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ABSTRACT 

In Nonlinear Finite Element Analysis (FEA) applied to structures, displacements 

at which the tangent stiffness matrix TK becomes singular are called critical points, and 

correspond to instabilities such as buckling or elastoplastic softening (e.g., necking). 

Prior to the introduction of Arc Length Methods (ALMs), critical points posed severe 

computational challenges, which was unfortunate since behavior at instabilities is of 

great interest as a precursor to structural failure. The original ALM was shown to be 

capable in some circumstances of continued computation at critical points, but limited 

success and unattractive features of the formulation were noted and addressed in 

extensive subsequent research. The widely used Crisfield Cylindrical and Spherical 

ALMs may be viewed as representing the 'state-of-the-art'. The more recent Stiff Arc 

Length method, which is attractive on fundamental grounds, was introduced in 2004, but 

without implementation, benchmarking or performance assessment. The present thesis 

addresses (a) implementation and (b) performance comparisons for the Crisfield and 

Stiff methods, using simple benchmarks formulated to incorporate elastoplastic 

softening. It is seen that, in contrast to the Crisfield methods, the Stiff ALM consistently 

continues accurate computation at, near and beyond critical points. 
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 : INTRODUCTION Chapter One

1.1 OBJECTIVES 

In nonlinear finite element analysis, many applications exhibit critical points at 

which the tangent stiffness matrix becomes singular and continued accurate 

computation becomes very challenging. Arc Length Methods (ALMs) were introduced in 

the late 1970s to address exhibiting critical points since which time there have been 

modifications by a number of investigators. The current investigation is intended to 

review the more widely used methods, implement them in simple benchmark problems, 

and to compare their advantages, disadvantages and performance with that of the more 

recently introduced Stiff Arc Length Method (SALM). The situations of interest are 

structures exhibiting elastoplastic instability (e.g. necking).  

More specifically the objectives are: 

1. Review widely used Arc Length Methods 

Arc Length Methods developed prior to the SALM have been 

extensively documented. This investigation is intended to give a 

unified presentation of the more widely used Arc Length Methods, 

especially the Crisfield methods, using consistent notation, so that 

differences are highlighted and conclusions can be more easily 

drawn.  

2. Review the Stiff Arc Length Method 
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The SALM has several fundamental advantages over previous Arc 

Length Methods, but has yet to be widely recognized. The article 

introducing the SALM used different notation from other Arc Length 

Methods presentations. Also it was not implemented or applied to 

benchmark examples to demonstrate its validity or its performance 

compared to previous methods. The current investigation focuses 

on comparing the formulation and performance of this method to 

the widely used Arc Length Methods, especially those of Crisfield. 

To do so, the ALMs have been implemented using benchmark 

problems formulated to exhibit elastoplastic instability. 

3. Formulate a Single Degree-of-Freedom Benchmark Problem with 

Elastoplastic Instability 

A one degree-of-freedom (1 DOF) elastoplastic benchmark problem 

has been formulated which exhibits a maximum load and there-

after a decreasing load in the plastic region ("softening"). The 

Crisfield and Stiff ALMs have been implemented using MATHCAD 

for the benchmark, and a demanding performance comparison has 

been conducted. The material model embedded in the benchmark 

has been shown to capture published empirical behavior of several 

common aluminum alloys. 

4. Formulate a Three Degree-of-Freedom Benchmark with Elastoplastic 

Instability 
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A 3 DOF benchmark problem, modeling an elastoplastic truss 

structure, has been formulated; it exhibits several discontinuous 

stiffness changes as well as softening (negative stiffness) after the 

maximum load (critical point). The ALMs have been implemented in 

MATHCAD for this benchmark, and a demanding performance 

comparison has been conducted.  

5. Conduct Performance Comparisons 

Using the elastoplastic benchmarks, performance comparisons 

have been conducted, addressing: 

1) Continuation of accurate computation at and beyond 

the critical point load 

2) Consistently improved accuracy with reduced arc 

length parameter (increment size) 

3) Rate of convergence and computational effort 

4) Minimizing the need for user intervention 

It will be seen that the SALM offers significantly better performance 

in the benchmark problems than the Crisfield methods 

6. Recommendations and Future Work for the Stiff Arc Length Method 

Several recommendations are noted to further enhance the 

performance of the SALM and to address implementation in a finite 

element code modeling multi-dof problems. 
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1.2 REVIEW OF ARC LENGTH METHODS 

An extensive review and presentation of ALMs up to 2000 has been given in the 

first Crisfield monograph (Crisfield, 1991). A very thorough review as of 1999, along with 

extensive performance assessment, is given in the two articles of Geers (Geers, 1999-a 

and 1999-b). Also of interest is the more recent review of Memon and Su (Memon and 

Su, 2004). A recent thesis (Posada, 2007) provides extensive performance assessment 

of the major ALMs when applied to benchmarks for buckling problems. Finally a recent 

Arc Length Method proposal for fracture simulation has been given in Verhoosel et al 

(Verhoosel et al, 2008). 

A very brief overview of the basic notion of the Arc Length Method is now given. 

Prior to the ALM, in nonlinear problems in FEA with n degrees-of-freedom (dofs) the 

equilibrium relation was expressed as a linear system with an n×n  tangent stiffness 

matrix TK . Of course this matrix becomes singular at a critical point. The Arc Length 

Method increases the dimension of the solution space to n 1 by (i) introducing an 

additional degree of freedom, known as the load intensity and (ii) introducing a 

corresponding (scalar-valued) Arc Length Constraint Equation imposing a restriction on 

the arc length traversed along the solution path in one increment in the expanded 

space. Doing so introduces a new linear system containing an augmented tangent 

stiffness matrix TK*  which is now ( ) ( ).  n 1 n 1  With proper selection of the constraint 

equation, TK* remains nonsingular at the critical point of TK . The various ALMs differ in 

the actual details of the arc length constraint equation and their effect on TK*  at the 
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critical point, as well as in aspects of the numerical solution of the augmented linear 

system. 

1.2.1 RIKS AND WEMPNER ARC LENGTH METHOD 

The original Arc Length Method was introduced by Riks (Riks, 1972 and Riks, 

1979) and Wempner (Wempner, 1971), and is now reviewed. Their formulation was 

designed to find the solution at the intersection of the arc length constraint equation and 

the nonlinear equilibrium (FEA) equation. The nonlinear equilibrium equation is shown 

below as Equation 1.1 (Crisfield, 1991). 

 i e( ,λ) ( ) λ 0  φ p q p q  (1.1) 

In which φ is a function of the displacement vector p, and is the out-of-balance force 

vector which vanishes at equilibrium. The internal force vector qi is a function of the 

displacements and is equal to the force vector f. The prescribed external force vector is 

designated as qe and is scaled by the load intensity parameter λ, which varies between 

zero and one. Hence eλq represents the load applied at the current load increment. This 

representation enables introducing λ as an additional "degree-of-freedom", thereby 

expanding the dimensions of the solution space by one. Doing so requires introduction 

of the Arc Length Constraint equation, which is presented below.  

The nonlinear equilibrium equation shown in Equation 1.1 assumes proportional 

loading all the way along the load path until the final prescribed load is attained. The Arc 

Length Method is intended to continue computation through critical points along 

proportionally loaded paths.  
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The arc length parameter S, which is a user-specified constant, is shown below 

in Equation 1.2 (Crisfield, 1991).  

 
T 2 2 T

e eS d d dλ ψ  p p q q  (1.2) 

In which ψ is a user-defined load scaling parameter. Equation 1.2 can be rewritten in 

incremental form as Equation 1.3 and may be called the Riks-Wempner Arc Length 

Constraint equation (Crisfield, 1991). 

 T 2 2 T 2

e eξ λ ψ ΔS 0      p p q q  (1.3) 

Here ΔS is an approximation to the arc length parameter and is equal to the radius of 

the intersection between the arc length constraint curve and the non-linear equilibrium 

curve, see Figure 1.1 (Crisfield, 1991). The constraint curve in this case is actually a 

hypersphere. 

With this particular Arc Length Constraint Equation, Newton (also called Newton-

Raphson) Iteration may be employed in the expanded space to solve for n displacement 

variables (dofs) and one load intensity variable (dof). Applying the Newton method to 

both Equation 1.1 and Equation 1.3 yields two new equations shown below as 

Equations 1.4 and 1.5 (Crisfield, 1991). 

 
new old old T eδ δλ δ δλ 0

λ

 
      

 

φ φ
φ φ p φ K p q

p
 (1.4) 

 T 2 T

new old e eξ ξ 2 δ 2 λδλψ 0     p p q q  (1.5) 

Equations 1.4 and 1.5 can be rewritten in matrix form as Equation 1.6 (Crisfield, 1991). 

