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ABSTRACT 
Anisotropic creep-damage modeling has become an 

increasingly important prediction technique in both the 

aerospace and industrial gas turbine industries. The 

introduction of tensorial damage mechanics formulations in 

modeling tertiary creep behavior has lead to improved 

predictions of the creep strain that develops due to anisotropic 

grain structures and the induced anisotropy that occurs with 

intergranular damage. A number of isotropic creep-damage 

rupture time prediction models have been developed in 

literature; however, few rupture time prediction models for 

tensorial anisotropic creep-damage are available. In this paper, 

a rupture time model for anisotropic creep-damage of 

transversely isotropic materials is derived. Comparison with 

the Larson-Miller parameter, Monkman-Grant relation, and 

Kachanov-Rabotnov continuum damage mechanics (CDM) 

approach shows improved creep rupture time predictions for 

multiaxial conditions and material rotations. A parametric 

study of the rupture time predicted under various states of 

equivalent stress and material orientations is performed to 

demonstrate the robustness of the new formulation. 

1. INTRODUCTION 
Gas turbine components undergo a myriad of thermal and 

mechanical loads and typically exhibit creep deformation.  

This plastic deformation reduces the operational lifetime of 

components and must be accounted for. Components of 

particular importance are gas turbine blades. Turbine blades 

experience high temperatures, fuel and air contamination (in 

marine turbine chlorine due to salt water), and foreign object 

damage (FOD) within a corrosive environment. High stress 

due to centrifugal forces, dynamic flutter and vibrations, 

flexural stresses due to combustion gases interfacing with 

blade surface area, and thermal gradient induced thermal 

stresses impart a complex state of stress on gas turbine blades 

[1]. Stress concentrations near the blade root are the frequent 

location of crack initiation. Fatigue, creep damage and the 

interactions of both are the principal cause of microstructural 

damage leading to eventual failure [2]. In the case of IGT 

turbine blades where the cycle duration and maintenance 

intervals can in the thousands of hours, DS materials have 

been implemented to minimize intergranular (brittle) creep 

cracking by alignment of longitudinal grains (L) with the first 

principal stress direction [3]. However, the regulation of thrust 

to produce lower or higher power output and the regular 

fluctuations in combustion exit exhaust velocity coupled with 

the existence of inherit vibration issues can result in a first 

principal stress direction not aligned with the enhanced (L) 

material orientation. 

Creep rupture prediction approaches such as Monkman-

Grant and the Larson-Miller Parameter are useful, but are 

based strictly around uniaxial tensile tests. The rupture time of 

a specimen under a multiaxial state of stress cannot be 

accurately predicted. The orientation-dependent creep damage 

behavior of transversely-isotropic materials can be determined 

by machining a specimen at the desire orientation and 

implementing the creep rupture prediction approach. None of 

the approaches allow for both multiaxial states of stress and 

rupture prediction at arbitrary material orientations. 

Isotropic creep-damage formulations are based around an 

equivalent stress such as von Mises, or Hill’s potential which 

includes all stress contributions. Unfortunately, these 

isotropic-scalar formulations are unable to model the 

orientation-dependence of transversely-isotropic materials. 
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Creep-damage constitutive modeling efforts for creep 

deformation of anisotropic materials have been limited. Few 

models have been developed, optimized, and actually 

compared with creep test data. In the case of transversely-

isotropic turbine blade materials with induced anisotropic 

damage, no models currently exist. 

A number of creep rupture prediction models are 

implemented in industry; however, no models have been 

developed that are capable of predicting the creep rupture time 

under complex states of stress and arbitrarily materials 

rotations of a transversely-isotropic material. 

In this paper, the Larson-Miller, Monkman-Grant, and 

Kachanov-Rabotnov rupture time prediction approaches are 

compared with a new rupture time prediction approach for the 

transversely-isotropic subject material DS GTD-111. 

2. CREEP RUPTURE TIME MODELS 

2.1. Larson-Miller Parameter 
One of the earliest creep rupture prediction approaches 

was produced by Larson and Miller [4]. This approach is 

based on a time-temperature relationship as follows 

  1log rLMP T t K   (1) 

where T is temperature in kelvin, tr is rupture time, K1 is a 

constant, and LMP is the Larson-Miller parameter. For metals, 

K1 is typically set to 20. The LMP parameter can be 

determined from stress and the creep strain rate [5]. The 

Larson-Miller method requires a suitable set of creep 

deformation tests to be performed up to rupture.  A plot of 

stress versus LMP is created and the K1 constant is adjusted 

until the LMP parameter is described as a logarithm of stress. 

Once the K1 constant has been determined, rupture time 

predictions can be produced by using the known T and LMP 

from the applied boundary conditions. A regression equation 

for LMP based on the stress versus LMP plot can be easily 

created. Rupture predictions can then be produced by 

rearranged the Larson-Miller relation into the following form 

 1

10

LMP T K

T
rt

 



 

(2) 

This method has been used consistently with Ni-based 

superalloys [6]. Ibanez and colleagues produced LMP 

predictions for DS GTD-111 [7]. It should be noted that 

rupture predictions should be made within the upper and lower 

bound of stress and temperature found in available creep 

rupture experiments. The material may exhibit a behavior that 

is not captured within available experiments. 

