when dealing with a set of experiments 

conducted at different stress levels with a set temperature. 

Using the Kachanov-Rabotnov damage evolution equation 

[Eq. (6)] without the new constraint, the problem expands to a 

3D problem  ,  
 

where stress influence damage 

behavior. When considering the new constraints within the 

damage evolution model, [Eq. (16)], the problem expands to a 

4D problem  , ,cr rt  
 
where critical damage and rupture  

VBA Program

Use M constraint to find M constant

Choose Arbitrary χ constant

Fit Damage evolution (Eq. 16) to find ϕ

Plot Damage Rate vs Damage

Find Damage Rate vs time (Eq. 14)

Find Damage vs time (Eq. 13)

Find Strain Rate vs time (Eq. 12)

Table 1 – Creep deformation and rupture data for DS GTD-111 [20] 

 

Orientation Primary Strain, εpr Temperature, T Stress, σ Rupture Time, tr Critical Damage, ωcr Rupture Strain, εr 

   

(C) (MPa) (hr) 

  1 L 1.27E-03 649 896 466 0.161 0.049 

2 L 3.04E-03 760 408 5624 0.314 0.150 

3 L 2.44E-03 760 613 244 0.324 0.132 

4 T 6.00E-03 760 517 376 0.436 0.069 

5 T 3.60E-03 760 613 43 0.217 0.018 

6 L 2.60E-03 816 455 322 0.445 0.215 

7 T 2.12E-03 816 455 127 0.292 0.046 

8 L NA 871 241 2149 0.603 0.188 

9 L 8.50E-04 871 289 672 0.461 0.117 

10 T 1.92E-04 871 241 980 0.601 0.076 

11 T 2.03E-03 871 289 635 0.242 0.051 

12 L 6.55E-04 940 244 69 0.352 0.141 

13 T 7.07E-04 940 244 63 0.454 0.038 

14 L 1.32E-04 982 124 821 0.571 0.178 

15 L NA 982 145 302 0.507 0.091 

16 45° 5.00E-03 871 289 455 0.358 0.060 
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Table 2 - Secondary creep constants of the Norton power law 

for DS GTD-111 [7] 

Temperature n A 

(°C) L T L T 

649 8.500 
 

5.909E-30 
 

760 7.591 10.890 1.393E-25 8.090E-35 

816 7.000 9.650 2.477E-23 3.572E-30 

871 6.507 6.516 5.764E-21 3.480E-21 

940 6.000 4.850 3.507E-18 4.210E-16 

982 5.547 
 

8.290E-17 
 

 

time influence damage behavior. In all cases, advanced 

regression analysis software is required. Temperature-

dependence of the constants must be introduced post 

regression fitting, using any suitable equation which matches 

the experimental trend. Ideally, the Arrhenius Eq. (2), would 

be used. In this paper, the 3D and 4D problem is left for later 

study. In this study, the constants experiments at the same  

temperature with different stress levels are determined 

independently. 

To implement the analytical method a Microsoft Excel 

program was written using the visual basic for applications 

(VBA) programming language. The stress, temperature, 

rupture time, estimated primary creep strain, and secondary 

creep constants A and n as well as a text file of the creep 

deformation are input. The program then automatically 

produces damage and damage rate data using the previously 

outlined method. Using suitable regression analysis software 

the tertiary creep damage constants are determined. An 

illustration of this process is provided in Figure 2. 

5. RESULTS & DISCUSSION 
The subject material chosen is DS GTD-111, a 

directionally solidified dual-phase γ-γ' Ni-based superalloy. 

The material is transversely-isotropic with a columnar grain in 

the longitudinal (L) direction and isotropy found on the 

transverse (T) plane. Creep deformation experiments were 

conducted on L and T-oriented specimen of DS GTD-111 

according to an ASTM standard E-139 [21] for a range of 

temperature and stress conditions. A list of the experiments 

conducted with properties is provided in Table 1. 

Taking the creep deformation data from experiments, 

differencing was used to determine the creep strain rate. From 

this data, the minimum creep strain rate was found for each 

experiment and secondary creep constants determined. The 

secondary creep constants are listed in Table 2.  

 

5.1. Numerical Optimization 
A number of issues arose when implementing numerical 

optimization for DS GTD-111. Long solve times were a major 

problem. The average number of iterations to convergence 

was 8390 with a minimum and maximum value of 1539 and 

18585, respectively. To reduce solve-time, the maximum 

time-step size allowable was increased to a factor of 10rt  or 

greater. This resulted in solve-time per iteration varying 

between 15-60 seconds. Generally, the simulated annealing 

routine performed well but in some cases it was unable to find 

suitable constants. In these experiments, strain softening 

beyond the minimum creep rate was minimal. As a 

consequence, the creep damage parameters could not properly 

be optimized by uSHARP. Instead, the values for the material 

constants were obtained manually until a suitable set of 

constants could be realized. 