 

1

T e old

T 2 T

e e old

δ

2 2 λψ ξδλ


    

      
      

K q φp

p q q
 (1.6) 
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The δ operator represents an iterative change (difference between iterates) and the Δ 

operator represents an incremental change (difference from the converged value in the 

previous increment). The meanings of δp and Δp are illustrated in Equations 1.7 and 

1.8 

 j 1 j

k 1 k 1δ 

  p p p  (1.7) 

 j

k 1 k  p p p  (1.8) 

In which j represents the iterate counter and k represents the increment counter. For 

simplicity, pk may be chosen as the first iterate for pj
k+1.  

The Riks-Wempner Arc Length Method, in one dimensional space, is illustrated 

below in Figure 1.1 (Crisfield, 1991). After converging to an equilibrium point (p0, λ0qe), 

to obtain the solution for the next increment a predictor (which is both incremental and 

tangential) is calculated (Δp1, Δλ1) using Equations 1.9 and 1.10 (Crisfield, 1991).  

 1

predictor predictor T e predictor eλ λ δ    p K q p  (1.9) 

 predictor
T T

e e e e

l l
λ z

δ δ δ δ

 
   

p p p p
 (1.10) 

The constant z can either be +1 or -1 depending on whether KT is positive definite or 

indefinite, respectively; KT becomes indefinite at a critical point. The first increment is 

found by adding the predictor and the solved iterate (which for the first increment is 

equal to the last converged equilibrium point); the consecutive increments are computed 

using the procedure given in Equations 1.11 and 1.12 (Crisfield, 1991). The process 

outlined above is repeated until the user-defined convergence criterion is attained. 



8 
 

 2 1 1δ   p p p  (1.11) 

 2 1 1λ λ δλ     (1.12) 

The equations shown above can be easily misunderstood. Crisfield’s notations of the 

increments above are not the difference from the new converged iterate from the old 

converged iterate, but from the new iterate from the old converged iterate. 

An important fact to note is that the augmented stiffness matrix shown in 

Equation 1.6 is neither symmetric nor banded and, more importantly, has entries which 

are incremental. The load scaling parameter ψ is introduced in the matrix so that, if the 

lower right diagonal is small without ψ, that with the addition of ψ, it will become large 

enough that the matrix will no longer be ill-conditioned (but otherwise has no rationale). 

The increments in the augmented stiffness matrix in the lower left and lower right 

positions present a problem because they affect the eigenvalues and the lower right 

increment will cause the matrix to be ill-conditioned in the absence of the scaling factor.  
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Figure 1.1: Graphical Representation of the Riks and Wempner Arc Length Method with 
ψ = 1  
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Although this augmented stiffness matrix is neither symmetric nor banded, we 

will later see that block triangularization may be used to compute the solution of 

Equation 1.6 by little more than conventional finite element procedures  (Nicholson, 

2008), as will be demonstrated in the later sections. Since this Arc Length Method 

makes use of Newton Iteration, it converges quadratically. Quadratic convergence is 

desirable because the error in the current iteration is proportional to the square of the 

error at the previous iterate, as shown in Equation 1.13 (Rao, 2002). 

 2

j 1 j

f ''( x*)

2f'(x*)
     (1.13) 

It should be noted that the solution can also diverge quadratically in an incorrect 

solution path, which usually results if the initial iterate is not in the domain of attraction 

for the correct solution. In fixed point iteration as opposed to Newton iteration, 

convergence is linear and relates the error between the current iteration and the 

previous iteration linearly, as shown in Equation 1.14 (Rao, 2002), and of course 

convergence in this case is usually much slower than for Newton Iteration. 

 
1 '( )j jg ξ


    (1.14) 

1.2.2 CRISFIELD ARC LENGTH METHODS 

Early investigators such as Crisfield (Crisfield, 1991) considered this augmented 

stiffness matrix very unattractive due to its non-symmetric and non-banded 

characteristics, as well as the presence of incremental terms. Crisfield introduced 

several modifications to the Riks-Wempner ALM, the ensuing new method being 
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referred to throughout this study as the “Crisfield Spherical Arc Length Method” 

(CSALM). Later, instead of using Equation 1.6, Crisfield used Equations 1.4 and 1.5 and 

invoked the Batoz and Dhatt method for displacement control (Batoz and Dhatt, 1979) 

to obtain Equation 1.15 below; it separates the iterative displacement δp into two 

portions (Crisfield, 1991). The new load parameter is shown below as Equation 1.16 

(Crisfield, 1991). In doing so Crisfield sought to avoid having an augmented stiffness 

matrix that is not banded and not symmetric. 

 1 1

T old T e eδ δλ δ * δλδ     p K φ K q p p  (1.15) 

 new oldλ λ δλ   (1.16) 

Here δp* denotes the iterative displacement change in Newton Iteration under load-

control (conventional nonlinear FEA), and δpe represents the displacement vector 

conjugate to the external load vector qe. This modification of the displacement makes 

the displacement increment proportional to the load increment. In doing so, Crisfield’s 

version of the Arc Length Method abandons Newton Iteration, thus abandoning 

quadratic convergence, and introduces a potentially complex quadratic root issue as 

well; the root issue has been addressed in several investigations (e.g. Memon and Su, 

2004). This equation can be rewritten in incremental notation as shown below in 

Equation 1.17 (Crisfield, 1991), in which δλ is now the only unknown yet to be found.  

 new old eδ * δλδ    p p p p  (1.17) 

Now the Riks-Wempner Arc Length Constraint equation, Equation 1.3, is 

rewritten as shown below in Equation 1.18 (Crisfield, 1991). 

 T 2 2 T T 2 2 T 2

old old old e e new new new e eλ ψ λ ψ S          p p q q p p q q  (1.18) 
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Substituting Equation 1.17 into Equation 1.18 renders the quadratic equation shown 

below in Equation 1.19 (Crisfield, 1991). 

 2

1 2 3 0aδλ a δλ a    (1.19) 

In which scalars a1, a2, and a3 are expressed in Equations 1.20 – 1.22 (Crisfield, 1991). 

 T 2 T

1 e e e ea δ δ ψ p p q q  (1.20) 

 2 T

2 e old old e ea 2δ ( δ *) 2 λ ψ    p p p q q  (1.21) 

 T 2 2 2 T

3 old old old e ea ( δ *) ( δ *) S λ ψ       p p p p q q  (1.22) 

This quadratic equation is then solved for δλ, for two roots. The goal is to solve for both 

δλ1 and δλ2, which from Equation 1.17 leads to Equations 1.23 and 1.24. The next step 

is to determine which solution (Δpnew1 or Δpnew2) is nearest the previous incremental 

solution Δpold (Crisfield, 1991). 

 new1 old 1 eδ * δλ δ    p p p p  (1.23) 

 new2 old 2 eδ * δλ δ    p p p p  (1.24) 

The values δλ1 and δλ2 may be obtained using a quadratic solver algorithm, and the 

smallest angle between Δpold and Δpnew is then determined by finding the larger cosine 

as expressed in Equation 1.25 (Crisfield, 1991). 

 
T T

old old old e 4 5

2 2 2

( δ *) δ a a δλ
cosθ δλ

S s S

    
  

  

p p p p p
 (1.25) 

The root selection process, with ψ = 0 (This is denoted as the Crisfield Cylindrical Arc 

Length Method; to be discussed later) is shown below in Figure 1.2 (Crisfield, 1991).  

Crisfield noted that his ALM had an attractive benefit when compared to the Riks 

Wempner ALM because the only need is to solve a linear system using the tangent 



13 
 

stiffness matrix, which is symmetric and banded (Crisfield, 1991). However, it was also 

acknowledged that it will fail (Crisfield, 1991) if the method is used at the exact critical 

point (and presumably is ill-conditioned in the vicinity of the critical point). In our view 

this represents a severe deficiency: there certainly may be great interest in resolving the 

response at and near the critical point since the associated instability may be a 

precursor to structural failure. Furthermore, accuracy and stability will be lost as the arc 

length increment is reduced (refined) such that the applied load is near the critical load. 

Crisfield also made the statement that both Ramm (Ramm, 1981 and Ramm, 1982) and 

himself (Crisfield, 1981) individually determined that the load scaling parameter ψ had 

an insignificant effect on the solution, and advised setting it to zero (Crisfield 1991). In 

this event the Spherical ALM (same as the Cylindrical ALM but with Ψ ≠ 0) reduces to 

what is called the Cylindrical ALM. Thereafter, Crisfield recommended the use of the 

Cylindrical rather than the Spherical ALM. 
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Figure 1.2: Flow Diagram of Crisfield’s Root Selection Process  
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Solving the roots for δλ in Equation 1.19 is outlined in Figure 1.2 for the Crisfield 

Cylindrical Arc Length Method and it may be observed that both Crisfield’s Spherical 

and Cylindrical Arc Length Methods can yield two possible roots for δλ. Furthermore, 

the flow diagram illustrated in Figure 1.2 can be extended to solve the δλ roots in 

Equation 1.19 for the Spherical ALM if the a1, a2 and a3 equations in Figure 1.2 are 

expanded to include the ψ terms. 

Other investigators introduced slightly different Arc Length Methods that are 

designated as a “Linearized Arc Length Method” throughout this paper. In particular 

Equation 1.5 can be rewritten as Equation 1.26, which is then rewritten again as 

Equation 1.27 (Crisfield, 1991). 