 

2.2. Monkman-Grant 
The classical approach to modeling the secondary creep 

behavior for materials is the Norton power law for secondary 

creep [8] 

 
cr n

cr

d

dt
A


    (3) 

where A and n are the secondary creep constants, and   is an 

equivalent stress. Typical the von Mises equivalent stress 

which is both isotropic and pressure insensitive is used of the 

form 

 3H kk   

ij ij H S σ  

3

2
vm ij ij  S S  

(4) 

where H  is the hydrostatic (mean) stress and S is the 

deviatoric stress tensor. For anisotropic materials, the well 

known Hill’s anisotropic equivalent stress is implemented of 

the form 

 
Hill

T  s Ms
 

 VECs σ
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  
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 
 
  

M  

(5) 

where s is the vector form of the Cauchy stress tensor, σ , and 

M is the Hill compliance tensor [9] consisting of the F, G, H, 

L, M, and N unitless material constants that can be obtained 

from creep tests [10]. Hill’s equivalent stress reverts to von 

Mises when  

 1

2
F G H  

 

3

2
L M N  

 

(6) 

The Norton power law is sometimes referred to as the Norton-

Bailey law. The secondary creep constants A and n exhibit 

temperature-dependence. Stress provides a substantial 

contribution to the creep strain rate as the n secondary creep 

constant is an exponent of stress.  

Dorn [11] suggested that temperature contributions can be 

accounted for by replacing the A constant with an Arrhenius 

equation 

 
expcr crn

cr

d Q
B

dt RT


 

 
   

 
 (7) 

where B is the pre-exponential factor in units MPa
-1

 hr
-1

, Qcr is 

the apparent activation energy for creep deformation in units J 

mol
-1

, R is the universal gas constant 8.314 J mol
-1 

K, and T is 
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temperature in units Kelvin. Using this equation, stress and 

temperature contributions to the strain rate are obtained. The 

secondary creep constants can be determined from uniaxial 

creep tests by rearranged Eq. (7) into the following form 

 
minln ln ln crQ

B n
RT

 


    (8) 

where the creep strain rate cr  is replaced with the minimum 

creep strain rate min . Plotting the log of the minimum creep 

strain versus 1/T, the apparent activation energy of creep, Qcr, 

can be determined as the slope. Plotting the log of the 

minimum creep strain versus von Mises equivalent stress, the 

secondary creep constant, n, can be determined as the slope.  

Monkman and Grant [12] observed that creep rupture can 

be predicted for many alloy systems using the following 

expression 

    minlog logr MGt m k 

 

(9) 

where min  is the minimum creep strain rate, rt  is the creep 

rupture time, m is a constant, and kMG is the referred to as the 

Monkman-Grant constant. For some materials m is assumed 

equal to unity furnishes a simplified form of Eq. (9) expressed 

as 

 
min r MGt k 

 

(10) 

Previous studies show that the Monkman-Grant relationship 

produces accurate rupture time predictions for various DS Ni-

based superalloys [7,13]. This formulation can be further 

extended by replacing the minimum creep strain rate in the 

Monkman-Grant expression Eq. (9) with the temperature-

dependent Norton power law for secondary creep Eq. (7) thus 

both temperature and stress are related to creep rupture time 

by the Monkman-Grant constant. The Monkman-Grant 

method requires a suitable set of creep deformation tests to be 

performed up to rupture.  Using the known set of minimum 

creep strain rate, min and rupture time, tr optimization 

provides suitable m and KMG constants.  

Rupture predictions can then be produced by rearranged 

the Monkman-Grant relation into the following form 

 

min

10 MGk

r m
t




 
(11) 

Again, it should be noted that rupture predictions should be 

made within the upper and lower bound of stress and 

temperature found in available creep rupture experiments. 

 

2.3. Kachanov-Rabotnov Isotropic CDM Approach 
To account for the tertiary creep damage behavior of 

materials, Kachanov [14] and Rabotnov [15] developed a 

Continuum Damage Mechanics (CDM) based isotropic creep-

damage formulation. Damage is an all inclusive non-

recoverable accumulation that exhibits the same dependences 

as creep deformation: material behavior (i.e., creep constants), 

temperature, time, and stress. Generally, damage is considered 

to be in continuum, (i.e., homogenous thought a body) thereby 

the expression continuum damage mechanics (CDM) is used.  

 
Figure 1 - Schematic demonstrating the concept of a physical 

and effective space 

The concept of scalar-valued damage evolution expressed as 

 , ,f T   is introduced where   is uniaxial stress,  is the 

current state damage. Damage is coupled within the creep 

strain rate via current damage and is expressed as  , ,g T  . 

Within the creep strain equation, there arises a net/effective 

stress which relates the physical space of damage where the 

presence of microstructural defects reduces creep strength, to 

an effective space, where microstructural creep damage is 

replaced with an effective increase in the applied stress, as 

conceptualized in Figure 1. While the figure idealized damage 

as due to voids, damage actually includes all microstructure 

evolution leading to failure. 

