

Rate Handling Methods in Variable
Amplitude Fatigue Cycle Processing

By

RYAN O’KELLEY

A Thesis submitted in partial fulfillment of the requirements
for the Honors in the Major Program in Mechanical Engineering

in the College of Engineering and Computer Science
and in the Burnett Honors College
at the University of Central Florida

 Orlando, Florida

Summer Term 2010

Thesis Chair: Dr. Ali P. Gordon, Ph.D.

© 2010 Ryan O’Kelley

ABSTRACT

Predicting fatigue failure is a critical design element for many engineering

components and structures subject to complex service conditions. In high-temperature

and corrosive environments, many materials exhibit rate dependent phenomena that can

significantly alter safe service life predictions. Existing cycle processing techniques such

as Peak Counting, Simple Range, and the Rain Flow method are able to resolve complex

service histories into sets of simple cycles, but these methods are unable to handle time-

related parameters such as engage rate and cycle sequence. To address this, a cycle

processor was written in FORTRAN 95 later termed the Multi-Algorithm Cycle Counter

(MACC). This code was utilized as a platform to develop, test, and study various

methods of extracting and interpreting rate parameters extracted from cycles defined by

existing counting algorithms.

 iv

ACKNOWLEDGMENTS

First and foremost I’d like to thank my thesis chair, Dr. Ali P. Gordon for

introducing me to the research field of engineering and pushing me to pursue excellence

in my academic and professional careers. His mentorship, enthusiasm, and

encouragement have opened opportunities in academia and industry that I otherwise

would not have been able to pursue. I’d also like to thank my thesis committee members

Dr. Seetha Raghavan and Dr. Ahmed Khalafallah for their involvement and support in

this research. Lastly, thanks to Scott Keller of the Mechanics of Materials Research

Group for his insight and advice on the procedures and expectations of academic research

at UCF.

A special thanks to my family and friends whose love, support, and gratitude kept

me going during difficult times and deflating setbacks.

 v

TABLE OF CONTENTS

ABSTRACT .. iii

ACKNOWLEDGMENTS .. iv

TABLE OF CONTENTS ... v

FIGURE LISTING .. viii

1. INTRODUCTION ... 1

1.1 Background ... 1

1.2 Objectives ... 3

1.3 Overview .. 4

2. BACKGROUND .. 5

2.1 Single Parameter Algorithms ... 6

2.2 Level Crossing ... 6

2.3 Peak Counting .. 8

2.4 Simple Range Method ... 11

2.5 Double Parameter Methods .. 12

2.6 Zero Parameter Methods ... 15

2.7 Rate-Dependence ... 16

3. Research Approach .. 17

3.1 Preliminary Procedures .. 17

3.2 Resolving Reversal Points ... 19

3.3 Peak Counting .. 20

3.4 Simple Range ... 22

 vi

3.5 Rain Flow ... 23

3.6 RMS .. 23

3.7 Rate Handling .. 24

3.8 Post Processing and the Fast Fourier Transform Method 26

3.9 User Interface .. 27

4. RESULTS ... 30

4.1 Algorithm Validation .. 30

4.2 Algorithm Performance .. 32

4.3 The Simple Signal .. 32

4.4 The 2Ssum Signal .. 35

4.5 The 3sum cycle ... 39

4.6 Random Cycling .. 42

4.7 Rate Handling .. 46

4.8 Simple Signals ... 47

4.9 Noisy Continuous Signals .. 47

4.10 Relative Performance ... 49

4.11 Discontinuous Load Signals ... 51

4.12 Relative Performance ... 52

4.13 Computational Performance .. 53

5. Applications ... 56

5.1 Offshore Structures ... 56

5.2 Land-based Structures ... 59

5.3 Automotive Components ... 63

6. CONCLUSIONS AND FUTURE WORK ... 69

 vii

6.1 Cycle Counting .. 69

6.2 Rate Handling .. 71

6.3 Future Research .. 72

APPENDIX A: SOURCE CODES ... 74

APPENDIX A.1: MACC PARENT MODULE (main.f90) 75

APPENDIX A.2: MACC GLOBAL NAMESPACE MODULE (global.f90) ... 77

APPENDIX A.3: MACC SUBROUTINE MODULE (subs.f90) 78

APPENDIX A.4: MATLAB POST PROCESSING .. 96

APPENDIX A.5: C# MACC GUI .. 98

APPENDIX A.6: MATLAB RATE ANALYSIS ... 100

APPENDIX A.7: MACC Parameter File (params.txt) 102

REFERENCES .. 103

 viii

FIGURE LISTING

Figure 1.1. Strain-rate dependence of fatigue life of AISI 304L at 973 K [5] 2

Figure 1.2. S-N Curve used in traditional variable amplitude fatigue analysis [1] 3

Figure 2.1. Basic fatigue loading parameters [7] .. 6

Figure 2.2. (a) Sample service history data and (b) resolution by the Level Crossing

method [7]. .. 7

Figure 2.3. (a) A sample service history, (b) simple cycles resolved by the Mean Crossing

Peak Counting method and (c) simple cycles resolved by Peak Counting [8]. 10

Figure 2.4. Service history resolution by the Simple Range method [8] 12

Figure 2.5. Application of the Rain Flow method .. 14

Figure 3.1. Typical service history text file .. 18

Figure 3.2. Reversal point being incorrectly resolved by central finite differencing 19

Figure 3.3. MACC system flowchart .. 27

Figure 3.4. MACC GUI form ... 28

Figure 4.1. Code snippet from the MACC service history emulator library 31

Figure 4.2. Simple and complex service histories .. 31

Figure 4.3. Simple sine/cosine service history .. 33

Figure 4.4. Simple service history resolved into reversal points 33

Figure 4.5. Peak Counting method applied to the simple service history 34

Figure 4.6. Simple Range method applied to the simple service history 34

Figure 4.7. Rain Flow method applied to the simple service history 35

Figure 4.8. 2Sum service history ... 36

Figure 4.9. 2sum service history resolved into reversal points ... 37

 ix

Figure 4.10. Peak Counting method applied to the 2sum service history 37

Figure 4.11. Simple Range method applied to the 2sum service history 38

Figure 4.12. Rain Flow method applied to the 2sum service history 38

Figure 4.13. 3sum service history ... 40

Figure 4.14. 3sum service history resolved into reversal points 40

Figure 4.15. Peak Counting method applied to the 3sum service history 41

Figure 4.16. Simple Range method applied to the 3sum service history 41

Figure 4.17. Rain Flow method applied to the 3sum service history 42

Figure 4.18. Random service history .. 44

Figure 4.19. Peak Counting method applied to the random service history 44

Figure 4.20. Simple Range method applied to the random service history 45

Figure 4.21. Rain Flow method applied to random service history 45

Figure 4.22. Extraction method diagram .. 46

Figure 4.23. Rate examination of a simple signal ... 47

Figure 4.24. Rate examination of the 2sum half-cycle ... 48

Figure 4.25. Rate examination of the 3sum half-cycle ... 49

Figure 4.26. Relative extraction performance with increasing signal complexity (Simple

signal reference) .. 50

Figure 4.27. Relative extraction performance (RRE method reference) 50

Figure 4.28. Rate examination of a step cycle .. 51

Figure 4.29. Rate examination of the step2sum half-cycle ... 52

Figure 4.30. Relative extraction performance on discontinuous signals (step reference) 53

 x

Figure 4.31. Relative extraction performance on discontinuous signals (RRE Reference)

... 53

Figure 4.32. CPU time used in MACC execution - Step input ... 54

Figure 4.33. CPU time used by Rain Flow method - 2sum signal 55

Figure 5.1. Offshore structure service history sample .. 57

Figure 5.2. RRE method applied the offshore service history .. 58

Figure 5.3. CFDA method applied to the offshore service history 58

Figure 5.4. Linear LSR method applied to the offshore service history 59

Figure 5.5. Extraction method comparison (offshore structure) 59

Figure 5.6. Land-base structure service history sample .. 61

Figure 5.7. Secondary cycles from the Land-base structure service history 61

Figure 5.8. RRE extraction method applied to the land-based structure service history .. 62

Figure 5.9. CFDA extraction method applied to the land-based structure service history 62

Figure 5.10. Linear LSR extraction method applied to the land-based structure service

history ... 63

Figure 5.11. Extraction method comparison (land-based structure) 63

Figure 5.12. Automotive axle service history ... 65

Figure 5.13. Single cycle from the automotive axle service history 65

Figure 5.14. RRE extraction method applied to the automotive axle service history 66

Figure 5.15. CFDA extraction method applied to the automotive axle service history 66

Figure 5.16. LSR extraction method applied to the automotive axle service history 67

Figure 5.17. Comparison of engaging rates (automotive) .. 67

Figure 5.18. Comparison of disengaging rates (automotive) .. 68

 1

1. INTRODUCTION

1.1 Background

It could be argued that fatigue failures are inevitable in mechanical systems. If a

component subject to cyclic loading does not fail due to overload, shock, corrosion, wear,

or other modes of failure, it will eventually succumb to fatigue. Generally, designs of

components are over-engineered to ensure that the life cycle of the product outlasts any

warranty or legal liability. These oversights very often increase production and life-cycle

costs, while decreasing product performance. One goal of further fatigue research is to

develop methods that lead to maximum utilization of mechanical products.

A component or structure subject to cyclic loading either has or has not failed by

some arbitrary definition (i.e., visible crack formation). The nature of the failure criterion

is generally discreet, but the time-dependent relationship suggests that the phenomenon is

actually continuous with time; a mechanical component appears to be able to withstand a

certain number of loading events before sudden failure. This sets the stage for various

constructs to bridge the gap between the failed and functional states—the ultimate goal of

these constructs being to rate the remaining functional service life of the component.