 T 2 T old
old old e e

ξ
δ δλ( λ ψ )

2
    p p q q  (1.26) 

 

Told
old

old old T 2 T

old e old e e

ξ
δ *

2δλ( , λ )
( δ λ ψ )

  

  
  

p p

p
p p q q

 (1.27) 

Setting ξold equal to zero in Equation 1.26 yields Ramm’s Linearized Arc Length Method 

(Ramm, 1981, Ramm, 1982) which renders the iterate orthogonal to the secant (rather 

than tangent) change (Crisfield, 1991). Setting ξold equal to zero and replacing the old 

increment (Δpold, Δλold) with the initial predictor (Δpnew, Δλnew) in Equations 1.26 and 

1.27 yields the Riks and Wempner (Riks, 1972, Riks, 1979 and Wempner, 1971) 

Linearized Arc Length Method which renders the iterate orthogonal to the predictor 

(Crisfield, 1991)  
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Several more recent investigators have introduced modifications to the Riks-

Wempner ALM (e.g. Geers,1999-a); a number of the modified versions are summarized 

in Crisfield (Crisfield, 1991), and Memon and Su (Memon and Su, 2004) publications. 

However it appears that the Crisfield ALMs are the most widely implemented, used and 

cited in current finite element practice, and therefore attention in the subsequent 

sections will be confined to their implementation and performance in several benchmark 

problems, for comparison with the Stiff Arc Length Method (Nicholson, 2004) to be 

presented next. 

More recently, various authors (e.g. Geers, a-1999 and Verhoosel et al, 2008) 

have noted that the Crisfield methods appear to be effective in many buckling problems, 

but less so in problems involving material instabilities such as elastoplastic softening. 

The material instability of particular interest here will be presented at length in the 

subsequent sections. For now it suffices to say that the instability is associated with 

necking in elastoplastic materials and ensues from the fact that the stress-strain 

relations exhibit maxima in some materials at relatively small strains, and thereafter 

exhibit softening (negative stiffness). A major goal of the present investigation is to 

implement both the Crisfield methods and the Stiff ALM (presented below) in 

benchmark problems formulated to incorporate unstable elastoplastic behavior, and to 

compare their performance in continuing accurate computation at and beyond critical 

points. 

  



17 
 

1.2.3 STIFF ARC LENGTH METHOD 

The final ALM to be discussed is the more recently developed arc length method 

termed as the “Stiff Arc Length Method” (Nicholson, 2004). The Stiff ALM introduces an 

Arc Length Constraint Equation with a vector which is chose to rigorously maximize 

stiffness, measured by the determinant, of the augmented stiffness matrix at the critical 

point. This method has the fundamental advantages that (i) the arc length vector is 

readily computed directly from the original (unaugmented) stiffness matrix, (ii) the 

augmented stiffness matrix does not incorporate any incremental terms or scale factors, 

(iii) the augmented stiffness matrix is 'stiff' (i.e. with maximized determinant) at the 

critical point, in contrast to singularity in the Riks-Wempner and Crisfield methods, and 

(iv) the iteration scheme consists of Newton Iteration and rigorously preserves quadratic 

convergence. The augmented stiffness matrix that is used is neither symmetric nor 

banded. However its n by n upper left hand block is symmetric and banded, with the 

consequence that the solution procedure may be reduced to little more than 

conventional finite element operations using block triangularization, forward substitution, 

and back substitution (Nicholson, 2004).  

The equilibrium equation for the Stiff ALM is the same as Equation 1.1, but the 

Arc Length Constraint equation is different and is illustrated in Equation 1.28 (Nicholson, 

2004). 

 j j T j j

k 1 k 1 k 1 k k 1 kξ( ,λ ) ( ) zo( λ λ ) S 0        p zt p p  (1.28) 

In which ztT is an arc length vector, zo is a constant, and ΔS is the small positive arc 

length parameter representing the length of the increment in the load-displacement 
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space (Nicholson 2004) (i.e. the length of the path followed by the solution point at the 

current increment.) For this equation, the solution can be visualized as a diamond- 

shaped constraint domain intersecting the equilibrium curve, in which the initial iterate 

typically (but not necessarily) starts in the center of the constraint domain (Nicholson, 

2004). This domain intersects the equilibrium curve at two points and thus the solution 

path can either converge in the forward or backward direction. Prior to reaching the 

critical point, the solution path strongly tends toward the forward direction; however near 

the critical point, the solution may well 'backtrack' unless coerced into converging 

forward. As will be seen in the subsequent sections, in the current benchmarks this 

difficulty may be avoided by slightly displacing the center of the arc length constraint 

domain to lie in the 'domain of attraction' of the forward solution. Doing so has no effect 

on the augmented stiffness matrix!  

 Using the arc length constraint equation (Equation 1.28) and Newton Iteration 

gives rise to Equation 1.29 (Nicholson, 2004). 

 
T

j 1 j j j

* 1k 1 k 1 k 1 k 1

j 1 j j j

k 1 k 1 k 1 k 1

( ,λ )
0

λ λ ξ( ,λ )



   



   

     
       

     

p p φ p
K

p
 (1.29) 

in which TK*  is the augmented stiffness matrix, which is further shown as Equation 1.30 

(Nicholson, 2004) 

 
T e*

T T zo

 
  
 

K q
K

zt
 (1.30) 

KT is the (unaugmented) stiffness matrix. Assuming KT has unit rank deficiency at the 

critical point, it may be rewritten as in Equation 1.31 (Nicholson, 2004).The qe term, as 
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introduced earlier, is the prescribed external load. The two terms ztT and zo are a vector 

and a scalar respectively, to be identified later. 

 
n 1

T n 1

T T

n 1 nκs







 
  
 

K κs
K

κs
 (1.31) 

Since this matrix has a unit rank deficiency at the critical point, any one of the 

rows within KT is a linear combination of the others and can be expressed in terms of 

them using linear operations. The columns and rows of KT can also be manipulated so 

that the matrix is nonsingular in the upper (n x 1) by (n x 1) block (Nicholson, 2004). 

Thus, except in very unusual circumstances (Nicholson 2004), n 1
T
K  is a nonsingular 

block matrix, the vector denoted 1
T
nks  is linearly related to the (n-1) rows of n 1

T
K and 

κsn is a scalar (Nicholson, 2004). The augmented stiffness matrix TK*  may be rewritten 

as Equation 1.32 (Nicholson, 2004). 

 

n 1

n 1

T n 1 e

* T

T n 1 n e

T

n 1 n

κs q

zt zo











 
 

  
 
 

K κs q

K κs

zt

 (1.32) 

The determinant is now sought to measure how ztT and zo affect the stiffness of 

the augmented stiffness matrix. To this end, an attractive transformation property is 

utilized; the orthogonal matrix Q, which diagonalizes the matrix, while preserving the 

determinant (Q may include a permutation matrix to move the rows and columns to 

different positions).The transformed matrix is shown below in Equation 1.33 (Nicholson, 

2004). 
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T

T e n e#

T T TT

*

1 zo * zo*1

       
       
      

Q 0 K q Λ qQ 0
K

0 zt zt0
 (1.33) 

The four quantities Λn, qe*, zt* and zo* are obtained as shown in Equation 1.34 

(Nicholson, 2004). 

 T T T

n T e e( ) , * ( ) , * ( ) , zo* zo   Λ Q K Q q Q q Q zt Q zt Q  (1.34) 

The transformed matrix K# is expanded to show the eigenvalues along the diagonal, in 

matrix form, in Equation 1.35 (Nicholson, 2004). Generally speaking, the matrix will only 

contain one eigenvalue that is zero at the critical point and it may be permuted to the 

bottom right location of the unaugmented matrix. 

 

1
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1 T e

2 T e

3 T e
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n 1 T e

e
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0 λe ( ) 0 . . . . 0 q *
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 
 
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 
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 
 
 
  

K

K

K

K

K

(1.35) 

The determinant of this transformed augmented stiffness matrix is the same as that of 

the augmented stiffness matrix and is shown below in Equation 1.36 (Nicholson, 2004).  

 
n

n 1
# *

T n e j T

j 1

det( ) det( ) * * λe ( )




  K K zt q K  (1.36) 

Observe that the determinant is independent of zo.  

The vector zt which maximizes the determinant is orthogonal to all the n 1  rows 

of KT. The magnitude of the vector zt was normalized to unity in the derivation of the 



21 
 

Stiff Arc Length Method. In fact zt proves to be the null eigenvector of the 

(unaugmented) stiffness matrix at the critical point (Nicholson 2004). 

The null eigenvector zt of the unaugmented stiffness matrix may be readily 

computed using Gram-Schmidt orthogonalization (Dahlquist and Björck, 1974). Doing 

so requires the use of trial vectors, which in this case are chosen to be the first n 1

rows of KT (Nicholson, 2004). The first step in the procedure is to set T
1ags equal to the 

first row of KT and compute 'ags1  using Equation 1.37 (Nicholson, 2004). 