The Kachanov [14] and Rabotnov [15] proposed 

equations for the creep rate and damage evolution are as 

follows 

 
1

cr
cr

n
d

A
dt

 




 
   

 
 (12) 

 

 1

Md

dt








 



 (13) 

where the creep strain rate is equal to Norton’s power law for 

secondary, Eq. (3), with the same associated A and n 

constants,  is von Mises stress, and M, χ, and ϕ are tertiary 

creep damage constants. Numerous authors have developed 

specialized formulations based on this fundamental 

formulation [16-21]. These formulations based around von 

net net
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Mises equivalent stress, have also been generalized for 

multiaxial states of stress in isotropic materials using elastic 

compliance tensors and the stress deviator [22]. An isochoric 

creep behavior (incompressibility) is assumed.  

Rupture time predictions can be easily arrived at using 

damage evolution Eq. (13). Separation of variables, 

integration, and simplification furnishes the following  

    
11

1 1 1r cr rt M
   

      
    

 (14) 

where cr is critical damage at which rupture occurs. 

Typically, cr is assumed to be unity. 

3. New Transversely-Isotropic CDM Approach 
A new model developed by the authors is an extension of 

the isotropic Kachanov-Rabotnov creep damage model 

[14,15]. The influence of the state of damage, ω  is accounted 

for via the effective (net) stress tensor, σ . The Murakami and 

Ohno
 
[23] symmetric effective (net) stress, σ and a simplified 

damage applied, Ω  are applied 

  

 

1

1

2


 

 

Ω I ω

σ σΩ Ωσ
    (15) 

where 𝛔 is the Cauchy stress tensor and Ω is damage applied. 

Damage is represented by multiple principal damage variables 

due to induced anisotropy [24,25] in the form of a damage 

tensor 

 

1

2

3

0 0

0 0

0 0



 



 
 


 
    

(16) 

where each term of damage corresponds to the orthogonal 

planes of a material.  

Creep damage anisotropy is introduced via two damage 

constant tensors. The tertiary creep damage constants are 

generalized into a vector (6x1) form using the anisotropic Hill 

potential theory transformed into damage constant tensors 

(3x3). The vectors take the following form 

 

 
 

ABS

VEC

b pR aniso
aniso Hillb

Hillb

R

M











M s
b

b b

b B

  
 

ABS

VEC

pR
aniso

Hill

R














M s
λ

λ λ

λ Φ

 
(17) 

where Maniso, χaniso, and ϕaniso are tertiary creep damage 

constants and sp is the vector form of the principal stress. The 

ABS function, represents an element-wise absolute value of 

the argument vector and is introduced to enforce damage 

accumulation. The principal stress vector can be found solving 

the following 

  det 0n σ I
 

 

,1

,2

,3

0 0

0 0

0 0

n

p n

n

p pVEC







 
 

  
 
 

 

σ

s σ

 
(18) 

where pσ is a tensor of the principal stress where the 

subscripts (1,2,3) denote the orthogonal material planes. The 

stresses Hill , Hillb , and Hill
 
are forms of Hill equivalent 

stress defined as 

 

 

Hill

Hillb

Hill

T

T
p b p

T
p p

VEC

 







 





 

s Ms

s M s

s M s

s σ

 
(19) 

where s is the vector form of the Cauchy stress tensor, σ  and 

M is the Hill compliance tensor [9], Eq. (5), consisting of the 

F, G, H, L, M, and N unitless material constants that can be 

obtained from creep tests [10]. The damage constant vectors, b 

(hr
-1

) and λ (unitless), require a unique Hill compliance tensor, 

Mb and Mλ, respectively. Each compliance tensor requires 6 

unitless material constants that can be determined analytically. 

In the isotropic damage formulation Eq. (13), it is 

observed that previous scalar-valued damage is related by 

 1





 . An equivalent tensor form is produced by use of 

the elementwise Schur (or Hadamard) power of the damage 

applied tensor, Ω and the rotated damage constant tensor, Φ as 

follows 

  

1311 12

2321 22

31 32 33

11 12 13

21 22 23

31 32 33

 

 

 


  

   
 
   
 
   
 

ΦΦ
D Ω Ω

D

 (20) 

where the convenient tensor, D is later implemented in the 

damage rate tensor [26,27].  

The damage rate tensor, ω , is multiplicative superposition 

of the damage constant tensors, B and the convenient tensor, 

D using the elementwise Schur (or Hadamard) product as 

follows 

 ω B D

 
11 11 12 12 13 13

21 21 22 22 23 23

31 31 32 32 33 33

B D B D B D

B D B D B D

B D B D B D

 
 


 
  

B D  
(21) 
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The damage rate tensor is coupled with the anisotropic creep 

strain rate equation defined as follows 

 
Hill

Hill

cr aniso
aniso

n
A 




Ms
e

 

(22) 

where Aaniso, naniso are secondary creep material constants 

found via creep tests, M is the Hill compliance tensor, s is the 

Cauchy stress vector, and Hill is the Hill equivalent (net) 

stress due to the effective stress tensor, σ . To ease the 

implementation of the model into finite element code, the 

symmetric stress and strain tensors are converted back and 

forth to stress and strain vectors (e.g. σ s , 
cr cr
ε e ). 