The facet of interest in this research is the improvement of fatigue failure prediction

through more thorough service history analysis. More specifically, this research

concentrates primarily on improving the existing cycle counting methods used to analyze

service history data. Pivotal concepts and assumptions used in such approaches are:

 Elements subject to variable amplitude service have a finite service life [1]

 Service life can be estimated by (1) condensing the service history data into cycle
events (cycle counting) [2], (2) estimating damage incurred be each cycle event
[3], and (3) accumulating the damage incurred by each event [1].

 2

Continuing developments in the power generation industry have lead to larger, higher

temperature and higher pressure gas and steam turbines that require more robust

components than ever [4]. Because the material prices of austenitic stainless and Ni-base

superalloys continues to rise, many manufacturers aim to optimize component designs to

reduce initial manufacturing costs, and reduce life-cycle costs by increasing time

intervals between inspection outages. One such opportunity for optimization is increasing

the service life of a component by accounting for rate-dependence in fatigue life

estimation. Figure 1.1 shows a typical example of fatigue life dependence on strain rate.

Here the material exhibits two distinct regions of strong and weak strain-rate dependence.

If rate data is not included in analysis, there are two possible consequences: (1) assuming

fatigue resistance from the weak region will lead to overly conservative life estimates

when high rate events are superimposed with low rate events or (2) assuming fatigue

resistance from the strong region will result in non-conservative estimations of fatigue

life.

Figure 1.1. Strain-rate dependence of fatigue life of AISI 304L at 973 K [5]

 3

In the typical setting, single-variable S-N data is used to develop a relationship

between fatigue strength and number of repetitions to failure shown in Figure 1.2. In this

data, material composition, condition, temperature, pressure, and cycle rate are assumed

constant. Specific to this application, each load event magnitude is cast as a fatigue-

strength, and the relationship is used to determine Nf, the number of repetitions to failure.

Figure 1.2. S-N Curve used in traditional variable amplitude fatigue analysis [1]

Knowing this, and the number of repetitions that occurred during a service history,

Miner’s linear damage accumulation rule is used to establish the percentage of functional

life consumed by the load event [3,4,6]. This procedure is repeated until all loading

events are resolved and accounted for. Although the analysis of damage accumulation

theory is outside the scope of this research, it is the primary motivating factor behind the

incorporation of rate parameters.

1.2 Objectives

Rather than utilizing a single parameter relationship to determine Nf, the number

of repetitions to failure, this research aims to explore complementing this quantity with a

 4

rate dependent metric derived from the complex service history. Capturing rate along

with cycle magnitude can more accurately model the accumulation of damage throughout

a complex service history. The main obstacle in utilizing such a technique is the lack of

support for extracting cycle rate parameters in existing counting procedures [7]. The

primary objective of this research is to develop and characterize methods for extracting

rate parameters from post-processed service histories. In order to make any substantial

observations about the validity of the rate extraction methods to be developed, the

fundamental operation of the employed counting algorithms needed to be understood to

develop a consistent and meaningful definition of a cycle. To exhibit and address the

issue of cycle rate extraction in existing cycle processing algorithms, existing cycle

counting procedures were developed, tested, and modified.

1.3 Overview

Once the algorithms of interest had been developed into programmable procedures,

they were integrated into the Multi Algorithm Cycle Counter (MACC) code and

subjected to a range of simple and idealized service histories. Performance characteristics

such as processing time, number of cycles identified, feature expandability, and cycle

validity were documented to serve as a comparison metrics to rank methods included in

the MAAC program. The next chapter of this thesis details pertinent prior research on

fatigue cycle counting. Afterwards, the analytical approach of this research is discussed

and in Chapter 4 the test results of standard and modified counting algorithms are

covered. Chapter 5 applies these results in industry-specific case studies to examine the

aggregate performance of the rate extraction methods.

 5

2. BACKGROUND

Cycle counting in this context is the resolution of a complex service history that is

either too long or too complicated to count visually into a series of simple cycles that can

be processed by a damage accumulation rule. The ASTM standard E 1049 [7] provides

an adequate definition of some commonly used algorithms, but it does not mention a

procedure for selecting an algorithm or the environment-dependence of their

performance. Other fatigue texts also only outline the basic procedures of the various

counting algorithms [3,6,8]. Industry publications such as the ASM International

Handbook on Fatigue and Fracture [9] only mention the use of an “adequate” cycle

counting method and do not formally define criteria for such a counting method. The

above mentioned literature also provides little insight into developing these concepts into

numerical procedures for practical use; analysis of this literature reveals a considerable

gap between the formal definition of these methods and programming solutions required

for their implementation. The prospect of rate and sequence extraction also goes virtually

unmentioned. The literature referenced in this work served mainly to define the

framework of the cycle counting methods as there has apparently been very little or no

known research resulting in publications relevant to the main scope of this project. An

exhaustive literature review has resulted in no widely available works addressing rate

extraction. The counting algorithms are commonly grouped by the number of potential

cycle parameters taken into consideration when the cycle is being defined. The single,

double, and zero-parameter methods are described in the following sections.

 6

2.1 Single Parameter Algorithms

The single parameter approaches are more often used in demonstration than in

industrial application [6,7,10]. This algorithm group analyzes a single parameter (i.e.,

difference between points, point value, etc.) to reconstruct a simple cycle and typically

cannot properly resolve noise, secondary signals, or other highly complex signals.

Figure 2.1. Basic fatigue loading parameters [7]

2.2 Level Crossing

When single parameter methods are defined, level-crossing counting almost

universally appears first. The Level Crossing procedure starts with the definition of a

reference load level. The load space (or axis) must then be divided into a meaningful

number of subdivisions. Two categories of counts are defined: when the load data crosses

a division line with a positive slope, a Category I count is made. When the load data

crosses a division line with a negative slope, a Category II count is made. Once all

sections of the load data are resolved, the elements are reassembled to form the most

damaging cycles. Starting at the reference load level, sequentially larger Category I

counts are assembled until there are no larger values. Starting at the last level,

sequentially smaller Category II counts are assembled until the reference load level is

 7

reached. This procedure is repeated in the negative load direction until all sections are

accounted for. Figure 2.2 shows a typical service history before and after the application

of the Level Crossing method. In this figure, the reference load level is assumed to be

zero which imposes the requirement that each cycle stem from and return to this level.

Reconstruction of the service data reveals the high magnitude master cycle, but combines

several of the slave cycles into a more damaging, high amplitude cycle. Only two noise

cycles are identified; several are lost in the load space subdivisions and others are

consumed by higher magnitude cycles.

Figure 2.2. (a) Sample service history data and (b) resolution by the Level Crossing method [7].

Visually, and without any consideration of error tolerances, the Level Crossing

technique is relatively simple but extremely tedious to execute. The method dissects the

service history into differential elements and reconstructs simple cycles using these

elements. In practice, this method yields some impressive obstacles. A reoccurring theme

 8

among this and other single-parameter methods is the definition of a reference load level.

Among relatively simple service histories this may be observed visually (i.e., overall

average load), but this idea in principal contradicts the motivation behind utilizing such

an algorithm: to resolve complex service histories (i.e., situations where the history

cannot be resolved visually). In common with many other single-parameter methods is

the complete rearrangement of load values, invalidating any rate or sequence information.

Further, dividing the load space into a “meaningful” number of sections is not formally

defined in literature. For a given service history, the number of divisions could be

increased until the cycle count does not exhibit any significant change; however, this also

contradicts the underlying goal of these algorithms as the count would be performed

indefinitely until an optimal environment is created. Further still, the method does not

actually define any procedure for the counting of cycles. Only cycle reconstruction is

outlined in this method. An additional procedure such as Peak Counting or Simple Range

must be used on long service histories where the reconstructed cycles cannot simply be

counted visually.

2.3 Peak Counting

One of the more intuitive single-parameter methods is Peak Counting. In common

with the majority of the algorithms, the Peak Counting method cannot operate directly on

service data. The service data must first be resolved into reversal points (i.e., local

maxima and minima) [7,8,10]. There are several variations of the Peak Counting method

found in literature. The most commonly used variation evaluates only local maxima

above the reverence level and local minima below the reference level. These points are

later paired to form cycles (Figure 2.3 (b)) [7]. This variation can lead to highly non-

 9

conservative damage estimation as a large portion of reversal points can potentially be

discarded. This method imposes the assumption that all cycles must cross through the

reference level. Another variation simply pairs the largest available sets of maxima and

minima to form cycles (Figure 2.3 (c)) [7]. This variation tends to yield more

conservative damage estimations in that many secondary or noise cycles can be counted

as reference level-crossing, high magnitude cycles. Because this research aims to use this

method as an upper bound for counting solutions, the latter is further explained in detail.

The procedure starts with the definition of a somewhat arbitrary reference load level.

Often times, the overall history average is used. Similar to many cycle counters, the load

data must be resolved into reversal points. The largest and smallest reversal values are

then paired until all points have been accounted for in a cycle. The difference between

each pair is recorded as the cycle range and the mean can be recorded as the average of

the pair. The cycle mean will by nature be biased toward the reference level and

therefore, is generally disregarded. A demonstration of the Peak Counting method is

shown in Figure 2.3. In this figure, because the service history is identical to that of

Figure 2.2 (a), the reference strain level is assumed to be zero. Figure 2.3 (b) shows the

Peak Counting method correctly resolving the high amplitude master cycle. Like the

Level Crossing method, the Peak Counting method implicitly combines portions of noise

cycles to form a medium amplitude cycle (cycle F-G) but yields a significantly more

conservative counting solution as noise is cast as higher magnitude cycles.