 1
1

T

1 1

' 
ags

ags
ags ags

 (1.37) 

All the subsequent steps are outlined in Equations 1.38 – 1.42 for the n n  KT matrix 

(Nicholson, 2004). 

 th

j Tj row ofags K  (1.38) 
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T

j e e i i

i 1





 zt q q ags ags  (1.41) 

 
j

j
T
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t "
t

t " t "


z
z

z z
 (1.42) 

In which j equals 2 thru n-1, for the n n  matrix KT. An example illustrating this 

procedure is shown in Figure 1.3. 
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 Lastly, it is also essential when passing through a critical point that both 

T j

k 1 k( ) zt p p  and j

k 1 kzo( λ λ )   remain positive on either side of the critical point, to 

avoid a runaway solution. Accordingly it is necessary to change the sign of zo to 1 

when the determinant of the unaugmented stiffness matrix KT is less than or equal to 

zero to ensure that the successive load values will be smaller than their predecessors 

(Nicholson, 2004). 

 

Figure 1.3: Gram-Schmidt Orthogonalization Example  
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 : ONE DEGREE-OF-FREEDOM COMPARISONS Chapter Two

2.1 SIMPLE ONE DIMENSIONAL SINE WAVE COMPARISON  

A straightforward, not necessarily realistic, example is first sought to ensure that 

the MATHCAD implementations of the ALMs are correct and perform well in an 

unchallenging situation. A sine wave, shown below in Equation 2.1, is used for this 

purpose: it exhibits a maximum but the function is not flat in an extensive interval 

around the maxima. Of course, this equation is nowhere near representative of a 

nonlinear force-displacement curve for a metal experiencing elastoplasticity. 

 sin(5 )y x  (2.1) 

The sine wave equation, Equation 2.1, has a rapidly increasing slope before the critical 

point and a rapidly decreasing slope thereafter. The critical point (maximum) thus does 

not occur in a flat region; we believe this makes it relatively easy for a computational 

procedure to pass through the critical point without accumulating significant error and 

potentially diverging. The Crisfield Cylindrical and Spherical methods were coded in 

MATHCAD for the sine wave equation and their respective computational results have 

been compared with the exact equation. The results of the computations are illustrated 

below as Figure 2.1; the key parameters used are noted in Table 1.  

Referring to Table 1, all three methods were evaluated using the same arc length 

parameter and the same convergence criteria. Upon examining Figure 2.1, the 

Cylindrical, Spherical and Stiff ALMs all follow the curve, but the Cylindrical and 

Spherical Arc Length Methods are somewhat less accurate.  
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Figure 2.1: Simple One Degree-of-Freedom Arc Length Comparisons 

The Stiff Arc Length Method follows the sine wave curve very closely using the same 

parameters as the other two methods, but it takes more iterates to converge and 

requires more increments to reach the end of the curve. A summary of varying some of 

the parameters for the three methods is given below in Tables 2-4.  
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Table 1: Figure 2.1 Key Parameters 

 

Table 2: Simple One Degree-of-Freedom Stiff Arc Length Method Varying Parameter 
Summary 

 

Table 3: Simple One Degree-of-Freedom Cylindrical Arc Length Method Varying 
Parameter Summary 
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Table 4: Simple One Degree-of-Freedom Spherical Arc Length Method Varying 
Parameter Summary 

 

Using Tables 2 thru 4 for comparison it may be noted that the Stiff ALM shows good 

accuracy using a large arc length parameter (step size) of 0.1 although it requires 44 

increments. The Cylindrical ALM requires an arc length parameter of 0.01 or less in 

order to track the curve with good accuracy; although the Cylindrical ALM required only 

6 iterates; its accuracy was not as good as in the Stiff ALM using an arc length 

parameter of 0.1. The Spherical ALM was analyzed by varying the load scaling 

parameter only while keeping the arc length parameter constant as shown in Table 4. It 

can be noted that choosing to large a Ψ value reduce the accuracy of the method or 

caused the procedure to fail. 

In this investigation a primary concern is for accuracy at moderate increment 

sizes, and consistent improvement as the increment size is reduced. There is a benign 

explanation for the relatively high number of increments shown for SALM in Tables 3 

and 4. The Crisfield methods use a line search (Crisfield, 1991) which in essence sets 

the initial iterate relatively close to the converged solution. But, in the current 

implementation of the Stiff ALM, the initial iterate is simply the solution at the previous 
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load step, which is further away from the solution if the increment size is relatively large. 

In fact an extrapolation procedure using the solutions at the previous several load steps 

could easily be incorporated in the Stiff ALM to make the initial iterate much closer to 

the converged solution, and thereby accelerate computation. 

Choosing a small value of the load scaling factor has little effect on the Spherical 

ALM in that it then reduces to the Cylindrical ALM. It may be concluded that for a simple 

one dimensional problem (1 DOF) containing a rapidly changing slope before and after 

the critical point, such as a sine wave function, the Spherical ALM offers no advantage 

compared to the Cylindrical ALM, which is consistent with what Crisfield reported 

(Crisfield, 1991). Furthermore the Stiff ALM gives superior performance in that it does 

not require a very small arc length parameter in order to produce highly accurate 

results. 

2.2 ONE DEGREE-OF-FREEDOM BENCHMARK 

A one degree-of-freedom equation representative of elastoplastic behavior with an 

instability is now presented; it exhibits a gradual slope before and after the critical point 

(maximum load), and also exhibits a discontinuous stiffness change after elastic yield is 

reached. It will be seen that the model agrees closely with experimental data reported in 

the Atlas of Stress Strain Curves (ASM International, 2002). A force f depending on the 

displacement p is now formulated. The functional relation between the force and the 

displacement is implicit in a stiffness function as shown below in Equation 2.2. 
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 T

df
=K (p)

dp
 (2.2) 

The stiffness KT must be selected such that it models elastoplastic behavior with 

instability and contains a critical point in a flat load-deflection region. This is 

accomplished in Equation 2.3. 

 
e

# 1 #

o 1

K , elastic
df

2
dp K K (κop )tan (κop ), plastic

π



 
 

  
 

 

 (2.3) 

Here Ke is the initial stiffness during elastic deformation, Ko is the matrix at the onset of 

plastic deformation (immediately after yield), and at large deformations the stiffness 

approaches the negative value KoK1, in which 1 oK >K . The modified displacement p# is 

equal to the total displacement p minus the displacement when plastic deformation is 

initiated py. The scalar κo is chosen to be a constant α, to be identified shortly, divided 

by the length of the member L. The initial critical point occurs at pc satisfying the 

equation shown below in Equation 2.4, which will be used to determine the value of α. 

 
1

1

2
0odet K K (κopc )tan (κopc )

π

 
  

 
 (2.4) 

The function f(p) is now determined that gives rise to the forgoing expression for KT(p). 

Equation 2.2 can be rewritten using the Chain Rule as shown below in Equation 2.5. 

 
# #

# # #

df df d(κop ) dp df
κo

dp dpd(κop ) dp d(κop )
   (2.5) 

It is immediately recognized that Equation 2.5 can be rewritten as Equation 2.6. 

 
# 1 #

o 1#

df 2
κo K K (κop )tan (κop )

πd(κop )

   (2.6) 
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The force f can be inserted into two parts f1 and f2, whose sum equals f. The stiffness 

associated with f1 and f2 are shown in Equations 2.7 and 2.8 respectively. 

 1
o#

df
ko K

d(kop )
  (2.7) 

 # 1 #2
1#

df 2
κo K (κop )tan (κop )

πd(κop )

   (2.8) 

Equation 2.7 can easily be integrated to yield Equation 2.9 shown below. 

 
#

1 of K p  (2.9) 

Equation 2.8 can be submitted to integration by parts using Equation 2.10 (Zill, 2001). 

 1 2 1 11 1 1
x tan ( x )dx x tan ( x ) x tan ( x ) C

2 2 2

       (2.10) 

Using Equation 2.10, Equation 2.8 is now integrated as shown in Equation 2.11. 

 
# 2 1 # # 1 #

2 1

2 1 1 1 1
f K (κop ) tan (κop ) (κop ) tan (κop ) C

π κo 2 2 2

  
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 
 (2.11) 

Omitting the details, the constant coefficient C can be found by setting f2 equal to fy (at 

initial yield) and setting p# equal to zero. After performing elementary mathematical 

operations the value of C is obtained as shown in Equation 2.12. 

 
y

1

(κof )π
C

2 K
   (2.12) 

The force f is now found by adding Equations 2.9 and 2.11 to furnish Equation 2.13. 

 
# # 2 1 # # 1 #

o 1 y

2 1 1 1 1
f K p K (κop ) tan (κop ) (κop ) tan (κop ) f

π κo 2 2 2

  
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 
 (2.13) 
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2.3 ONE DEGREE-OF-FREEDOM BENCHMARK COMPARISON 

The derived force as a function of displacement is now illustrated in Figure 2.2 

shown below. The plot contains a maximum at about 1.049 x 105 lbs at a displacement 

of 0.5” with a gradually changing slope near the critical point. Table 5 summarizes the 

key parameters used to generate the plot shown in Figure 2.2. In particular the 

convergence criterion compares the summed magnitudes of the equilibrium error 

"unbalanced force" and the arc length error to a 'tolerance'. 