Material rotation can be performed in the damage rate tensor 

as follows 

 

T
aniso b pR T T

aniso p p
T T

p b p

T
pR

aniso
T T

p p

M













TM T s
b s TMT s

s TM T s

TM T s
λ

s TM T s

 (23) 

and in the creep strain rate equation as follows 

 

T
anisocr T T

aniso
T T

n
A

TMT s
e s TMT s

s TMT s  

(24) 

where T represents a material orientation transformation 

tensor. The use of Hill compliance tensors provide a great 

method by which both the secondary and tertiary creep 

behavior of the material can be modeled under material 

reorientation. 

To apply this model a fair number of constants are 

necessary. Six secondary creep constants need to be 

analytically determined and can be easily found via uniaxial 

creep tests (AL, AT, nL, and nT,). Using the Kachanov-Rabotnov 

formulation and an iterative optimization scheme, nine tertiary 

creep constants need to be numerically determined (M1, M2, χ1, 

χ2, ϕ1,and ϕ2). Lastly, three sets of six Hill constants need to be 

analytically determined for the M, Mb, and Mλ Hill 

compliance tensors. The constant associated with the M tensor 

can be found through state of stress equivalence and material 

rotation of the creep rate Eq. (24).  The constants for the Mb 

and Mλ Hill compliance tensors can be found through a similar 

method using the damage constant tensors Eq. (23). Stewart 

[28] has developed analytical solutions for the necessary 

constants. 

Creep rupture time predictions can be easily obtained. 

Symbolic expansion of the damage rate tensor Eq. (21), 

provides the following 

 

 

 

 

1

1
11

2

2
22

3

3
33

0 0

1

0 0

1

0 0

1

b

b

b










 
 
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 
 

  
 
 
 
 

  

ω  (25) 

where bi (hr
-1

) and λi are expressed in Eq. (17). Assuming that 

each term of damage is independent, component wise 

derivation provides 

 

   
11

1 1 1i

ir cr i it b


 
           

 min
ir rt t

 
1,2,3i   

(26) 

where full vector predictions are produced. Rupture time, tr, 

can be considered equal to the minimal component found in 

the tr vector. Additionally, rupture time could be determined 

using some effective approach but this is left for future study. 

Critical damage is assumed to be equal to that found in the ω 

component where rupture is expected to occur. Additionally, 

the final direction of rupture can be estimated based on the 

critical damage tensor. 

The strength of the improved anisotropic model is that it 

provides the ability to predict rupture time and/or critical 

damage for any state of stress or material orientation. 

4. MATERIAL 
Nickel-based superalloys are commonly used as turbine 

blade materials due to their strength, creep-resistance, and 

corrosion resistance at high temperature. Applying directional 

solidification techniques, it was discovered that grain 

boundaries could be minimized perpendicular to the principal 

load direction and improved rupture strength could be 

achieved [29]. The subject material is DS GTD-111, a dual-

phase γ- γ' Ni-based superalloy derived from Rene' 80 [30]. 

The γ matrix phase is FCC austenitic Nickel (Ni), while 

the γ' precipitated phase is L12 structured nickel-aluminde 

(Ni3Al) with a bimodal distribution [32,33]. Nickel (Ni), 

aluminum (Al), and chromium (Cr) impart oxidation 

resistance. The elements titanium (Ti) and molybdenum (Mo) 

increase the volume fraction of γ' precipitate particles. 

Titanium is used to control lattice mismatch and the formation 

of anti-phase boundary energy (APBE). Carbides to pin grain 

boundaries are formed of carbon (C) and Ti, W, Mo, Cr, and 

Ta. Chromium (Cr) raises hot corrosion resistance. The 

elements Cr, Mo, and W are solid solution strengtheners. 

Various secondary elements are utilized to impart increased 

ductility, workability, and castability. 
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Figure 2 - Larson-Miller plot of stress versus the LMP 

parameter for DS GTD-111 for longitudinal (L) and transverse 

(T) specimen 

Creep deformation experiments up to rupture were 

conducted on L and T-oriented specimen of DS GTD-111 

according to an ASTM standard E-139 [34] for a range of 

temperature and stress conditions. 

5. RESULTS 
Using the Larson-Miller method with the K1 constant 

equal to 20.07 and 19.86 for L and T-oriented specimen 

respectively, a plot of applied stress versus the calculated LMP 

parameter is produced found in Figure 2. The polynomial 

regression equation shown on Figure 2 is used to determine 

the LMP parameter at a set stress level. The terms of the 

polynomials for L and T orientations can be found in Table 1 

with an R
2
 value of 0.9914 and 0.96964 respectively. Larson-

Miller creep rupture predictions are shown in Figure 3(a, b). It 

is observed that this method is fairly accurate in predicting the 

creep rupture of both L and T-oriented specimen. It produces 

an inverse parabolic curve for stress versus creep rupture time 

where as temperature increases the creep life is reduced. 