 10

Figure 2.3. (a) A sample service history, (b) simple cycles resolved by the Mean Crossing Peak Counting method

and (c) simple cycles resolved by Peak Counting [8].

As with the Level Crossing technique, there is no formally defined method to

determine a meaningful reference load level when using the Peak Counting method. In

principal, the Peak Counting method assumes that the service history begins at the

 11

reference load level, moves to a high peak value, back to the reference load level, moves

down to a low peak value, and back to the reference level once again to form a complete

reversal using only the peak and valley points as evidence. These assumptions propagate

each cycle average to the overall history average, and therefore mean stress or strain

effects cannot be accounted for. In common with the Level Crossing technique, this

method also requires the complete rearrangement of load data, invalidating all rate and

sequence information.

2.4 Simple Range Method

The Simple Range method is one of the more sophisticated single-parameter cycle

counting algorithms. Similar to the Peak Counting method, the Simple Range algorithm

cannot operate directly on service history data so it must first be resolved into a set of

reversal points. Where the Level Crossing method divides the history into differential

units, and the Peak Counting method examines peaks, the Simple Range method

examines ranges, or differences between sequential reversal points. The difference

between sequential points is calculated and each value is counted as a half cycle. Figure

2.4 demonstrates this method on a complex service history. In this figure, the simple

range method fails to correctly resolve noise and secondary cycles to uncover the master

cycle (range D-G). The master cycle is misrepresented and masked by noise at a range of

six units. Visual inspection reveals the master cycle at a range of nine units.

 12

Figure 2.4. Service history resolution by the Simple Range method [8]

 At the fundamental level, there are no major application issues stemming from the

Simple Range method. An arbitrary reference level is not required, few operational

assumptions are made, rate and sequence information are preserved, and partial cycles are

handled in an effective manner. However, signals with a large amount of noise will

completely mask underlying high-amplitude cycles as each reversal pair is discarded after

being resolved as a half-cycle.

2.5 Double Parameter Methods

The double parameter methods generally yield the most accurate and reliable

cycle counts [10]. In this group of counting algorithms, pairs of cycle parameters are

 13

analyzed for cycle candidacy which allows for the proper resolution of noise and

secondary cycles. The algorithm that best characterizes the double parameter methods is

the Rainflow method developed by Endo and Matsuiski [11]. Although this method is not

possible to implement numerically the way Endo and Matsuiski describe it, there are

multiple numerically compatible adaptations available [3,6,8]. This algorithm adequately

resolves noise, identifies hysteresis behavior [10], and is capable of retaining time data

for cycles.

The ASTM standard E 1049 [7] contains a definition of the Rain Flow method

that is much simpler than the Rain Flow analogy used in many texts [6,8,10] . Similar to

previously mentioned methods, this procedures starts with the resolution of the load data

into reversal points. The first, second, and third reversals are cast as points i, j, and k,

respectively. The procedure continues by evaluating the difference (or range) between

points i and j, and points j and k. If the j-k range is larger than that of the i-j range, the i-j

range is counted as a full cycle and the point j is discarded from further analysis. The

procedure continues by recasting the i-j-k indices onto remaining reversal points and

repeats this procedure until only two reversal points remain. The range of this remaining

pair is counted as a half-cycle. There are also some exceptions to this procedure. If point i

is the beginning entry in the reversal data and a cycle is discovered, point i is discarded

rather than point j. Figure 2.5 is a visual representation of the ASTM Rain Flow

procedure with the starting point exception in use. Starting at Point B, the A-B range is

counted as a reversal because the B-C range is larger. Because Point A is a starting point,

it is discarded rather than Point B. Upon visual inspection, this method appears to

correctly unmask the high amplitude master cycles without altering the lower magnitude

 14

secondary cycles. Because the reversal data is not rearranged or altered in the process, the

counted cycles also retain their mean, sequence, and rate parameters.

Figure 2.5. Application of the Rain Flow method

The vast majority of the double parameter methods yield closely grouped results

when applied to the same service history. Hayes Method, Range Pair, Ordered Overall

Pair, Racetrack, and the Hysteresis Loop method all yield virtually identical cycle counts

as the Rainflow method when load data is arranged in the same manner [7]. The double

 15

parameter methods are all driven by the same objective: the identification of hysteresis

loops and the extraction of their parameters.

2.6 Zero Parameter Methods

The zero parameter cycle counting algorithms are best employed in scenarios

where more in-depth analysis would not be meaningful or economical. Long, random and

invariant loading histories where the primary objective is to study the effects of noise and

vibration on fatigue life are typical candidates for the Zero Parameter methods. Two

commonly used algorithms are the RMS Method and the Fourier Transform Method.

Applications primarily subject to vibration or high-speed, random loading where

the amplitude of oscillation is significantly larger than any discontinuous events in the

service history may be represented via the Root Mean Square (RMS) method. The proper

use of the RMS method is neither widely published nor standardized, but most of its

applications construct an equivalent, constant amplitude master cycle based on the RMS

value of the high and low reversal points. The number of reversal points is assumed to be

directly proportional to the number of cycles [3,12]. Once the RMS equivalent range is

computed, pairs of reversal points are counted as complete cycles. This method removes

all time related information from the load data and refines it to only two parameters:

RMS equivalent range and the number of cycles.

Applications that are subject to a sum of time-continuous, sinusoidal load signals

based on an analytic function can benefit from the use of a Fourier transform [13,14,15].

By transforming the load signal from the time domain to the frequency domain, the

amplitude and frequency of major sinusoidal load events can be extracted by identifying

 16

the peak points in the transformed function. Knowing the frequency of a signal allows for

an interpolation of the number of repetitions that occur in a fixed time frame.

Relative to other commonly used methods, Fourier analysis has the narrowest of

applications. Any non-periodic events will be neglected, and any non-sinusoidal signals

will be erroneously represented as low-amplitude noise due to the nature of the Fourier

Transform.

2.7 Rate-Dependence

Rate dependence of materials is well known and documented facet of materials

testing [5,16,17,18]. Monotonic room temperature experiments on high-performance

steels show increases in yield strength on the order of 10% and more [19]. Materials

subject to high-rate conditions appear to react to loading events with higher strength as

potential dislocations within the material do not have adequate time to reach a steady

state and permeate [18]. Further research shows that the overall effect of an increased

cycle rate on fatigued components in high-temperature environments can dramatically

increase fatigue life. More importantly, the effect of low cycle rates is significantly

decreased fatigue life [5] which may lead to premature failure. This study aims to

develop a framework in which these effects can be accounted for by analyzing various

cycle definitions used in literature and using these algorithms as a platform for

developing rate handling procedures for further testing.

 17

3. Research Approach

In order to analyze cycle data, programmable algorithms are required. Existing

software such as AFGROW, RAINFLOW from Durability, Inc. and STOFLO contain

adequate cycle counters, but generally no commercially or publically available source

codes are available to utilize as a platform for further research and development of the

cycle counting methods. A small software package outlined in Figure 3.3 was written as a

part of the current study to investigate rate handling procedures. The Multi-Algorithm

Cycle Counter (MACC) given in Appendix A.1-A.3 accurately implements the cycle

counting algorithms outlined in the ASTM E 1049 standard and allows for augmentations

such as the addition of rate extraction procedures.

The remaining sections of this chapter detail with structure and operation of the

MACC code and conclude with a discussion of the research approach. In the final section

it will be clearly stated how the hypothesis will be proven or disproven.

3.1 Preliminary Procedures

 As is the case with most cycle counters, the MACC program is coded under the

assumption that the service history data has already been collected and is assembled in

either a comma separated, space separated, or tab separated values in an ASCII text file

where column zero contains the time stamp, and column one contains the service data,

either stress, strain, force, torque, etc.

 18

Figure 3.1. Typical service history text file

Only one channel of service history is used in the current study. For the case of multi-axis

loading, multi-channel analysis would need to be implemented into the MACC code and

is saved for future study. Using the FORTRAN inquire command, the service history text

file is probed to ensure any exceptions are handled and the user is returned a meaningful

error message in case the file was not found, or unavailable. Once the availability of the

file is ensured, it is opened and checked by stepping through each line and counting the

number of entries. If no entries are found, the exception is handled by returning an error

message and terminating the program. If the file has at least one entry, a dynamic array is

allocated to match the dimensions of the text file and its contents are loaded into memory.

Due to the potentially large number of entries to be loaded for long service histories, the

heap memory segment is utilized rather than the default stack segment resulting in a

slight decrease in performance but great increase in reliability when handling large

arrays. In addition, program parameter and material property texts files are loaded into

arrays to complete the initialization of the program.

 19

3.2 Resolving Reversal Points

 Because the vast majority of the counting algorithms cannot operate directly on

service data, the first major operation in the MACC code is the resolution of reversal

points. Resolving the service history into reversal points was accomplished using a

relatively primitive technique. Preliminary attempts required the use of central finite

differencing. Using a series of loops and conditional statements, points central to a

minimum derivative were identified as local maxima and minima. However, when

relatively low resolution load data was fed into the program this procedure routinely

misidentified peak points with an error of ±1 indexed entry. Figure 3.2 illustrates such an

example: the numerical first derivative minimum occurs at index number two, but the

reversal point clearly occurs at index number one.