 Table 3 – Optimized [10] and Analytically determine tertiary creep damage constants for DS GTD-111 

 

Temperature, T Stress, σ Optimized FOM Analytical FOM 

(C) (MPa) M  (MPa
-χ

hr
-1

) χ ϕ (%) M  (MPa
-χ

hr
-1

) χ ϕ (%) 

L 649 896 10.000 1.880 55.000 32.5 0.010 3.000 27.250 0.5 

L 760 408 20.847 1.900 8.500 4.8 0.026 3.000 8.641 3.8 

L 760 613 19.784 2.231 13.261 26.8 0.171 3.000 9.210 3.7 

T 760 517 36.161 2.106 14.810 26.9 0.183 3.000 9.500 1.3 

T 760 613 51.801 2.203 39.931 34.6 0.453 3.000 21.400 1.2 

L 816 455 64.127 2.257 3.792 10.9 0.647 3.000 3.800 4.6 

T 816 455 167.590 1.981 28.224 30.1 0.550 3.000 14.110 1.0 

L 871 241 96.015 2.022 7.161 25.0 0.474 3.000 6.000 1.0 

L 871 289 131.010 2.054 9.698 19.4 0.682 3.000 8.000 1.9 

T 871 241 263.010 2.098 2.296 17.2 1.210 3.000 5.000 0.6 

T 871 289 345.840 1.919 6.823 6.9 0.754 3.000 6.628 5.4 

L 940 244 579.120 2.310 7.069 6.0 15.267 3.000 5.100 2.7 

T 940 244 600.000 2.290 7.069 20.5 10.709 3.000 9.261 2.5 

L 982 124 655.930 2.221 3.278 4.5 14.529 3.000 3.278 2.4 

L 982 145 665.200 2.288 5.126 17.1 19.496 3.000 4.467 3.5 

45° 871 289 53.296 2.156 20.933 28.6 0.623 3.000 13.590 0.7 
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5.2. Analytical Method 
A number of issues arose when implementing the 

analytical method for DS GTD-111. The creep deformation 

data in some cases, was not recorded with enough significant 

figures such that different strains where recorded repeatedly 

for the same hour. This resulted in Not a Number (NaN) 

values of creep strain rate, damage, and damage rate. To 

alleviate this problem the data had to be manually cleaned. 

The regression software produced the best fit for damage 

evolution but that did not always results in a best fit for creep 

deformation. In tests 4, 7, and 10 a significant portion of life 

was spent in the secondary creep regime. It was difficult to fit 

the constitutive model to these data because the damage 

evolution equation [Eq. (6)] does not include a time-hardening 

term. For most experiments, limited manual adjustment of the 

damage evolution curve was conducted to develop slightly 

improved creep deformation results.  

 

5.3. Discussion 
Both numerical optimization and the analytical method 

were implemented and tertiary creep damage constants were 

found as listed in Table 3. A figure of merit (FOM) was 

developed to judge the goodness of fit of the constants. The 

FOM is the average percent error of absolute rupture time 

prediction, rupture strain FEM, and critical damage prediction 

compared to experimental data and is as follows 
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 (17) 

The FOM results can be found in Table 3. The analytical 

method produced much lower FOMs compared to numerical 

optimization. This is attributed to the highly inaccurate 

predicts of critical damage the numerical optimized constants 

produced. The analytical method directly includes 

experimental critical damage in the M constraint; therefore it 

always produced an accurate critical damage prediction. Using 

numerical optimization the average error of the rupture time 

prediction, rupture strain FEM, and critical damage was 

9.08%, 5.09%, and 44.88% respectively. Using the analytical 

method the average errors are 2.50%, 2.32%, and 0.11% 

respectively. This clearly shows that the analytical method 

produces a more accurate set of constants.  

Creep deformation and damage evolution curves for DS 

GTD-111 at 760 and 871°C are provided in Figure 3. The 

numerical optimized curves (OPT) are solid lines and the 

analytical method (ANY) curves are dotted lines.  
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Figure 3 - Creep deformation and damage evolution fits of L (open) and T (filled) DS GTD-111 at 760 and 871°C 
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It is observed that in most cases the difference between 

the results achieved with both models is negligible. The 

experiments at 517MPa 760°C and 241MPa 871°C show that 

the analytical method does not always produce a best fit to 

creep deformation. The 241MPa 871°C experiment 

demonstrates that a better damage evolution fit does not 

always produce a better creep deformation fit. Overall, these 

curves demonstrate that the analytical approach can produce 

highly accurate fits to creep deformation data from 

experiments using a more straightforward approach compared 

to numerical optimization. 

A depiction of rupture time prediction, rupture strain 

FEM, and critical damage prediction compared to 

experimental data is provided in Figure 4. It is observed that in 

terms of rupture time predictions and rupture strain FEM both 

numerical optimization and the analytical method preformed 

well. The numerical optimized critical damage predicts do not 

follow the experimental results. 

Because larger time-steps where used during 

optimization, when reducing the maximum time-step size 

using the numerical optimized constants, the creep 

deformation can diverge. This is due to the fact that the 

constants are numerically optimized to a discrete time-step. 

The advantage of the analytical method is that the constants 

are not dependent on time-step size. The constants are a 

product of fitting damage evolution analytically and therefore 

are always numerically stable. Decreasing the time-step when 

using the analytical constants increases the accuracy of the 

creep deformation fits. In this study, the maximum time-step 

size used for the analytical method was 1hr. 

6. CONCLUSION 
The analytical method has been found to produce better 

creep deformation fits, rupture time predictions, rupture strain 

FEM, and critical damage predictions when compared to 

numerical optimization. Introducing the M constraint to the 

Kachanov-Rabotnov damage evolution equation has resulted 

in a more well-defined equation founded on experimental 

conditions. The analytical method proves to be a way that 

tertiary creep damage constants can be quickly determined 

without the need for extensive numerically or manually 

iterative processes. Numerically stable constants can be 

determined analytically and rapidly. Future work will focus on 

dealing with the difficultly that arises when dealing with a set 

of experiments conducted at different stress levels with a set 

temperature. 
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