 

Table 1 – LMP parameter polynomial terms for DS GTD-111 

longitudinal (L) and transverse (T) specimen 

Specimen a b c 

L 6.760E-06 - 1.655E-02 3.042E+01 

T - 8.822E-07 - 1.039E-02 2.900E+01 

 

Table 2 - Monkman-Grant constants for DS GTD-111 

longitudinal (L) and transverse (T) specimen [7] 

Specimen m KMG 

L 0.89109 -0.99658 

T 0.90463 -1.43048 

 

Table 3 - Secondary creep constants of the Norton power law 

for DS GTD-111 longitudinal (L) and transverse (T) specimen 

Temperature n A 

(°C) L T L T 

649 8.500 
 

5.909E-30 
 

760 7.591 10.890 1.393E-25 8.090E-35 

816 7.000 9.650 2.477E-23 3.572E-30 

871 6.507 6.516 5.764E-21 3.480E-21 

940 6.000 4.850 3.507E-18 4.210E-16 

982 5.547 
 

8.290E-17 
 

 

Table 4 - Secondary creep regression terms for DS GTD-111 

longitudinal (L) and transverse (T) specimen 

 A0 A1 n0 n1 

L 6.551E-56 9.207E-02 1.425E+01 - 8.839E-03 

T 9.231E-118    2.507E-01 3.808E+01   - 3.555E-02     

 

To implement the Monkman-Grant method, the m and 

KMG constants need to be determined. Previous authors have 

produced these constants listed in Table 2 for DS GTD-111 

for both longitudinal and transverse specimen [7]. It is 

desirable to replace the minimum creep strain rate in the 

Monkman-Grant relation with the Norton power law for 

secondary creep, Eq. (3). The A and n secondary creep 

constants for DS GTD-111 were determined at multiple 

temperature levels and are listed in Table 3. Minimum creep 

strain rate data suggests that DS GTD-111 does not exhibit an 

Arrhenius form of temperature-dependence; therefore, 

temperature-dependence is introduced in the following form 

    0 1expA T A A T
 (27) 

   1 0n T n T n 
 

(28) 

where A0, A1, n0, and n1 are constants found in Table 4 and T is 

in units Celsius. The Monkman-Grant relation, Eq. (9), is 

rewritten into the following form 

 
     

log log
n T

r MGt m A T k   
  

 

(29) 

Now the stress and temperature-dependence of the minimum 

creep strain rate is accounted for within the Monkman-Grant 

relation. Monkman-grant creep rupture predictions are shown 

in Figure 3(c, d). This method accurately predicts the creep 

rupture behavior for both L and T-oriented specimen. It 

produces a negative sloped linear curve for stress versus creep 

rupture time (on a log-log scale) where as temperature 

increases the creep life is reduced. 

 

 

   2 310LMP a b c     
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Figure 3 - Creep rupture predictions of (a, c, e) L and (b, d, f) T-oriented DS GTD-111 at various temperatures using (a, b) Larson-

Miller (c, d) Monkman-Grant (e, f) and Kachanov-Rabotnov methods 
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Figure 4 - Predicted creep rupture life of DS GTD-111 using 

the Larson-Miller (LMP), Monkman-Grant (MG), and 

Kachanov-Rabotnov (KR) methods 

 

Table 5 - Tertiary creep damage constants for DS GTD-111 

  Temperature Stress M χ ϕ 

 
(°C) (MPa) (MPa

-χ
hr

-1
)x10

-11
 

  
L 649 896 10.0 1.880 55.000 

L 760 408 20.9 1.900 8.500 

L 760 613 19.8 2.231 13.261 

T 760 517 36.2 2.106 14.810 

T 760 613 51.8 2.203 39.931 

L 816 455 64.1 2.257 3.792 

T 816 455 167.6 1.981 28.224 

L 871 241 96.0 2.022 7.161 

L 871 289 131.0 2.054 9.698 

T 871 241 263.0 2.098 2.296 

T 871 289 345.8 1.919 6.823 

L 940 244 579.1 2.310 7.069 

T 940 244 600.0 2.290 7.069 

L 982 124 655.9 2.221 3.278 

L 982 145 665.2 2.288 5.126 

 

Table 6 - Tertiary creep damage exponent ϕ polynomial terms 

for DS GTD-111 

 ϕ3 ϕ2 ϕ1 ϕ0 

L -5.124E-06 1.338E-02 -1.161E+01 3.354E+03 

T 5.826E-04 -1.128E+00 5.502E+02 0.0 

 

 

Table 7 - Hill’s Compliance tensor constants for DS GTD-111 

Tensor F G H L M N 

M 0.5 0.5 0.387 1.641 1.641 1.273 

Mb 0.5 0.5 0.643 1.051 1.051 1.785 

Mλ 0.5 0.5 -5.08E-3 9.071 9.071 0.490 

 

To implement the Kachanov-Rabotnov formulation, the 

tertiary creep damage constants M, χ, and ϕ need to be 

determined. Previous research by the authors has 

demonstrated that the constants can be determining through 

optimization using a finite element package and compare 

simulated results with experimental using a least squares 

objective function. The global simulated annealing 

optimization routine produce the constants listed in Table 5. 