Figure 3.2. Reversal point being incorrectly resolved by central finite differencing

In light of this situation, a more primitive approach was taken to resolve the reversal

points. The routine in the MACC program steps though the history array and observes the

surrounding two nearest indexed values to see if they are either both greater than or less

than the value at the index in question. If both surrounding values are greater than the

‐2

‐1.5

‐1

‐0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5

V
al
u
e
 (
u
n
it
)

Time (unit)

Value

First Derivative

 20

value in question, the point is defined as a local minimum. The same logic applies for

local maxima. Because the number of reversal points cannot be determined in advance,

pre-allocating the storage array for this information is not possible. Therefore, this routine

requires two passes to complete. The first pass simply counts the number of reversal

points and allocates resources for a properly sized array. The second pass re-identifies the

reversal points and dumps the time stamp and value of each point to a local

maxima/minima array declared local. A more efficient protocol that could be used in

place of this method is array flagging. The initial service history array could have been

allocated with an additional empty column. The reversal point locating routine simply

could have flagged reversal points by adding a flag value to the array at the index

location of a reversal. However, this method would have significantly complicated

referencing reversal points from other subroutines.

3.3 Peak Counting

Of the cycle counting methods focused on in this thesis, Peak Counting

(Appendix A.3) is the most computationally expensive. To initialize the procedure, a

reference load level must be defined. Because there are no published guidelines for

defining the reference level, the MACC program is coded to take the overall average of

the reversal values. Once the reference level is defined, the routine aims to sort the

reversal points into two bins: points above the reference load level, and those below. A

reoccurring theme in the development of this chapter is memory management. Because

the size of the bin arrays is not known a priori, this procedure also requires two passes to

execute; each is described.

 21

The first pass steps through the local array to count the number of points above

the reference level, and those below. Once complete, the second pass dumps the values

into the max and min arrays without their respective timestamps. The next step in the

procedure is by far the most computationally expensive routine in the MACC program.

To reiterate, the goal of this method is to combine the reversal points in such a way that

each cycle incurs the maximum possible damage without reusing any points. In order to

achieve this, a sorting algorithm was employed to arrange the high and low bins in a way

such that their values could be paired sequentially by stepping through each array and

simply extracting and pairing the next value. For the scope and application of this

program, a simple bubble sort routine was employed to sort the bins from their highest to

lowest values. The routine looks at the first value of an array for an initial value and steps

though the array to find the largest value using a series of conditional statements and

circular references. Once the largest value is found, the value is copied to the first

available index in a new array, and the procedure is repeated until all values are resolved.

A similar procedure is performed on the low-value bin array.

Once the new sorted bins are filled, values from each bin at the sequential row

indices are paired to form cycles. For example, the largest value from the high-bin is

paired with the lowest value from the low-bin to from a cycle. These points are discarded

and the next set of points are paired to form a cycle. This procedure continues until all

points are resolved. If the high-bin and low-bin arrays are not equal length, the trailing

value is paired with the reference level to form a half cycle. The only cycle parameter

that can be extracted using this method is amplitude. Because the procedure assumes that

 22

the load signal stems and returns to the reference level, nearly every cycle average will be

either at or very close to the reference level.

The bubble sort routine may be one of the least efficient implementations of a

sorting algorithm known to computer science [20] but has been integrated into the Peak

Counting subroutine shown in Appendix A.3. If the MACC program were to be prepared

for application in industry, this routine would undoubtedly need to be replaced by either

the Quicksort or Heapsort routines [21], depending on the length of the service history in

question, to achieve more reasonable computational efficiency.

3.4 Simple Range

 As the name implies, the Simple Range method reduces to a relatively simple

programming procedure. The routine steps though the local reversal array, observes the

first and second values, computes their difference and dumps this value into a new array.

This procedure is repeated until all reversal points are resolved and each value in the new

difference array is counted as a half cycle. Additionally, the average of each reversal pair

can be cast as the cycle mean. The average half-cycle rate is also extracted by dividing

the cycle amplitude by the difference in time stamps between the parent reversal points.

Memory management is also exceptionally simple in this method; the size of the

difference array can be determined by dividing the size of the local reversal array by two.

If the reversal array contains an odd number of entries, the trailing value must be

discarded as there is no meaningful procedure to handle what is effectively a quarter-

cycle. The text version of this algorithm is shown in Appendix A.3.

 23

3.5 Rain Flow

The Rain Flow analogy could be one of the least straightforward methods to

convey the method, and unfortunately is used almost universally to explain the concept

behind this procedure. A more concise definition is found in the ASTM E 1049 standard

for cycle counting standard practices, and such was utilized in the development of the

MACC application. The fundamental operation of the Rain Flow routine is simple: the

second index in the reversal array is used as a starting point. Next, the difference between

this point, the next index value and the previous index value are computed. A series of

conditional statements evaluates if the next range greater than the last. If this statement

returns true, a full cycle is counted whose amplitude matches that of the previous range,

and the current central point is discarded. The procedure was implemented by means of

array flagging. First, the reversal array is copied to a new working array with an

additional blank column. When a cycle is identified in this new working array, a flag is

added into the blank column at the index of the central value effectively discarding the

value. The cycle amplitude, mean, timestamps, and original array indexes are dumped to

a new array for later analysis. Because the working array has now effectively been

modified, the routine must restart from the first available index and start over, avoiding

flagged indexes—characteristic of the Rain Flow algorithm. The FORTRAN routine is

provided in Appendix A.3.

3.6 RMS

There are two instances of the RMS method in the MACC program. The first is

based on the technique outlined in the ASTM STP 748 publication on the subject [22],

and the second uses the RMS calculation in its typical sense for comparison. The ASTM

 24

method requires that the load reversal array be sorted into max and min bins before

operation. The sorting criteria for these bins are largely undefined. Based on examples

from the publication, and in other deployments [12] the routine used in the MACC code

was designed to sort based on a reference level similar to the Peak Counting routine.

Once the load reversal array was sorted into high and low bins, the RMS of each was

calculated. The difference in the RMS value from each bin is cast as the master cycle

range, and the number of counts is defined as half of the number of reversal points.

Because the RMS value is always positive, the code transfers the signs of the means of

the reversal points to the RMS values before computing their difference.

The second instance of the RMS method utilizes the RMS calculation in its

typical sense. This routine calculates the overall RMS magnitude of the service history.

The RMS value is cast as the master cycle magnitude, and the number of counts is

defined similarly to the ASTM method. Both methods are included in the MACC source

code given in Appendix A.3.

3.7 Rate Handling

Methods in the MACC program that supported the meaningful extraction of

average rate information were modified to do so. In the single parameter methods, this

was accomplished by simply dividing each cycle amplitude by the difference in time

stamps from the parent reversal points (change in value per change in time). Because the

Rain Flow method is a double parameter method constructed of three points (and

therefore, two segments) separate increasing and decreasing rates were extracted for each

cycle. In all cases, rate information was augmented to the cycle count array for each

method. This technique operates at the reversal level and was termed RRE, for reversal

 25

rate extraction. Issues mentioned later in this paper prompted the need for additional rate

extraction techniques, the first of which was a load-level average rate extraction (as

opposed to peak-level rate extraction). Rather than operating on the reversal points to

obtain rate parameters for a cycle, this method averages the first time-derivative of the

service history data within each cycle window and records this value as the average cycle

rate. This was implemented in the MACC program by augmenting the service history

array with a central finite difference time derivative of the load values and was termed

the Central Finite Difference Average (CFDA) method. Each applicable cycle counting

routine was modified to call such a routine during operation. During counting operations

the original array indices from the service history data were used to map a window to the

load rate data. Once this window was defined, the statistical mean and standard deviation

were computed and recorded for later analysis and the counting routine continued.

Similar to earlier mentioned methods, the single parameter procedures yield a single rate

per cycle, and the double yield two rates per cycle (load and unload). The rate handling

subroutine was developed to run in several different modes triggered by the parameter

file (params.txt) during startup. The routine operates in either RRE, CFDA, Linear LSR

mode.

Linear LSR (least squares regression) mode extracts the rate data from a more

advanced statistical approach. Using the same load window defined above, the series of

points are fitted with a linear least squares regression line and the slope is recorded as the

cycle rate (or cycle engage and disengage rates for double parameter methods). The

mathematical definitions are given in Equations 1-3. In these equations, the symbol α

(alpha) represents the service history value (stress, strain, load, deflection, etc.) and n

 26

represents the cycle window indices. Text versions are given in the MACC source code

(Appendix A.1-A.3).

ሶோோாߙ ൌ
௙ߙ െ ௜ߙ
௙ݐ െ ௜ݐ

 (1)

ሶ஼ி஽஺ߙ ൌ
∑ ሶߙ ሺ݅ሻ௡మ
௡భ

௙ݐ െ ௜ݐ

(2)

ሶ௅ௌோߙ ൌ
∑ ሺ݅ሻݐ ∗ ሺ݅ሻ௡మߙ
௡భ െ ∑ ሺ݅ሻݐ ∗ ത௡భߙ

௡మ௡మ
௡భ

∑ ଶሺ݅ሻ௡మݐ
௡భ

െ ∑ ሺ݅ሻ௡మݐ
௡భ

∗ ௡̅భݐ
௡మ

(3)

3.8 Post Processing and the Fast Fourier Transform Method

Due to the complexity and narrow application of the Fast Fourier Transform

(FFT) method, this method was not included into the MACC code. Instead, this method

was employed in the post processing phase of analysis through MATLAB. Once the

MACC program had been successfully executed on a service history, the input and output

data files were passed to MATLAB for further analysis and plotting. Once these data files

are loaded into the MATLAB environment, the built-in FFT function (Cooley-Tuckey

algorithm [23]) is used to analyze the service history [24]. The result of this is a plot of

the transformed load data from the time domain to the frequency domain. The remainder

of post processing operations are the sorting of the cycle parameter packages (amplitude,

mean, and rate) into bivariate histograms with cycle amplitude and cycle mean as the

variations. These diagrams were used to exhibit the relative performance of each

 27

counting method included in the MACC program. The MATLAB post processing code is

given in Appendix A.4.