 

Figure 2.2: One Degree-of-Freedom Benchmark Plot  
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Table 5: Figure 2.2 Key Parameters 

 

The Stiff, Cylindrical and Spherical ALMs were coded in MATHCAD for the one 

degree-of-freedom benchmark equation. The MATHCAD codes for the Stiff ALM and 

the Spherical ALM may be found in Appendix A and B respectively. The resulting 

illustration is presented below as Figure 2.3. Some of the key parameters used in order 

to create Figure 2.3 are noted in Table 6 

Table 6: Figure 2.3 Key Parameters 
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Figure 2.3: One Degree-of-Freedom Benchmark Arc Length Comparisons 

Examining Figure 2.3 above, which is for a very large arc length parameter value (0.1), 

it is evident that the Stiff Arc Length Method follows the one degree-of-freedom curve 

very closely, while the Spherical ALM follows the curve fairly well, the Cylindrical ALM 

bypasses the entire elastic region and the discontinuity point. At this stage, in terms of 

accuracy the Spherical ALM appears to be a good competitor to the Stiff ALM using the 

parameters shown in Table 6. But further evaluation shows that the load parameter 

must be smaller than a certain critical value for it to perform accurately, at the price of a 
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high number of increments. Tables 7 thru 9 show the results of each of the three 

methods when their arc length and load scaling parameters are varied. 

Table 7: One Degree-of-Freedom Stiff Arc Length Method Varying Parameter Summary 

 

 

Table 8: One Degree-of-Freedom Cylindrical Arc Length Method Varying Parameter 
Summary 

 

Referring to Table 7, the Stiff ALM performs with great accuracy with an arc 

length parameter of 0.1. Using arc length parameters smaller than 0.1 provides even 

more accuracy but has computational cost of requiring several more increments. 
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Table 8 analyzes the Cylindrical ALM as it varies with the arc length parameter. 

Using an arc length parameter of 1 and 0.1, the accuracy suffers significantly; however 

using an arc length parameter of 0.01 provides excellent accuracy with only 12 

increments. Another interesting thing to note is that when the arc length parameter was 

decreased from 0.01 to 0.001 the performance actually deteriorated. Finally, Crisfield’s 

Spherical ALM was investigated as shown in Table 9. Selecting an arc length parameter 

of 0.1 and a load scaling parameter of .0001 does not allow the solution to converge 

beyond the elastic region. A similar observation holds using an arc length parameter of 

0.01, while keeping the load scaling parameter of 0.0001. Selecting the arc length 

parameter as 0.1 and choosing a load scaling parameter of 0.00001 allows the solution 

to follow the entire curve but with some inaccuracies at the discontinuity. However 

further decreasing the load scaling parameter increases the error because this case is 

very close to the Cylindrical ALM, and accordingly contains large error near the slope 

discontinuity. Decreasing the arc length parameter while varying the load parameter 

decreases the error; however the results follow the same pattern as above, namely the 

load parameter actually increases the error if it becomes sufficiently small. The 

Spherical ALM works well when the optimal value of the load and arc length parameter 

are chosen but it takes trial and error (user intervention) to identify what the optimal 

values are. 

 The erratic behavior of the Cylindrical and Spherical ALMs indicates that their 

effectiveness requires skillful "user intervention". We believe this poses a serious risk of 
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unreliability when implemented in a widely used nonlinear Finite Element code used by 

analysts with varying skill levels.  

Table 9: One Degree-of-Freedom Spherical Arc Length Method Varying Parameter 
Summary 

 

2.4 ONE DEGREE-OF-FREEDOM COMPARISONS USING REAL STRESS-

STRAIN DATA 

Next, several empirical stress-strain curves are used to demonstrate the realism 

of the one degree-of-freedom equation discussed in Section 2.2. Figures 2.4 and 2.5 

below are material stress-strain curves obtained from Atlas of Stress-Strain Curves 

(ASM International, 2002); they exhibit a gradually decreasing slope until a critical point 

is reached well into the plastic region of the material, after which the slope is negative. 
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Figure 2.4 depicts the behavior of aluminum alloy AL 3033, while aluminum alloy AL 

7075 is depicted in Figure 2.5. The published curves were digitized using the software 

program Datathief (Tummers, 2006), and the figures below have been drawn from the 

resulting spreadsheet. 

 

Figure 2.4: Al 3003 Stress-Strain Curve Replicated using Datathief 
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Figure 2.5: Al 7075 True Stress-Strain Curve Replicated using Datathief 

The performance of the ALMs with respect to following a curve that exhibits similar 

elastoplastic behavior has already been demonstrated in Section 2.2; of course the 

coefficients in the one degree-of-freedom equation in Section 2.2 have been modified to 

accommodate the material proprieties shown in Figures 2.4 and 2.5.  

 Next the new material data sets are used to evaluate the performance of the 

three ALMs. The two stress-strain curves were digitized using the program Datathief, 

enabling data points from the actual curves to be into MATHCAD. Figures 2.6 and 2.7 
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show the comparisons of the three ALMs to the modified benchmark one degree-of-

freedom equation and the actual material curves for Al 3003 and Al 7075. 

 

Figure 2.6: Al 3003 Stress-Strain Curve Comparisons 
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Figure 2.7: Al 7075 Stress-Strain Curve Comparisons 

The actual material stress-strain plot is shown in magenta in both figures. The graphs 

are both plotted using force versus displacement with the cross-sectional area and 

overall length, both being equal to unity so that this directly correlates to the stress-

strain curve data in the two material curves. Both the Aluminum 3003 and Aluminum 

7075 stress-strain curves have a smooth but rapid transition region between the elastic 

and plastic region of the material. The one degree-of-freedom equation was derived 
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using the assumption that there is a sharp transition, and thus there is a slope 

discontinuity present directly at initial yield. The benchmark equation could have been 

easily modified with a transition function to eliminate the slope discontinuity. But this 

was not of interest in the present investigation due to the facts that (1) it is more 

demanding on the arc length methods to follow an abrupt change in stiffness, (2) certain 

materials actually do approximate abrupt transitions such as the model equation 

incorporated, and (3) classical 3D material models in elastoplasticity incorporate abrupt 

transitions.  

The three ALMs have been applied to the one degree-of-freedom equation, using 

the material properties of the Al 3003 and Al 7075 material curves, as illustrated in 

Figures 2.6 and 2.7. The parameters for the three ALMs are shown in Table 10. 

Table 10: Figures 2.6 and 2.7 Key Parameters 

 

As shown in Figures 2.6 and 2.7 the Stiff ALM followed the model equation very 

accurately using a larger arc length parameter than the Cylindrical and Spherical 

methods. However, using an arc length parameter an order of magnitude smaller than 

what was used for the Stiff Arc Length method, the Cylindrical and Spherical ALMs 
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experience a significant error around the discontinuity, possibly due to the initial 

predictor that Crisfield invokes in his arc length methods. The Spherical ALM performs 

better than the Cylindrical ALM; however it takes some 'tweaking" of the load scaling 

parameter ψ to induce the arc length method to perform accurately. 
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 : THREE DEGREE-OF-FREEDOM COMPARISONS Chapter Three

3.1 THREE DEGREE-OF-FREEDOM BENCHMARK 

A three DOF benchmark problem is now formulated. The eight bar truss shown 

below in Figure 3.1 contains three independent degrees-of-freedom; horizontal 

displacement at node 2 (p2x), vertical displacement at node 3 (p3y), and a vertical 

displacement at node 4 (p4y). The nodes of interest have the initial coordinates (x20, 

y20), (x30, y30) and (x40, y40), relative to the origin at the bottom middle node. 

 

Figure 3.1: Benchmark 3 DOF Truss 

The truss members have lengths LA, LB, LC, LD and LE. All truss members are connected 

by frictionless pin joints and are assumed to experience uniaxial tension under 

monotonically increasing loads whose maximum values are consistent with small strain 

kinematics. All the truss members have the same cross-sectional area A, and contain 
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elastic-plastic material behavior that is represented by the stiffness relations shown in 

Equations 3.1 and 3.2. 

 
e y( ) A ke ε E ε ε  (3.1) 

  1

po p1 y y

2
( ) A tan α( )

π

 
    

 
ke ε E E ε ε ε ε  (3.2) 

In which ε denotes the strain and εy is the strain at initial yield. Of course this relation is 

the same as was used for the 1 DOF benchmark calculations. The parameter Epo is the 

stiffness just after initial yield, and the stiffness at large strain is Epo-Ep1 which is chosen 

to be negative to model instability. After performing some elementary manipulations, the 

strain in each member can be approximated as shown in Equations 3.3 thru 3.7. 
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The incremental stain-displacement relationship is shown below as Equation 3.8. 

 d dE G D  (3.8) 
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In which dE is the incremental strain vector, dD is the incremental displacement vector, 

and G is a geometry matrix; each of these quantities are shown below in Equations 3.9 

thru 3.11 respectively. 
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The forces in the members can be found by integrating the stiffness relations with 

respect to strain. The resulting force relations are shown in Equations 3.12 and 3.13. 