The constants M and ϕ exhibit temperature-dependence while 

the constant χ does not. The temperature-dependent equations 

for the tertiary creep damage coefficient, M, is assumed as 

follows 

 

   1 1 2 0expM T M M T 
 

1 2

1 2

1

0.8245, 1.0722
orientation

 

 

 


 

 
 

  

L

T
 

(30) 

where T is in unit Celsius and M1 (MPa
-χ

hr
-1

) and M0 (unitless) 

are constants found to be 6.62736E-04 and 5.4645E-04 

,respectively. The temperature-dependent functions for the 

tertiary creep damage coefficient, M, carry an R
2
 value of 

0.9593 and 0.9409 for L and T-oriented specimen, 

respectively. The unitless weight values λ1 and λ2, were used to 

implement the formulation for both L and T orientations. The 

tertiary creep damage exponent, ϕ, was found to produce a less 

than ideal fit to temperature in a polynomial equation of the 

form 

   3 2
3 2 1 0T T T          (31) 

where T is in units Celsius, and ϕ0, ϕ1, ϕ2, and ϕ3 are constants 

found in Table 6. The tertiary creep damage exponent, χ 

(unitless), was found to exhibit no temperature-dependence 

and was set to the average value for longitudinal and 

transverse specimen observed as 2.1292 and 2.0994, 

respectively. The tertiary creep damage exponent, χ, is highly 

stress sensitive; therefore, small changes have a significant 

effect on rupture time predictions. Bonora and Esposito have 

demonstrated that when using the power law structure the 

creep exponent varies with stress [35]. The available 

optimized constants were based on a per-specimen 

optimization; therefore, the best constants for a set 

temperature at any applied stress level were not obtained. This 

severely limits the accuracy of the Kachanov-Rabotnov 

constants used in this paper. Kachanov-Rabotnov creep 

rupture predictions are shown in Figure 3(e, f). It is observed 

that predictions do not correlate with experimental data. It 

should be noted that when the optimized constants are directly 

applied (instead of using temperature-dependent functions), 
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the rupture time predictions are highly accurate. It is the 

authors’ suggestion that in future study batch optimization be 

performed to produce a globally optimized set of tertiary creep 

damage constants. 

A comparison of the creep rupture predictions using 

Larson-Miller, Monkman-Grant, and the Kachanov-Rabotnov 

formulation is provided in Figure 4. It is observed that in most 

cases the rupture time predictions are within a factor of two. 

Of the three methods, Monkman-Grant can be considered the 

easiest to implement due to the small number of constants 

needed to produce a fairly accurate prediction. It would be 

particular useful for isotropic materials where creep 

mechanism are not orientation-dependent. Due to the limited 

accuracy of the Kachanov-Rabotnov tertiary creep damage 

constants in temperature-dependent form, the actual optimized 

constants are directly used in the current figure. The figure 

demonstrates the potential accuracy of the Kachanov-

Rabotnov if batch optimization was conducted. 

To implement the new transversely-isotropic formulation, 

the same tertiary creep damage constants necessary for the 

Kachanov-Rabotnov formulation are need for L and T-

oriented specimen as well as eighteen analytically derived 

constants for the three Hill’s compliance tensors. Only one set 

of creep rupture test at an equivalent 289MPa and 871°C for 

L, and T-oriented specimen is available. The tertiary creep 

constants for the L and T specimen at 289MPa and 871°C are 

found in Table 5.  
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Figure 5– Stress-rupture time curves for DS GTD-111 for L 

and T-oriented specimen at 871°C with (a) unaixial – circle 

(b) biaxial – square , (c) pure shear – diamond , and (d) triaxial 

– hex 

 

The Stewart [28] analytical solution to the Hill’s 

compliance tensor constants was used and values are listed in 

Table 7.  The Rupture time predictions using the transversely-

isotropic formulation regresses to the Kachanov-Rabotnov 

prediction for L and T-oriented specimen. 

6. PARAMETRIC STUDY 
The strength of the new transversely-isotropic formulation 

is that any complex stress state and material orientation can be 

applied. To demonstrate, predictions of rupture time for 

uniaxial, biaxial, pure shear, and triaxial states of stress were 

applied for L and T-oriented specimen at 871°C at equal levels 

of equivalent stress. A plot of the stress against rupture time 

can be observed in Figure 5. Pure shear was found to produce 

the shortest rupture times while triaxial the longest. This is due 

to the loading conditions being based around von Mises 

equivalent stress instead of the internally used Hill’s 

equivalent stress. This should be corrected in later studies. For 

all loading conditions, and at each material orientation (L and 

T), the maximum load applied was equal to material ultimate 

tensile strength (UTS). At every instance a rupture time 

prediction was found at less than 200 hrs. Under UTS 

equivalent loading the rupture time should be minimal and 

related to ductile necking until rupture. Additional creep tests 

should be performed at the UTS in L and T-oriented specimen 

to determine the short time before failure. A potentially useful 

property of the new transversely-isotropic rupture time 

prediction equation is that it provides a method by which 

specimen rupture time can be predicted for conditions which 

may have been determined under purely elastic loading. When 

it is necessary to conduct multiple tests and available lab 

experiment time is limited it can be used to accurately predict 

the rupture time of specimen for alternative states of stress.  