Figure 3.3. MACC system flowchart

3.9 User Interface

 To simplify operation, a GUI was written in Microsoft’s Visual C# language.

Without this element, experimentation could only be performed through the manipulation

of the MACC source code. Because C# is a relatively powerful language compared with

FORTRAN, for development was handled largely by Microsoft’s .NET code framework.

The form allows the selection of a service history text file, the selection of an output

folder, and variation of various MACC runtime parameters such as counter selections,

units, etc. The program uses the user defined switches and values to write a MACC

runtime parameter file (Appendix A.7) used to define various processing options.

 28

Figure 3.4. MACC GUI form

 To interact with the parameter file, many of the MACC program variables were

passed to the global namespace module; this greatly simplified the movement of

information throughout the system. The GUI and console system assumes that the GUI

executable and the MACC console executable are run in the same directory. This would

likely be handled by an installation program or a read-only runtime device. The

parameter file loading procedure starts by probing the parameter file for existence using

the inquire command in FORTRAN. If the file is not found, the exception is handled by

returning an error message through the console and terminating the program. If the

parameter file exists, it is examined line by line for compatibility by reading the version

 29

number and checking content compliance through the file. As each element of this

procedure is completed, the pertinent information from each line is loaded and assigned

to its relevant variable.

 30

4. RESULTS

This chapter documents the results of two types of tests performed in this

research. The first sections characterize the counting solutions of the four cycle counters

included in the MACC code. Idealized service histories (Figure 4.1) were analyzed in an

attempt to reveal the signal-specific behavior of these algorithms. The latter sections

characterize various rate extraction techniques on these idealized service histories to

document their performance in commonly encountered scenarios. The next chapter

applies these findings in case studies to document the aggregate performance of the rate

extraction techniques developed in this research.

4.1 Algorithm Validation

True quantitative validation of a cycle counting algorithm appears to be

impossible due to the self-referential definitions of the cycle criteria; the definition of a

cycle varies with the method of cycle counting in use [7] and there is no reference

definition available for comparison. Figure 4.2 (a) is an example of a simple service

history where visual verification can be performed based on knowledge of trigonometric

functions. In simple service histories such as this, the loading events are clear and can be

compared with the output of a cycle counting algorithm. However, these are not the cases

that actually require the use of a cycle counting algorithm and provide limited insight into

validation on truly complex signals. Figure 4.2 (b) is an example of a complex service

history where a manual count cannot be performed without assuming a cycle definition.

In the case of a complex service history, a cycle counting algorithm must be employed to:

(a) define the cycle and (b) count the cycles while extracting their parameters. Because

 31

the algorithm provides the working definition of the cycle, there is no meaningful true

count to compare with.

Figure 4.1. Code snippet from the MACC service history emulator library

Figure 4.2. Simple and complex service histories

An alternative validation method could utilize the empirical results of a controlled

fatigue test counted by algorithms of interest. The algorithm responsible for the closest

approximation of the fatigue life could be considered the most accurate for the specific

scenario. However, by nature this methodology may yield unclear results; a direct

0 5 10 15 20

-2

0

2

(a) Simple Load History

Time (s)

A
m

pl
itu

de
 (

un
it)

0 5 10 15 20
-5

0

5
(b) Complex Load History

Time (s)

A
m

pl
itu

de
 (

un
it)

 32

comparison cannot be made between fatigue test results and the output of a cycle

counting algorithm due to the required use of a damage summing rule. This type of

validation would only compare predicted failure and actual failure as opposed to the

algorithm cycle count and the actual cycle count, yielding a strictly empirical

relationship. In light of these obstacles, only highly situational qualitative and relative

quantitative comparisons can be made between algorithms.

4.2 Algorithm Performance

 The initial phase of this research consisted of hypothetical simulations to evaluate

the performance of each algorithm included in the MACC code. This evaluation was

conducted in two sub-phases: sub-phase one of the simulations consisted of analyzing

various summations of trigonometric and discontinuous functions to explore signal-

specific cases of counting solutions handled by the MACC program. Simulated

experiments were conducted with increasingly complex signals to exhibit the

performance of each algorithm as service histories became more difficult to resolve. Sub-

phase two of simulation explored the performance of the counting algorithms on quasi-

random service data. The goal of this phase was to observe the underlying patterns in the

bivariate histograms yielded by the counting algorithms included in the MACC code.

4.3 The Simple Signal

The simple signal shown in Figure 4.3 is based on a cosine function with a

frequency of 10 Hz and amplitude of one unit. This signal was properly resolved into

reversal points by the MACC code as shown in Figure 4.4. Visually, the service history

shows eight reversals at a magnitude of two units. The counts made in Figure 4.5 Figure

4.7 also show eight full reversals at a magnitude of two units (noting that the Simple

 33

Range counts half-cycles). Because the load signal occurs at constant magnitude and

contains only simple cycles, the RMS method also resolves eight cycles at a magnitude of

two load units.

Figure 4.3. Simple sine/cosine service history

Figure 4.4. Simple service history resolved into reversal points

 34

Figure 4.5. Peak Counting method applied to the simple service history

Figure 4.6. Simple Range method applied to the simple service history

 35

Figure 4.7. Rain Flow method applied to the simple service history

4.4 The 2Ssum Signal

 The 2sum signal is the sum of a master and slave cosine signal of different

magnitudes and synchronized frequencies (Figure 4.8). Comparison of Figure 4.8 and

Figure 4.9 exhibits the early evidence of signal cancellation where the low-amplitude

slave signal is partially absorbed by the high-amplitude master signal. Figure 4.10 shows

the Peak Counting method resolving a highly conservative cycle count; each reversal

caused by the slave signal is resolved as a virtually full magnitude cycle. Figure 4.11

shows the result of the Simple Range method on this service history. Although this

method performs a count of marginally higher quality, it is clear that the master cycles

are not completely resolved and masked by the slave signals. This is one of the simplest

examples of master cycle masking in the Simple Range method. Figure 4.12 shows the

result of the Rain Flow method on this service history. The Rain Flow method correctly

 36

resolves the master cycles at eight counts, but because sixteen of the slave cycles are

cancelled by the master cycle the remaining count does not match the function definition.

This is a prime example of the self-referential definitions implied by the cycle counting

methods; the cancelled cycles are not resolved in these methods because they operate

only on reversal data, and therefore these partial cancellations are not cycles by the

definitions imposed by the counting algorithms. If the Level Crossing technique had been

employed in this analysis, the partial cancellations could have been used to reconstruct a

larger cycle. Employing the ASTM RMS method on this signal yields a master cycle of

1.67 range and 0.03 mean at 50 counts. Although detailed comparison is difficult, it could

be argued that this method yields a counting solution at least as conservative as the Peak

Counting method as the distribution along the mean and range axes are simply condensed

to an approximately average value.

Figure 4.8. 2Sum service history

 37

Figure 4.9. 2sum service history resolved into reversal points

Figure 4.10. Peak Counting method applied to the 2sum service history

 38

Figure 4.11. Simple Range method applied to the 2sum service history

Figure 4.12. Rain Flow method applied to the 2sum service history

 39

4.5 The 3sum cycle

The 3sum signal further exemplifies issues with secondary slave signals, most

notably in the single parameter methods. Comparison of Figure 4.13 and Figure 4.14

shows that there are no partial cancellations overlooked by the resolution of reversal

points. Figure 4.15 shows the highly-conservative result yielded by the Peak Counting

method; each reversal is assumed to cross the reference level and is paired with a reversal

value opposite of the reference level. The Simple Range method yields a polar opposite

result shown in Figure 4.16; the master cycle of approximately three units range is

completely masked by the secondary slave cycles. Because only sequential half-cycles

are constructed by this method, the highly damaging, high amplitude cycle is severely

misrepresented by this method. The Rain Flow method shown in Figure 4.17 exhibits the

service history correctly deconstructed and resolved. A large number of low-range and a

lesser number of medium range secondary slave cycles are correctly resolved by this

method. More importantly, the Rain Flow method correctly reconstructs the single, high-

amplitude master cycle that spans the history. Again, the RMS method yields a counting

solution at least as conservative as the Peak Counting method with sixty-six cycles at

1.53 range (3.06 amplitude) and 0.05 mean. The RMS master cycle occurs approximately

at the center of the Peak Counting mean and range distributions.

 40

Figure 4.13. 3sum service history

Figure 4.14. 3sum service history resolved into reversal points

 41

Figure 4.15. Peak Counting method applied to the 3sum service history

Figure 4.16. Simple Range method applied to the 3sum service history

 42

Figure 4.17. Rain Flow method applied to the 3sum service history

4.6 Random Cycling

 The random cycling results exaggerate the underlying bivariate histogram trends

found in the specific signal simulations. Figure 4.18 shows a typical random service

history with upper and lower bounds of ±20,000 load units and a running average of zero

units. Figure 4.19 shows the result of the Peak Counting method on this load signal and

exhibits a trend on the mean-range plane. There is a clear sinusoidal oscillation of the

cycle mean along the range axis. Starting at zero range moving in the positive direction,

the cycle mean completes four quasi-sinusoidal cycles in the mean axis. The pattern is

likely caused by the nature of the service history; it is only quasi-random and has

artificial upper and lower imposed boundaries. The cycle count yielded by the peak

counting method is somewhat less conservative than in previous tests as many of the

reversal pairs do cross the reference level. Relative to methods that follow, the Peak

counting method still yields a conservative result.