 ( ) ( )e yA f ε E ε ε ε  (3.12) 
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The forces in the truss can be consolidated into a vector (array) as a function of strain, 

which in turn is a function of displacement; this is shown in Equation 3.14. 
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A kernal of the stiffness matrix to be presented may now be expressed using the 

individual member stiffness values, with the rest of the matrix containing zeros. 

Equation 3.15 shows the kernal stiffness matrix. 
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The individual lengths of the members can be represented in matrix form as shown in 

Equation 3.16. 
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 Applied to a finite element model with n displacement degrees-of-freedom, the 

Principle of Virtual Work is stated in Equation 3.17. 

 
T Tδ dV=δ e s p F  (3.17) 

Where δ is the variational operator, e is the 9x1 strain vector, s is the 9x1 stress vector, 

p is the nx1 (global) displacement vector and F is the nx1 (global) external force vector. 

In the current example, we have the correspondences shown in Equation 3.18. 

 
T T T, , A,   p D e E s f e D G   (3.18) 

The Principle of Virtual Work may now be applied to write the equilibrium unbalance 

force vector φ as shown in Equation 3.19 

 T T T1
dV

A

 
  

 
D φ D G f F   (3.19) 

Integrating Equation 3.19 and rearranging leads to Equation 3.20. 
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Of course, at equilibrium the unbalanced force vector φ vanishes. To employ Newton 

Iteration, ( ( )) 0φ E D  needs to be solved. Differentiation is used to derive the Jacobian 

matrix as shown in Equation 3.21. 
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Here J(E(D)) is the same as the Finite Element tangent stiffness matrix, usually denoted 

as KT in the Finite Element Method (Nicholson, 2004). The solution of ( ( )) 0φ E D  

using Newton Iteration gives rise to the scheme shown in Equation 3.22.  

 
j j 1 j j 1

k 1 k 1 k 1 k 1( )( ) ( ) 

     J D D D φ D  (3.22) 

Shown below in Figure 3.2 is a plot of this benchmark equation. As noted in Figure 3.2 

is the maximum forces for node 2, 3, and 4 are 2.29 x 105, 6.85 x 104 and 1.91 x 105 

respectively. Figure 3.2 is a plot of three curves; each curve consists of the force and 

displacement path for one particular node. Accordingly, for a give set of forces the exact 

displacements may be computed from the foregoing relations. The goal is to use the 

ALMs to integrate the Finite Element equation, Equation 3.21.  

3.2 THREE DEGREE-OF-FREEDOM COMPARISONS 

If the results for three ALMs were shown on one illustration, as in the in previous 

chapter, the figure would get too cluttered and not helpful for comparing performance. 

Accordingly, each ALM is presented with its own subset of graphs. Table 11 shows the 

key parameters used for each of the three Arc Length Methods. 
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Figure 3.2: Three Degree-of-Freedom Benchmark Plot 

Table 11: Key Parameters for 3 DOF Curves 
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For all three methods, there is an inherent difference between the model equation 

and the ALM results because the loading paths to reach the final prescribed load are 

slightly different. In plasticity, the deflections at a given load are affected by the history 

of how the loads were applied. The reference curves from the model equation (Figure 

3.2) have been generated by increasing the displacement at a node at a constant 

incremental value, and then solving for the corresponding force at each increment until 

the final displacement is reached. The computational results ensue from incrementing 

the arc length, meaning that the loads and displacement increments are applied 

simultaneously subject to the arc length constraint. The curves should be very close 

and, in particular, agree exactly at the maximum loads since the maximum loads in the 

reference curves were used as the input external force in the arc length methods. The 

ALM procedures are 'self-validating' in that ALM converges only if the unbalanced force 

vector vanishes. However, if convergence does not occur in 20 iterations, the last iterate 

is taken to be the solution and then would appear on the associated figure. One reason 

for continuing to the next increment after twenty iterates is to determine whether the 

solution process thereafter regains the correct path.  

Shown below in Figure 3.3, is the Stiff Arc Length Method plotted against the three 

degree-of-freedom benchmark equation. Referring to Figure 3.3, the SALM (1) gives 

very close values along the curves, (2) agrees exactly at the maximum load and (3) 

continues computation accurately at and beyond the critical point.  
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Figure 3.3: Three Degree-of-Freedom Benchmark Comparison to the Stiff Arc Length 
Method 

As previously mentioned, the maximum loads observed in the model equation were 

input into the ALM benchmark calculations, so the model equation and the ALMs should 

all have the same maximum prescribed load. 
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 It was discovered that a multiplier change from 1.0 to 1.11 is needed on the load 

at the center of the stiff arc length constraint equation, to shift this region slightly 

downwards. Doing so allowed the solution path emanating from the critical point to 

converge in the forward direction and not backtrack. As previously mentioned two 

potential solutions, a forward solution and a backtracking solution, exist at the critical 

point since the loads decreases for both directions; i.e. the critical point may become a 

bifurcation point. This modification is interpreted as shifting the "zone of attraction" for 

the forward solution to include the initial iterate; the notion of a zone of attraction is a 

common issue in Newton Iteration. If the initial iterate is in the “domain of attraction" of 

the backtracking solution, the solution will in fact backtrack. Note an important fact: the 

multiplier modification has no effect on the augmented tangent stiffness matrix nor on 

the equilibrium relation Furthermore the multiplier modification is only needed at the 

critical point and thereafter the process reverts to the 1.0 factor This last observation 

supports the “domain of attraction” interpretation of the modification. 

 More specifically, the multiplier is applied to the previous converged load in the 

arc length constraint equation as shown in Equation 3.23. 

 j j T j j

k 1 k 1 k 1 k k 1 kξ( ,λ ) ( ) zo( λ 1.11λ ) S 0        p zt p p  (3.23) 

The 1.11 multiplier was employed in several different cases for which the material 

parameters that control the solution path and the increment sizes were significantly 

altered, and yet the 1.11 multiplier worked in all cases. The 1.11 multiplier allows the 

solution path to continue accurately beyond the critical point, although after further 

examination, it was found that the maximum computed load differs very slightly from the 
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prescribed maximum load. The error between the prescribed load and the maximum 

loads experienced for all three nodes at the critical point was less than 0.04%, making 

this error at the critical point of little consequence.  

Furthermore, it must be acknowledged that a general method for making the 

modification has not yet been established, and that further study on the modification is 

recommended for future work. 

Figure 3.4 is a plot of the number of iterations for convergence at each increment 

for the Stiff Arc Length Method. Referring to Figure 3.4, the highest number of iterates 

was 15 (and hence there was convergence), and this occurred at increment 121 

corresponding to the critical point. 

 

Figure 3.4: Stiff Arc Length Method Number of Iterations Plot 
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The determinant of the Jacobian matrix at each converged increment is shown in Figure 

3.5. Observe that the converged determinant is never equal to or smaller than zero. The 

iterative determinate does become near zero and negative near the critical point; 

however those several iterates don’t converge until after the critical point is surpassed, 

where the determinate is no longer zero or negative. As expected, the determinant is 

largest, and constant, in the elastic region and then significantly drops when entering 

into the plastic region of the material. (The determinant in the lower plateau on the right 

is actually of the order of 1013.) 

 

Figure 3.5: Stiff Arc Length Method Converged Determinants  
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Figure 3.6 shows the residuals at each node of the truss member. The residual is the 

magnitude difference between the internal and external forces and is vanishes at 

equilibrium. Figure 3.7 shows the variation of the displacement and load products in the 

Arc Length Constraint Equation (1.28) with respect to each other at each increment. 

The displacement product is nothing more than ( )T j

k 1 k
zt p p  while the load product is 

j

k 1 kzo( λ λ )  .Clearly, as one product increases the other decreases. The plot shows 

that the load product dominates most of the arc length constraint equation in the elastic 

region; then the displacement product dominates in the plastic region. At the critical 

point the displacement product shows an upward spike, while the load product shows a 

downward spike. 