7. CONCLUSION 
The Larson-Miller, Monkman-Grant, and Kachanov-

Rabotnov formulation are all shown to produce viable rupture 

time predictions. It was determined that the Monkman-Grant 

method is the easiest to implement and should be selected 

when dealing with isotropic materials. The Kachanov-

Rabotnov formulation is shown to require tertiary creep 

constants that are determined through batch optimization. The 

new transversely-isotropic formulation is found to produce the 

same creep rupture time predictions as the Kachanov-

Rabotnov formulation for L and T-oriented specimen. It is 

able to determine the creep rupture time for any arbitrary 

material orientation. The parametric study demonstrates that it 

is able to predict the approximately the same creep rupture 

time for uniaxial, biaxial, pure shear, and triaxial state of stress 

at an equal value of von Mises equivalent stress. In future 

work, batch optimization will be performed to produce more 

suitable tertiary creep damage constants. Additional L and T-

oriented test will be conducted at equal levels of applied 

uniaxial stress. 

8. ACKNOWLEDGEMENTS 
Calvin Stewart is thankful for the support of a Mcknight 

Doctoral Fellowship through the Florida Education Fund. 

REFERENCES 
[1] Xie, Y., Wang, M., Zhang, G., and Chang, M., 2006, 

“Analysis of Superalloy Turbine Blade Tip Cracking During 

Service,” Engineering Failure Analysis, 13(8), pp. 1429-1436. 

[2] Pridemore, W. D., 2008, “Stress-Rupture Characterization 

in Nickel-Based Superalloy Gas Turbine Engine 

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 08/05/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use



 10  Copyright © 2010 by ASME 

Components,” Journal of Failure Analysis and Prevention, 

8(3), pp. 281-288. 

[3] National Research Council (U.S.) Committee on Materials 

for Large Land-Based Gas Turbines, 1986, “Materials for 

large land-based gas turbines,” National Academy Press. 

[4] Larson, R. and Miller, J., 1952, Trans. ASME, 74, pp. 765. 

[5] Viswanathan, R., 1989, “Damage Mechanisms and Life 

Assessment of High-Temperature Components”, ASM 

International, pp. 65-67. 

[6] Nomoto, A., Yaguchi, M. and Ogata, T., 2000, “Study on 

Creep Properties and Microstructural Relation in Directionally 

Solidified Nickel Base Superalloy”, Key Engineering 

Materials, Vols. 171-174, pp. 569-576. 

[7]
 
Ibanez, A. R., Srinivasan, V. S., and Saxena, A., 2006, 

“Creep Deformation and Rupture Behaviour of Directionally-

solidified GTD 111 Superalloy,” Fatigue & Fracture of 

Engineering Materials & Structures, 29(12), pp. 1010 – 1020. 

[8] Norton, F. H., 1929, The creep of steel at high 

temperatures, McGraw-Hill, London. 

[9] Hill, R., 1950, The Mathematical Theory of Plasticity, 

Oxford University Press, New York. 

[10] Hyde, T. D., Jones, I.A., Peravali, S., Sun, W., Wang, 

J.G., and Leen S. B., 2005, “Anisotropic Creep Behavior of 

Bridgman Notch Specimens,” Proceedings of the Institution of 

Mechanical Engineers, Part L: Journal of Materials: Design 

and Applications, 219(3),  pp. 163-175. 

[11] Dorn, J.E., 1955, "Some Fundamental experiements on 

high temperature creep", Journal of the Mechanics and 

Physics of Solids, 3, pp. 85-116. 

[12] Monkman, F. and Grant, N., (1956), Proc. ASTM, 56, p. 

595. 

[13] Guo, J., Yuan, C., Yang, H., Lupinc, V and Maldini, M., 

(2001), “Creep-Rupture Behavior of a Directionally Solidified 

Nickel-Base Superalloy”, Metallurgical and Materials 

Transactions A, 32, pp. 1103-1110. 

[14] Kachanov, L. M., 1967, The Theory of Creep, National 

Lending Library for Science and Technology, Boston Spa, 

England, Chaps. IX, X. 

[15] Rabotnov, Y. N., 1969, Creep Problems in Structural 

Members, North Holland, Amsterdam. 

[16] Leckie, F. A., and Hayhurst, D. R., 1977, “Constitutive 

equations for creep rupture,” Acta Metall., 25, pp. 1059 – 

1070. 

[17] Leckie, F. A., and Ponter, A., 1974, “On the State 

Variable Description of Creeping Materials,” Ing.-Archiv., 43, 

pp. 158-167. 