 43

 The result of the Simple Range method applied to the random service history is

shown in Figure 4.20. Here a linear distribution along the range axis and a quasi-normal

distribution about the mean axis is exhibited. Again, this shape is likely a reflection of the

upper and lower-bounds imposed to the random number generator used to generate this

service history. Full range cycles swing from the lower-bound to the upper-bound limits,

which are symmetric similar to the distribution about the mean axis. This implies that a

full magnitude cycle must occur at or very near a zero mean.

 The results of the Rain Flow method in Figure 4.21 exhibit more complex shapes

along the range and mean axis. Similar to the Simple Range method, a quasi-normal

distribution is observed along the mean axis but is also likely a reflection of the artificial

boundaries imposed on the random number generator used to produce this service

history. However, the range axis exhibits a quasi-Weibull distribution along the range

axis in combination with a higher number of full-range cycles. This result is a prime

example of the ability of the Rain Flow method to handle noise in an appropriate manner.

Although few statements can be made about the actual service history, it may be argued

that the full-range cycles have not been masked by noise, and noise has not been counted

as full-range cycles as with the Peak Counting method.

The RMS method summarizes the distribution from the Peak Counting method

with 164 counts at 261240 range and -8581 mean. Further study may be able characterize

the quality of this counting solution by estimating the damage yielded from this count

compared with that of the Rain Flow, Simple Range, and other counting methods.

 44

Figure 4.18. Random service history

Figure 4.19. Peak Counting method applied to the random service history

 45

Figure 4.20. Simple Range method applied to the random service history

Figure 4.21. Rain Flow method applied to random service history

 46

4.7 Rate Handling

 The latter phase of simulation in this research was the development and

evaluation of various rate extraction methods. This phase required that the scope of

evaluation be limited to a single, superior cycle counting method identified in previous

experimentation. Mentioned later, the algorithm selected was the ASTM Rain Flow

method for its ability to properly resolve load noise and unmask full-amplitude master

cycles. Further, these simulated experiments are conducted in three sub-phases: sub-

phase one evaluates a noise-free master cycle, sub-phase two evaluates combination

master-slave cycles to further exhibit issues in the extraction of rate parameters and sub-

phase three evaluates discontinuous, noisy cycles. To analyze the effects of noise, signals

from sub-phases one and two share a common master cycle of two load units in range and

a zero mean. Rates from all signals are extracted using the RRE, CFDA, and Linear LSR

methods defined in Chapter 3 (Equations 1-3) and shown in Figure 4.22.

Figure 4.22. Extraction method diagram

‐1.5

‐1

‐0.5

0

0.5

1

1.5

0 1 2 3

Se
rv
ic
e
 V
al
u
e
 (
ar
b
it
ra
ry
 u
n
it
s)

Time (arbitrary units)

Value

Reversal Points

Linear Least Squares
Regression (LSR)

Reversal Rate Extraction
(RRE)

 47

4.8 Simple Signals

 The goal of extracting rate parameters from any cycle is to summarize the load-

rate data in a single parameter that can be referenced along with range and mean

parameters to determine fatigue life for a given load event. The pivotal issue in this

scenario is that even simple, sinusoidal load signals exhibit rate data that is inherently

difficult to reduce to a single parameter. In Figure 4.23 the rate of a sinusoidal half-cycle

is summarized by the RRE, Linear LSR, and CFDA techniques. Visually, the linear LSR

method appears to best summarize the cycle rate by accounting for derivative dwell time;

the cycle rate is approximately constant for a large time frame near the center of the

cycle. Using the RRE method as a reference, the CFDA method yields a rate

approximately two percent faster. Similarly, the Linear LSR method yields a rate twenty

percent faster. Because the linear LSR method yields a higher rate for this type of signal,

this cycle type could potentially be cast as less damaging than if it had been analyzed

using the RRE or CFDA techniques [18]. Relative rate data is given in Figure 4.26.

Figure 4.23. Rate examination of a simple signal

4.9 Noisy Continuous Signals

The analysis of noisy continuous signals starts with the 2sum signal used in

previous sections. Figure 4.24 shows the half-cycle sample used for rate extraction

 48

analysis. Using the RRE method as a reference, the CFDA technique only yields a

slightly higher cycle rate with a one percent increase. Similarly, the linear LSR method

yields a rate approximately twelve percent faster than the RRE method. This is likely due

to the statistical insignificance of the final points in the cycle which take a relatively

sharp turn in the positive load direction. Analyzing the underlying master cycle, the 2sum

signal yields virtually the same result when the RRE and CFDA methods are applied.

However, the LSR method yields a 6.2% decrease in extracted load rate, potentially

casting the common master cycle as more damaging compared to the simple signal.

Figure 4.24. Rate examination of the 2sum half-cycle

To further exhibit the effects of noise on cycle rate extraction, the 3sum signal

from Chapter 3 was analyzed using the three extraction methods. Compared with the

simple and 2sum results, this signal exhibits more closely grouped results. Again using

the RRE method as a reference, the CFDA method yields a rate 0.8% slower rate, and the

linear LSR method yields a 7.8% slower rate. Using the simple signal as a reference to

analyze the common master cycle, the RRE and CFDA methods both measure an

approximately 22% faster rate. In contrast, the linear LSR method measures a 5.2%

slower master cycle rate which again casts this cycle as potentially more damaging than

the RRE and CFDA methods.

 49

Figure 4.25. Rate examination of the 3sum half-cycle

4.10 Relative Performance

The relative performance of the continuous signals and counting methods used in

sections 4.8-4.9 are shown in Figure 4.26Figure 4.27. Figure 4.26 utilizes the simple

signal as a reference rate. In this figure, the RRE and CFDA methods yield a sharply

increasing rate with increasing noise and complexity added into the master cycle. The

Linear LSR method yields a less distinct pattern, but exhibits the highest stability as it

extracts the master cycle rate within 6.2% of the actual rate. This may imply that the RRE

and CFDA methods could yield considerably less conservative damage estimates

compared with that of the Linear LSR method. However, the effect of noise on fatigue

life is outside of the scope of this research.

Figure 4.27 uses the RRE method as a reference for each signal. In this figure, the

CFDA method extracts a slightly higher rate (+1.9%) from the simple signal that

decreases with increasing complexity to reach a 0.8% slower rate. The linear LSR

initially extracts a 20% faster rate than the RRE method on the simple signal, but

decreases with increasing complexity to a 7.2% slower rate than the RRE method.

 50

Figure 4.26. Relative extraction performance with increasing signal complexity (Simple signal reference)

Figure 4.27. Relative extraction performance (RRE method reference)

Simple 2sum 3sum

RRE 100.0% 100.0% 123.8%

CFDA 100.0% 99.2% 120.5%

LSR 100.0% 93.8% 94.8%

60.0%

70.0%

80.0%

90.0%

100.0%

110.0%

120.0%

130.0%

140.0%

R
e
la
ti
ve
 R
at
e

Simple 2sum 3sum

RRE 100.0% 100.0% 100.0%

CFDA 101.9% 101.1% 99.2%

LSR 120.3% 112.8% 92.2%

60.0%

70.0%

80.0%

90.0%

100.0%

110.0%

120.0%

130.0%

140.0%

R
e
la
ti
ve
 R
at
e

 51

4.11 Discontinuous Load Signals

 Sudden or discontinuous cycle events are commonly encountered in fatigue

analysis [1,3,10,13] and present a relatively complicated set of issues in cycle counting

and rate extraction. Figure 4.28 shows a pure step load event as identified by the Rain

Flow cycle counting method. Based on the cycle identification made by the Rain Flow

method, the cycle includes not only the cycle event, but an extended dwell time which is

not properly resolved. The inclusion of these dwell points causes considerable skewing of

the RRE, CFDA and linear LSR methods, which visually appear to be invalid. This

scenario represents the fundamental issue in handling discontinuous service events.

Further research in discontinuities and dwell handling may resolve problematic results

such as these.

Figure 4.28. Rate examination of a step cycle

A more realistic load signal shown in Figure 4.29 is a half-cycle from the

step2sum service history defined in Figure 4.1. Analysis of this signal cannot be applied

to make any comment about the underlying master cycle, because it has been severely

clipped and discretized to form a step function. Using the RRE method as a reference, the

CFDA method returns a 0.7% slower rate and the linear LSR returns a 5.2% slower rate

resulting in a cycle of potentially higher damage.

 52

Figure 4.29. Rate examination of the step2sum half-cycle

4.12 Relative Performance

The relative performance of the RRE, CFDA, and Linear LSR methods are shown

in Figure 4.30 using the step signal as a reference. Upon visual inspection, the methods

extract rates that differ by considerable margins. However, this is a reflection of the cycle

window definition imposed by the Rain Flow cycle counting method used in this

experiment. Figure 4.28 shows the problematic cycle window resolved by this method.

Because the window includes the cycle dwell time, the rate is severely skewed to a lower

value which in turn will lead to a more conservative damage estimation. Until a

procedure for handling discontinuous service events is augmented to the existing Rain

Flow procedure, little conclusions can be drawn from these tests. Figure 4.31 shows the

relative performance of the rate extraction methods using the RRE method as a reference.

In this figure, the CFDA and Linear LSR methods extract significantly slower rates that

may lead to more conservative damage estimates using existing models. Because of the

limited data available, no conclusion can be drawn on extraction performance with

increasing complexity.