 

Figure 3.6: Stiff Arc Length Method Residuals at Each Degree-of-Freedom  
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Figure 3.7: Stiff Arc Length Method Displacement and Load Product 

Shown below in Figure 3.8 are the forces and displacements at each node at each 

iterate, showing the path that the solution took to attain the converged solution. It can be 

noted that the solution path oscillated for several iterations about the critical point. This 

agrees with Table 12 and Figure 3.4 showing that at the critical point the Stiff Arc 

Length Method took 15 iterates to converge back onto the solution path. The 

MATHCAD code for this problem can be found in Appendix C. The Stiff ALM method 

has been applied several times with different arc length parameters to investigate the 

differences in performance and accuracy. The results are summarized in Table 12.  
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Figure 3.8: Stiff Arc Length Method Force and Displacement Iterates 

Table 12: Three Degree-of-Freedom Stiff Arc Length Method Varying Parameter 
Summary 
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Next the Crisfield Cylindrical ALM has been assessed as shown in Figure 3.9, for 

which the arc length parameter equals 0.1. This ALM was able to continue beyond the 

critical point; however the solution path only had 6 converged values and the actual 

curve was not followed closely, we believe due to the initial predictor bypassing the 

discontinuity and the critical point. This method appears to have only worked because 

the predictor allowed the solution path to jump over major features of the curve, 

including the critical point. Most importantly in our view, further evaluation revealed an 

important difficulty: when a smaller arc length parameter is chosen, the converged 

increments follow the solution path more accurately up to the critical point; but thereafter 

the method backtracks. Figure 3.10 is a plot of the number of iterations it took to 

converge at each increment for the Cylindrical ALM. Referring to Figure 3.10 the highest 

number of iterates was 5 and the Arc Length Method converged generated only 6 

increments. 

The determinant of the Jacobian matrix at each converged increment is shown in 

Figure 3.11. The determinant becomes negative after proceeding beyond the critical 

point as shown in Figure 3.11. 
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Figure 3.9: Three Degree-of-Freedom Benchmark Comparison to the Cylindrical Arc 
Length Method 
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Figure 3.10: Cylindrical Arc Length Method Number of Iterations Plot 

 

Figure 3.11: Cylindrical Arc Length Method Converged Determinants 
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Figure 3.12: Cylindrical Arc Length Method Residuals at Each Degree-of-Freedom 

Figure 3.12 above shows the residuals at each node of the truss member. The process 

of having an initial predictor for the first iterate is shown in Figure 3.13, where it is seen 

that the initial predictor jumps over the discontinuity after which the Arc Length Method 

must correct itself back to the solution path curve. The Cylindrical ALM was then 

executed several times with different arc length parameters to note the difference in 

accuracy and performance, this summary is shown in Table 13.  
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Figure 3.13: Cylindrical Arc Length Method Force and Displacement Iterates 

Table 13: Three Degree-of-Freedom Cylindrical Arc Length Method Varying Parameter 
Summary 
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In our view, most importantly Table 13 indicates that using a smaller arc length 

parameter causes the Cylindrical Arc Length Method to backtrack from the critical point. 

Shown below in Figure 3.14 is a plot of the Cylindrical ALM using an arc length 

parameter of .001 which causes the solution to backtrack after approaching the critical 

point. 

 

Figure 3.14: Cylindrical Arc Length Method Backtracking Plot 
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Finally, Crisfield’s Spherical Arc Length Method was investigated, as shown in 

Figure 3.15. This graph looks very similar to the one in Figure 3.9 because only a small 

load scaling parameter value works. Recall that when the load parameter becomes zero 

or significantly near zero, the Spherical and Cylindrical ALMs become very similar. 

 

Figure 3.15: Three Degree-of-Freedom Benchmark Comparison to the Spherical Arc 
Length Method  
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Just like the Cylindrical ALM, the solution path had very few increments, but the path 

fluctuated around the reference curve, bypassed the discontinuity and likely bypassed 

the critical point. Figures 3.16 and 3.17 are the number of iterations required for 

convergence and the determinant at each convergence, respectively. 

 

Figure 3.16: Spherical Arc Length Method Number of Iterations Plot 
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Figure 3.17: Spherical Arc Length Method Converged Determinants 

 

Figure 3.18: Spherical Arc Length Method Residuals at Each Degree-of-Freedom  
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The residuals for the Spherical ALM at each node are shown in Figure 3.18. The 

iterative process for the Spherical ALM is similar to that of the Cylindrical ALM, and is 

shown below in Figure 3.19. 

 

Figure 3.19: Spherical Arc Length Method Force and Displacement Iterates 

The Spherical ALM was further examined by manipulating the arc length and load 

parameter. The results are shown in Table 14. A very small load parameter was needed 

to enable the method to converge without encountering complex numbers, essentially 

rendering this Spherical ALM results similar to the results of the Cylindrical ALM. This 

code can be found in Appendix D.  
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Table 14: Three Degree-of-Freedom Spherical Arc Length Method Varying Parameter 
Summary 
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 : CONCLUSIONS Chapter Four

Accurate computations at and beyond the critical point in a solution path are 

important because instabilities associated with critical points are precursors to damage 

events. Arc Length Methods have been introduced to predict structural behavior 

approaching or at failure events and to offer insight into the associated damage and 

failure mechanisms. Modeling behavior at and beyond weak instabilities such as 

elastoplastic softening is of greater interest in the current investigation, rather than 

behavior at strong instabilities. Two reasons for this interest are the fact that (1) weak 

instabilities are more challenging computationally since the tangent stiffness matrix is 

nearly singular for an extensive solution path interval encompassing the critical point, 

and (2) the fact that weak instabilities have received comparatively little attention in the 

FEA community.  

Several investigators have commented that the widely used Crisfield and other 

current ALMs sometimes fail at the critical point associated with (weak) material 

instabilities even though they are thought to be reliable when applied to buckling (strong 

instability) problems. The more recent Stiff ALM has features which expected to offer 

better performance than current methods at and near critical points. Most importantly, 

instead of the singular augmented stiffness matrix of the Crisfield and other current 

methods, the Stiff ALM selects an arc length vector which maximizes the stiffness of the 

augmented tangent stiffness matrix.  

The overall goals of the present investigation include implementing the ALMs, 

demonstrating that the Stiff ALM is valid, and demonstrating that its attractive 
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mathematical features result in superior computational performance. Accordingly, the 

present investigation has formulated two simple but demanding benchmark problems, 

implemented the Crisfield and Stiff ALMs for the benchmarks, to compare the 

performance of the Stiff and Crisfield ALMs. 

In the one degree-of-freedom case, the Stiff ALM showed high accuracy and 

stability even when using large arc length parameter values (increment sizes). While the 

Cylindrical ALM only required a few increments to follow the entire solution path, the 

accuracy suffered. Also, apparently because of the type of predictor used, in some 

cases it jumped over the critical point.  

As for the Spherical ALM, it shows marginally better performance than the 

Cylindrical ALM but only if a particular load scaling parameter value is chosen, whose 

identification requires user intervention in the form of trial and error.  

In the three degree-of-freedom case, the Stiff ALM converged very accurately 

along the solution path but took several iterations and a slight shift of the center of the 

arc length constraint domain to allow computations to continue beyond the critical point. 

The shift involves the factor 1.11 which seems to be a problem-insensitive value. For 

example, after modifying the material properties to severely flatten the material curve, 

and after using a wide range of arc length parameter values, and the Stiff Arc Length 

still converged at and beyond the critical point.  

The Cylindrical ALM in the three degree-of-freedom case was able to continue 

beyond the critical point, but only in the case when a large arc length parameter value 

was chosen. This had to do with the method incorporating a predictor which 'jumped 
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over' the critical point region.  When using decreased arc length parameter values the 

accuracy of the Cylindrical ALM should have improved but instead failed at the critical 

point. Deteriorating performance with decreasing increment sizes is considered very 

problematic in FEA. A likely explanation of this outcome is as follows: as the arc length 

parameter value decreased the solution process generated iterates close to the critical 

point and thereby failed owing to near-singularity of the augmented tangent stiffness 

matrix in the vicinity of the critical point.  

The Spherical ALM performed very poorly in the three degree-of-freedom case. It 

succeeded only when certain values of the load parameter and large values of the arc 

length parameter were used, whose identification required user intervention in the form 

of trial and error. It likewise showed failure as the arc length parameter value 

decreased. 

As expected, the Stiff ALM was shown to be a strong contender to the widely 

accepted Crisfield ALMs.  

In summary the Crisfield Arc Length Methods have the following main 

disadvantages: 

1. They abandon Newton Iteration by making the displacement increment 

proportional to the load increment. Therefore this method can at most 

attain linear convergence rather than the attractive quadratic convergence 

characteristic of Newton Iteration; in addition the method introduces a 

potential quadratic root issue. 
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2. The arc length constraint does not reflect the properties of the 

(unaugmented) tangent stiffness matrix; nor is there a rationale in terms of 

the stiffness of the augmented tangent stiffness matrix. 

3. Inherent in the relations in this Arc Length Method, at the exact location of 

the critical point the augmented tangent stiffness matrix is singular and 

solution process fails and the augmented tangent stiffness matrix is near-

singular in an extensive interval encompassing the critical point.  

4. The augmented stiffness matrix includes incremental terms. 

The Stiff Arc Length Method chooses the arc length vector to maximize the 

determinant of the augmented stiffness matrix at the critical point. To maximize the 

determinant, the optimal arc length vector is simply the null eigenvector of the 

unaugmented stiffness matrix. The null eigenvector may be readily computed using 

Gram-Schmidt orthogonalization to find a vector orthogonal to the first n-1 rows of KT.  

In summary the Stiff Arc Length Method offers the following advantages: 

1. It fully implements Newton Iteration, thus benefitting from its quadratic 

convergence property. 