[18] Hayhurst, D., Trampczynksi, W., and Leckie, F. A., 1980, 

“Creep Rupture and Nonproportional Loading,” Acta Metall., 

28, pp 1171-1183. 

[19] Hyde, T.D., Sun, W., and Williams, J.A, 1999, “Creep 

Behaviour of Parent, Weld and HAZ Materials of New, 

Service-Aged and Repaired 1/2Cr1/2Mo1/4V: 2 1/4Cr1Mo 

Pipe Welds at 640°C,” Material at High Temperatures, 16(3), 

pp 117-129. 

[20] Maclachlan, D. W. and Knowles, D. M., 2000, “Creep-

Behavior Modeling of the Single-Crystal Superalloy CMSX-

4,” Metallurgical and Materials Transactions A, 31(5), pp. 

1401-1411. 

[21] Batsoulas, N. D., 2009, “Creep Damage Assessment and 

Lifetime Predictions for Metallic Materials under Variable 

Loading Conditions in Elevated Temperature Applications,” 

Steel Research International, 80(2), pp 152-159. 

[22] Odquist, F., and Hult, J., 1962, Kriechfestigkeit 

metallischer Werkstoffe, Springer Berlin. 

[23] Murakami, S. and Ohno, N., 1981, “A Continuum Theory 

of Creep and Creep Damage.,” In Creep in Structures, A. R. S. 

Ponter and D. R. Hayhurst, eds., pp. 422–443. 

[24] Altenbach H., Huang C., and Naumenko K., 2002, 

“Creep damage Predictions in Thin-Walled Structures by use 

of Isotropic and Anisotropic Damage Models,” Journal of 

strain analysis for engineering design, 37(3), pp. 265-275. 

[25] Murakami, S. and Sanomura, Y., 1985, “Creep and Creep 

Damage of Copper Under Multiaxial States of Stress,” In 

Plasticity Today, edited by A. Sawczuk and G. Bianci, pp. 

535–551. 

[26] Schur, I., Joseph, A., Melnikov, A., and  Rentschler, R., 

2003, Studies in memory of Issai Schur, Springer, Chap. xci. 

[27] Bernstein, D. S., 2005, Matrix mathematics, Princeton 

University Press, pp 252-253, Chap. 7.3. 

[28] Stewart, C. M., 2009, “Tertiary Creep Damage Modeling 

of a Transversely Isotropic Ni-Based Superalloy” Master’s 

Thesis, University of Central Florida, Orlando, Fl. 

[29] Viswanathan, R., and Scheirer, S. T., 2001, “Materials 

Technology for Advanced Land Based Gas Turbines,” Creep: 

proceedings of the international conference on creep and 

fatigue at elevated temperatures, Tsukuba, Japan, No.01-201 

(20010603), pp. 7-21. 

[30] Li, L., 2006, “Repair of directionally solidified superalloy 

GTD-111 by laser-engineered net shaping,” Journal of 

Materials Science, 41(23), pp. 7886-7893. 

[31] Schilke, P. W., Foster, A.D., Pepe, J. J., and Beltran, A. 

M., 1992, “Advanced Materials Propel Progress in LAND-

BASED GAS TURBINES,” Advanced Materials and 

Processes, 141(4), pp. 22-30. 

[32] Gordon, A. P., 2006, “Crack Initiation Modeling of a 

Directionally-Solidified Nickel-Base Superalloy,” 

Dissertation, Georgia Institute of Technology, pp. 6-59. 

[33] Gale, W. F., Smithells, C. J., and Totemeier, T. C., 2004, 

Smithells Metals Reference Book 8
th

 Edition, Butterworth-

Heinemann, pp. 7-12, Chap. 38. 

[34] ASTM E-139, "Standard Test Methods for Conducting 

Creep, Creep-Rupture, and Stress-Rupture Tests of Metallic 

Materials,” No. 03.01, West Conshohocken, PA. 

[35] Bonora, N., and Esposito, L., 2008, “Mechanism Based 

Unified Creep Model Incorporating Damage,” Proceedings of 

the ASME 2008 Pressure Vessels and Piping Conference 

(PVP2008), PVP2008-61034, pp. 1189-1193 , Chicago, IL, 

July 27-31. 

Downloaded From: http://proceedings.asmedigitalcollection.asme.org/ on 08/05/2015 Terms of Use: http://www.asme.org/about-asme/terms-of-use


	A CREEP RUPTURE TIME MODEL FOR ANISOTROPIC CREEP-DAMAGE OF TRANSVERSELY-ISOTROPIC MATERIALS
	ABSTRACT
	INTRODUCTION
	CREEP RUPTURE TIME MODELS
	Larson-Miller Parameter
	Monkman-Grant
	Kachanov-Rabotnov Isotropic CDM Approach

	New Transversely-Isotropic CDM Approach
	MATERIAL
	RESULTS
	PARAMETRIC STUDY
	CONCLUSION
	ACKNOWLEDGEMENTS
	REFERENCES