 53

Figure 4.30. Relative extraction performance on discontinuous signals (step reference)

Figure 4.31. Relative extraction performance on discontinuous signals (RRE Reference)

4.13 Computational Performance

 The cputime function in FORTRAN was utilized in the MACC program to

analyze basic computational expenses when running the top-level subroutines such as the

RRE CFDA LSR

Step 100.00% 100.00% 100.00%

Step2Sum 134.91% 156.92% 279.50%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

300.00%

R
e
la
ti
ve
 R
at
e

RRE CFDA LSR

Step 100.0% 53.1% 29.8%

Step2Sum 100.0% 61.8% 61.8%

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

R
e
la
ti
ve
 r
at
e
 c
h
ag
e

 54

function generator, reversal point resolution, and counting procedures. Data for this study

was generated using a basic IA-32 x86 hardware environment with the MACC executable

assigned its own thread affinity from the multi-core processor. This helped to eliminate

environment variables such as background threads and user interaction. Figure 4.32

shows the general trend of time requirements for each top-level subroutine to execute. A

characteristic of the Rain Flow method not previously exhibited in this research is its

growth rate; although the Rain Flow method executes in considerably shorter time, it

appears to grow at the same rate as the Peak Counting method. Figure 4.33 implies that

the number of operations required by the Rain Flow method as coded in the MACC

program grows in correlation with the square of the number of data points in the service

history.

Figure 4.32. CPU time used in MACC execution - Step input

1.00E‐03

1.00E‐02

1.00E‐01

1.00E+00

1.00E+01

1.00E+02

1.00E+03

1.00E+04

0 50 100 150 200

N ‐Thousands of data points

Function Generator

Reversal Point Resolution

Peak Counting

Rain Flow

Simple Range

RMS Method

 55

Figure 4.33. CPU time used by Rain Flow method - 2sum signal

y = 3E‐08x2 + 0.0001x ‐ 0.0601

y = 3E‐07x2 ‐ 4E‐05x ‐ 0.0054

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200

R
u
n
 t
im

e
 (
s)

N ‐ number of data points

Thousands

Step Signal

2Sum Signal

Poly. (Step Signal)

Poly. (2Sum Signal)

 56

5. Applications

The rate handling results from Chapter 4 were applied in three case studies to

simulate scenarios commonly found in industry [3,6,8,10]. As the results from Chapter 4

measured the effect of noise and secondary cycles on the rate extracted by the RRE,

CFDA, and Linear LSR methods, these case studies aim to observe their aggregate

performance in possible industrial applications. Using cycles counted by the Rain Flow

method, the RRE, CFDA, and Linear LSR methods are applied to three different

scenarios and the rate extraction results are represented by bivariate histograms as in

Chapter 4. In these plots, the engage and disengage rates are used as the variations and

the number of counts are plotted on the vertical axis. The results are summarized by the

unsigned engage and disengage rate means and 95% confidence intervals to represent the

statistical variety of rates that may be extracted in these scenarios.

5.1 Offshore Structures

The offshore structure test is intended to represent periods of calm and stormy

seas experienced by offshore structures such as oil rigs, pipelines, weather stations,

barges, and other structures subject to wind and waves. The service history sample shown

in Figure 5.1 has arbitrary scales about the time and amplitude axes and is plotted with

the reversal data resolved by the MACC program.

 57

Figure 5.1. Offshore structure service history sample

 The RRE extraction method results, shown in Figure 5.2, exhibit the majority of

the identified cycles engaging at relatively low rates (4.49 ± 7.26 units per second).

Because each cycle is roughly symmetric, the disengaging rates exhibit similar grouping

(5.79 ± 4.96 units per second). The CFDA extraction results (Figure 5.3) exhibit

engaging rates slightly higher and with similar grouping (6.05 ± 6.13 units per second).

Characteristic of the service history, the disengaging rates exhibit similar grouping (6.77

± 5.04 units per second).The Linear LSR extraction method results shown in Figure 5.4

yield similar engaging rates as the CFDA method (4.74 ± 7.73 units per second) and

disengaging rates (6.81 ± 6.86 units per second).

 A comparison of these results is shown in Figure 5.5. Comparison of these results

does not yield any definitive conclusion about the various extraction methods. In this

service scenario, all three extraction methods yield closely grouped results. This is likely

attributable to the characteristics of the service history; the history does not contain any

major secondary signals or noise to skew the service history away from the lines (and

therefore, rates) that connect the reversal points (Figure 5.1).

 58

Figure 5.2. RRE method applied the offshore service history

Figure 5.3. CFDA method applied to the offshore service history

 59

Figure 5.4. Linear LSR method applied to the offshore service history

Figure 5.5. Extraction method comparison (offshore structure)

5.2 Land-based Structures

The land-based structure test is intended to represent primary cycles (i.e., the

weight rush hour traffic on a bridge), secondary cycles (i.e., the wheel of each vehicle

‐4

‐2

0

2

4

6

8

10

12

14

16

RRE Engage RRE
Disengage

CFDA
Engage

CFDA
Disengage

LSR Engage LSR
Disengage

R
at
e
 (
u
n
it
s/
se
c)

Extraction Method

Average

95% CI Max

95% CI Min

 60

passing) and noise (i.e., irregularities in the road surface and other vibrations). Figure 5.6

shows a sample of such a service history used in this test. Again, the data has semi-

arbitrary scales about the amplitude and time axes. Figure 5.7 shows a closer view of the

noise cycles contained in this history. The RRE extraction results (Figure 5.8) yield

engage rates of 38.48 ± 13.35 units per second and disengage rates of 54.93 ± 24.21 units

per second. The CFDA method returns similar rates of 30.02 ± 6.62 and 50.62 ± 26.06

units per second. The Linear LSR method yields engage and disengage rates centered at

approximately the same values of 37.90 and 55.67 units per second, respectively. In

contrast, the LSR method uncovers a much wider range of cycle rates both higher and

lower than that of the RRE and CFDA methods at ±40.25 and ±49.98 units per second,

respectively.

Comparison of these results (Figure 5.11) reveals that the mean of the rates

extracted by the three methods is approximately the same. However, the range of rates

extracted by the methods differs considerably when comparing the RRE and CFDA

methods to the Linear LSR method. In this scenario, the LSR method extracts rates 25%-

36% faster and slower than the RRE and CFDA methods. Although damage estimation is

outside the scope of this research, it appears that the Linear LSR method may yield

considerably different fatigue characteristics than that of the RRE and CFDA methods.

Further observation uncovers a potential issue with this data. As noted in Chapter 4,

discontinuities in the service history lead to miscalculation of cycle windows. This in turn

leads to asymmetric engaging and disengaging rates to be extracted from the skewed

windows. In this service history, the cycle windows are shifted forward in time leading to

 61

increased engaging and decreased disengaging rates. This issue will be addressed in

further research.

Figure 5.6. Land-base structure service history sample

Figure 5.7. Secondary cycles from the Land-base structure service history

 62

Figure 5.8. RRE extraction method applied to the land-based structure service history

Figure 5.9. CFDA extraction method applied to the land-based structure service history

 63

Figure 5.10. Linear LSR extraction method applied to the land-based structure service history

Figure 5.11. Extraction method comparison (land-based structure)

5.3 Automotive Components

The automotive component test models the filtered torsional stresses in a high

performance sports car moving from a complete stop to top speed and back to a stop

‐20

0

20

40

60

80

100

120

RRE Engage RRE
Disengage

CFDA
Engage

CFDA
Disengage

LSR Engage LSR
Disengage

R
at
e
 (
u
n
it
/s
e
c)

Extraction Method

Average

95% CI Max

95% CI Min

 64

under several repetitions. The test data includes the torque curve shapes from a typical

mid-displacement (3-4 Liters) I-6 engine with variable valve timing. Discontinuous steps

are also included by modeling gear shifts through a 6-speed automatic transmission. This

configuration yields secondary loading events and dwelling making it an ideal candidate

for rate extraction testing. The full service history (Figure 5.12) shows 15 sequential top-

speed runs with torque loads up to 4000 lb-ft. Observation of a single cycle (Figure 5.13)

reveals the challenges of extracting a meaningful rate from such a history. The cycle

definition imposed by the Rain Flow algorithm casts each run as a single cycle with

multiple discontinuities and dwells.

The RRE extraction method yields rates with very close grouping at 2960 ± 8.654

units per second engaging and 354.4 ± 0.1 units per second disengaging. This close

grouping is expected as each cycle is virtually identical. The CFDA extraction method

returns significantly higher engaging rates at 2945 ± 8.462 units per second and similar

disengaging rates at 433.9 ± 0.196 units per second. The Linear LSR method returns

engaging rates similar to that of the RRE method at 1862 ± 98.56 units per second but

significantly slower disengaging rates at 331.9 ± 0.991 units per second.

Because the engaging and disengaging rates vary by an order of magnitude, the

comparison plot was split into its respective halves. Comparison of the engaging rates

(Figure 5.17) shows the RRE and CFDA methods to return approximately identical

values. However, the Linear LSR method returns a 66% slower engaging rate which may

lead to more conservative damage estimations. In contrast, comparison of the

disengaging rates (Figure 5.18) shows the RRE and LSR methods returning an

 65

approximately identical rate. The CFDA method returns a rate approximately 25% slower

that may be skewed by the discontinuities in the disengaging portion of the cycle.

Figure 5.12. Automotive axle service history

Figure 5.13. Single cycle from the automotive axle service history

 66

Figure 5.14. RRE extraction method applied to the automotive axle service history

Figure 5.15. CFDA extraction method applied to the automotive axle service history

 67

Figure 5.16. LSR extraction method applied to the automotive axle service history

Figure 5.17. Comparison of engaging rates (automotive)

0

500

1000

1500

2000

2500

3000

3500

RRE CFDA LSR

R
at
e
 (
U
n
it
s
p
e
r
se
co
n
d
)

Extraction Method

Average

95% CI Max

95% CI Min

 68

Figure 5.18. Comparison of disengaging rates (automotive)

0

50

100

150

200

250

300

350

400

450

500

RRE CFDA LSR

R
at
e
 (
U
n
it
s
p
e
r
Se
c.
)

Extraction Method

Average

95% CI Max

95% CI Min

 69

6. CONCLUSIONS AND FUTURE WORK

6.1 Cycle Counting

This research involves the evaluation of the zero, single, and double parameters

cycle counting methods and documented their development into programmable

procedures. Analysis at the procedural level of these methods uncovers some significant

issues with the single parameter methods.