2. The arc length vector is not incremental and requires no ad hoc scale 

factor to prevent ill-conditioning in the augmented tangent stiffness matrix. 

3. The arc length vector is derived from the unaugmented 

stiffness matrix, and is strictly obtained by maximizing the determinant of 

the augmented stiffness matrix at the critical point. This of course justifies 
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the expectation that the augmented stiffness matrix is not singular or near-

singular at the critical point.  
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 : FUTURE WORK Chapter Five

The Stiff Arc Length Method has many advantages over the current widely used 

Crisfield methods, as noted above. Here suggestions are offered for further 

improvements. Crisfield’s Cylindrical and Spherical Arc Length Methods make use of 

initial predictors to help accelerate the process of convergence; it also appears these 

predictors are linear. The Stiff Arc Length Method currently requires many more 

iterations and increments than the Crisfield methods, because the iteration process 

starts with the previous converged solution. The Stiff Arc Length Method could benefit 

from using initial predictors, such as the linear predictors shown in Equations 5.1 and 

5.2. 

 0

k 1 k k k 1ς( )   p p p p  (5.1) 

 0

k 1 k k k 1λ λ ς( λ λ )     (5.2) 

In which the superscript "0" denotes the starting iterate. However using initial predictors 

has a downside as noted in both Chapters 2 and 3: if there is a slope discontinuity in the 

curve the predictor may overshoot significantly and bypass part of the solution path.  

 Several investigators have advocated the use of an interval halving method near 

the critical point or wherever convergence is not attained within a prescribed number of 

iterations. The use of an interval reducing algorithm based off of previous determinant 

increments may increase the performance of the ALM in the vicinity of the critical point. 

For example using three consecutive converged values of the determinant, of the 

unaugmented stiffness matrix, the total arc length increase at which the critical point is 
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reached can be predicted, and the arc length parameter value can then be changed to 

equal half of the increase. This notion is based off of the assumption the determinant 

vanishes at the critical point.  

 As illustration, suppose the values ke(xn), ke(xn-1), and ke(xn-2) have been 

computed. A quadratic model may be introduced in the form of Equation 5.3. 

 2

n 2 n 2 n 2 n 2( x x ) ( x x ) ( x x )        ke ke q r  (5.3) 

The values for q and r are now sought to fit the computed curve using three values. 

Considering the two relations listed below in Equation 5.4, a matrix can be formed to 

solve for the two unknowns as shown in Equation 5.5. 

 

2

n n 2 2 2 2 n n 2

2

n 1 1 1 1 n n 1

x x , x x x

x x , x x x

 

 

       

       n

ke ke q r

ke ke q r
 (5.4) 

 
2 2 2

n n 1 n n 11 1 2 1

2
n n 2 n n 21 2 2 12 2 2 1

x x x x1

x x( x x )x x x x

 

 

             
            

                 

ke ke ke keq q

ke ke ke ker r
(5.5) 

Introducing the predictor xp such that kep = 0 at xp, the quadratic model may be rewritten 

as Equation 5.6. 

 2

n 2 p n 2 p n 2( x x ) ( x x ) 0      κe q r  (5.6) 

Where the predictor xp can now expressed in the form of Equation 5.7. 

 

2

n 2

p n 2

4
x x

2





   
 

 
q q ke r

r
 (5.7) 

Of course the value under the square root must be positive. Equation 5.7 will have two 

roots, but only the lower root is of interest. After using the previous converged 

increments to determine the value of the predicted increment p nx x , if this quantity is 
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less than current increment, then replace the current increment with  p nx x / 2 . The 

predicted increment should be evaluated at each iterate to see if it should be reduced 

again using the algorithm, and a lower bound tolerance should be chosen to prevent the 

increment from being reducing indefinitely. In the truss problem, the determinant of the 

Jacobian matrix would replace ke in Equations 5.3 thru 5.7, and the total arc length ΔST 

would replace x. (Since the determinant may be difficult to calculate in large-scale FEA 

problems, an alternative quantity may be used based on Gram-Schmidt 

orthogonalization.) The total arc length is nothing other than 
j

j

TS S   . This 

suggested algorithm in essence predicts where the critical point is and reduces the 

increment only on approach to the critical point. Doing so offers an attractive potential 

for good performance at considerably less effort, by allowing relatively large increments 

away from the critical point along with high resolution near the critical point.  After the 

critical point is reached and surpassed, the previous increment (arc length parameter) 

may be restored. 

 Both the Stiff ALM and Crisfield’s Spherical and Cylindrical ALMs may encounter 

convergence issues at slope discontinuities, although none were observed in the Stiff 

ALM. Crisfield’s methods appear to be more prone to failure near slope discontinuities. 

In particular, the predictor may cause the solution process to set the iterate well away 

from the correct (equilibrium) relation, with the consequence that the solution process is 

not able to converge to the correct relation. This is a problem worth noting because 

classical plasticity models such as linear isotropic hardening with a Von Mises yield 
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surface are inherently discontinuous; also observed stress strain curves generated from 

experimental data often show a sharp slope change at initial yield.  Difficulties at slope 

discontinuities did not appear to be an issue for the Stiff Arc Length Method as 

formulated here, since the last converged solution is used as the initial iterate. If a 

predictor is used to generate the initial iterate, a problem may arise, although it appears 

that the Stiff ALM is performs well in regaining the correct equilibrium curve. However, if 

problems do occur there are a few options to circumvent this issue. The material model 

may be modified in advance to 'smooth out' the slope discontinuity. Alternatively, if at 

some point in the solution process, the residuals after one iterate are suddenly large 

compared to previous steps, the solution process may then backtrack to use 

progressively smaller increments until the residuals meet a tolerance.  

 Since the Stiff Arc Length Method performs so well in elastoplastic problems at 

the critical point, it would be attractive to apply it to necking and other strain localization 

applications. Specifically, this method might be used to further understanding the 

phenomenon of necking and predicting its development to the point of failure. Several 

necking experiments could easily be performed in conjunction with the modeling. 

Agreement between experiment and computation would likely provide a strong impetus 

to adoption of the method widely in the FEA community.  

 Additional investigation is needed as to why the 1.11 multiplier in the load 

product of the arc length constraint equation works at the critical point. Fortunately, the 

1.11 multiplier seems to be problem-insensitive in that it is effective for several different 

material curves as the material properties are varied significantly. The multiplier is only 
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required at the critical point and nowhere else in the solution path. Nor does it have any 

effect on the augmented tangent stiffness matrix. It is very desirable to avoid requiring 

the user to intervene to allow the Arc Length Method to continue computation at and 

through critical points. 

 The view has been expressed that the multiplier shifts the constraint region such 

that the initial iterate is in the 'domain of attraction' of the correct solution. Investigation 

is needed to examine the iteration process at the critical point and to consider the effect 

of starting to the near right and to the near left. Recall that the sign in the arc length 

constraint load term changes at the critical point. However the solution process does not 

necessarily yield values exactly on the critical point, but instead the associated 

increment straddles it. Perhaps a value between +1 and -1 should be introduced which 

is proportionate to the fraction of the increment to the left and to the right of the critical 

point. Investigation is also needed on the benefits of increment size reduction near the 

critical point, since the increment will typically straddle the critical point.  

 Of course it is desirable to demonstrate how the Stiff ALM can be implemented in 

a large scale finite element code, rather than in simple benchmarks. Usually solvers in 

commercial codes such as ANSYS are not accessible through the user interface. 

However there are several publically available codes which may be modified to 

incorporate the Stiff ALM in the solver. One code is of particular interest. The text Finite 

Element Plasticity and Metalforming Analysis (Rowe et al, 1990) gives the source code 

for a simple elastic-plastic code using plane strain, plane stress and axisymmetric 

triangular elements and linear kinematics (Rowe et al, 1990). Since the code uses a 
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constant plastic modulus, it would be necessary to modify it by creating a loop inside the 

code to compute the plastic modulus as a function of strain. The intent would be to 

implement the elastoplastic softening material model in the current investigation. The 

solver would of course need to be rewritten and highlighted. The thereby modified code 

would be applicable to simple necking simulations. 

Finally, in order for the Stiff Arc Length Method to gain more visibility, especially 

now that the performance has been verified through several examples, this investigation 

should be incorporated into an article for submission to a journal. Publishing the results, 

as well as the MATHCAD codes, will afford interested investigators an opportunity to 

familiarize themselves with the Stiff ALM and its performance compared to previous 

methods, and perhaps even to conduct further research or performance assessment, or 

implement it in state-of-the-art finite element codes. 
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APPENDIX A: 
STIFF ARC LENGTH 1 DOF MATHCAD CODE 

  



80 
 

  



81 
 

  



82 
 

              



83 
 

  



84 
 

APPENDIX B: 
SPHERICAL ARC LENGTH 1 DOF MATHCAD CODE 
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APPENDIX C: 
STIFF ARC LENGTH 3 DOF MATHCAD CODE 
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APPENDIX D: 
SPHERICAL ARC LENGTH 3 DOF MATHCAD CODE 
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