If the definition of cycle counting is to extract, process, and sort simple cycles

from a complex loading history, then it may be argued that the Level Crossing technique

is technically not a complete cycle counter. Although this procedure employs a unique

method to break down a service history at the load level (rather than the reversal level)

into discreet elements, the process only covers the reconstruction of simple cycles.

Although this yields simple cycles that can be counted visually, all load points are

accounted for in the reconstruction and visually counting long reconstructions is not

optimal. This method requires an additional counting procedure to reduce the data set into

counts. Because the reconstructed cycles oscillate about the reference load level and no

longer contain noise, the Peak Counting or Simple Range methods can be employed to

properly resolve the reconstructed load data.

The Peak Counting method mimics the intuitive procedure an operator may use to

count a simple service history visually. However, developing this process into a cycle

counting algorithm for use on complex service histories yields extremely conservative

results. Because this and other methods can only operate directly on reversal data, when

peaks below and above the reference load level are counted and sorted, noise is processed

 70

as if it fulfills the fundamental assumptions made by this method; most notably, that all

reversal points stem and return to the reference load level. Further, this method employs

one of the most computationally intense routines found in numerical programming: value

sorting within an array. The culmination of these features reveals a highly conservative

method with high computational expense. However, this method could be employed to

establish a crude lower-bound on a confidence interval of service damage in further

research.

As the name implies, the Simple Range method is one of the simplest counting

procedures in that it does not require sorting, rearrangement, or intense processing of any

kind—ranges between reversals points are simply counted as half cycles. However, the

counting solution yielded from this method is highly sensitive to noise. If there are any

interruptions between master cycle reversal points, the method simply splits the cycle

into continuous, low-amplitude segments that are counted as half-cycles. From a cycle

counting perspective, this is highly erroneous. For any given complex service history, this

method may at best be employed as a lower bound for damage estimation.

The double parameter methods are aggregated to a single counting procedure in

this study as each of the methods performs the same underlying task masked by

variations in terminology. The Hayes, Range Pair, Ordered Overall Pair, Racetrack,

Hysteresis Loop, and Rainflow methods all operate on the basis of identification of

hysteresis loops in load data [7]. Although the computational expense of this method

grows at a similar rate as the Peak Counting method with the number of reversals to

process, it yields a robust counting solution that appears to be able to properly resolve all

continuous signal types.

 71

6.2 Rate Handling

Of the rate extraction methods developed in this research, there does not appear to

be a clear and meaningful trend among the results that leads to the selection of a single

technique. Analyzing identical continuous master cycles with increasing noise and

secondary cycles, the LSR method exhibits the most stability; analyzing the Simple,

2sum, and 3sum signals sequentially reveals less than a 5% change in extracted rate by

the LSR method. In contrast, the RRE and CFDA methods exhibited excellent stability

on the 2sum signal with no noticeable change, but returned a 20% faster rate when

applied to the 3sum signal. Based on these results, it may be concluded that the LSR

method is the superior of the three techniques for extracting rate parameters from cycles

defined by the Rain Flow cycle counting technique.

Results from the analysis of discontinuous signals yield uncertain conclusions.

The CFDA and LSR methods returned rates up to 80% slower than that of the RRE

method on both pure and noisy step signals. Although the cycle definition was identical

throughout these tests, the effect of dwells and discontinuities in the service history are

handled in fundamentally different manners among the three extraction methods. The

issue of cycle definition in the presence of dwell and discontinuous periods along with

the fatigue life characteristics of these events needs to be addressed in further research

before any conclusion can be drawn about the performance of these extraction methods

on discontinuous signals.

The case studies reveal the aggregate performance of the extraction methods

developed in this paper in three possible industrial applications. For off-shore structures,

or perhaps any machine element or structure subject to relatively noise-free service of

variable amplitude may not benefit from any one particular method. The RRE, CFDA,

 72

and Linear LSR methods yielded results too close to make a definitive distinction among

them. For land-based structures, or any component of interest subject to discontinuous,

noisy service histories with secondary cycles the LSR method appears to be able to

uncover a wider range of rates that may lead to more precise damage estimations. Further

research will determine the validity of the LSR method in this scenario. For some

automotive applications subject to relatively clean service histories with discontinuities it

appears that the Linear LSR method is adept to reveal the lowest (and perhaps most

damaging) cycle rates. Few definitive conclusions can be drawn from this test data with

respect to the RRE and CFDA methods.

6.3 Future Research

Concerning further development of the MACC code, there are three major facets that

may lead to more definitive conclusions in this research scope. First and foremost is code

refinement. Many of the computational expenses calculated by the MACC program are

merely products of the specific implementations used by the programmer. For instance, it

could be argued that the bubble-sort routine is the least efficient implementation of a

sorting algorithm found in literature [20]. This routine is included in the MACC program

due to its ease of implementation and short code length. A non-optimized sorting

algorithm is also present in the Rain Flow routine that grows at a similar rate. This raises

the question of whether the computational expenses calculated by the MACC program

reveal characteristics about the inner-workings of the cycle counting algorithms, or

merely their manifestations in the program.

Regarding the analysis of extracted rate parameters, the MACC program requires

additional development to handle discontinuous signals. The analysis of discontinuous

 73

and dwelling signals from Chapter 4 and their application in Chapter 5 exhibit rates

heavily skewed by improper window definitions calculated by the Rain Flow algorithm.

Further development in the Rain Flow procedure and its implementation in the MACC

code may alleviate these issues.

Another facet of interest in further development is the creation of an upper and lower-

bound counts computed by the Simple Range and Peak Counting methods. In Chapters 2

and 3 these methods were characterized as highly-conservative and non-conservative,

respectively. Using these methods to develop upper and lower bound counts restates a

complex underlying issue mentioned in Chapter 4; reducing and summarizing this

information into a single parameter in a meaningful and consistent manner is neither

defined nor standardized. One proposed method is to pass the counting solutions to a

damage accumulation routine (such as Miner’s Rule) that returns the percentage of some

arbitrary (but standardized) standard service life consumed by the loading history. To

accomplish this, a set of standard fatigue properties and parameters would need to be

analyzed and established for various scenarios. This would create a standard framework

on which meaningful comparisons could be made among fatigue analysis elements such

as cycle counting and rate extraction.

APPENDIX A: SOURCE CODES

APPENDIX A.1: MACC PARENT MODULE (main.f90)

!-----------=[header]=-----------

! language: FORTRAN 90
! format: free
! written by: ryan o'kelley
! version: alpha 1.0

!--
! main program
!--
program main
!--
! declare arguments
!--
 use subs !subroutines from 'subs.f90'
 use global !for commonly used arguments: 'global.f90'
 character*20 mode
 real zo1
!--
! call stress history emulator subroutine to write stress.txt
!--
 mode = "simple"
 call stresswrite(mode)
!--
! data file and loading operations
!--
 !--
 ! check and load parameters.txt
 !--
 call params
 if (.not. go) goto 99
 !--
 ! check and load stress.txt
 !--
 n_stress = 0
 call check_stress
 if (.not. go) goto 99
 call load_stress
 !--
 ! check and load snr surface
 !--
 call snrload
!--
! cycle counting
!--
 !--
 ! count and load local maxima and minima of stress history
 !--
 local = 0
 n_local = 0
 go = .false.
 call stress_peak
 if (.not. go) goto 99
 !--
 ! Peak Counting
 !--
 if (pc_flag == 1)call peak_count
 !--
 ! rainflow
 !--
 if (rf_flag == 1)call rainflow(local,n_local)
 !--
 ! Simple Range
 !--
 if (sr_flag == 1)call simple_range(local,n_local)
 !--
 ! rms !--

 76

 if (rms_flag == 1)call rms_count
!--
! debug
!--
 print *,'debug'
 print *,'s--------------------------'
 print *,ss
 print *,'n--------------------------'
 print *,nn
 print *,'r--------------------------'
 print *,rr
 print *,'end debug'
!--
! pause, end main program
!--
99 pause
end program main
!--
! end of main program
!--

 77

APPENDIX A.2: MACC GLOBAL NAMESPACE MODULE (global.f90)

!--
! global storage module
!--
module global
implicit none

 !subroutine error flag
 logical go
 !runtime parameters
 integer rf_flag, pc_flag, sr_flag, rms_flag !1 = on, 0 = off
 character*256 :: stress_path, output_dir
 character*32 :: ratemode
 ! service history
 real, dimension(:,:), allocatable :: stress
 integer n_stress
 ! local stress peaks
 real, dimension(:,:), allocatable :: local
 integer n_local
 !s-n-r surface
 real, dimension(:), allocatable :: ss
 real, dimension(:,:), allocatable :: nn
 real, dimension(:), allocatable :: rr
 integer n_s, n_n, n_r
 ! used by rms and Peak Counting subroutines
 real, dimension(:,:), allocatable :: peak_max, peak_min
 ! used by rms
 real avg
 ! used by rainflow
 real, dimension(:,:), allocatable :: rain
 integer n_rain

end module global
!--
! end of global storage module
!--

 78

APPENDIX A.3: MACC SUBROUTINE MODULE (subs.f90)

!--
! module for subroutines used in 'sfd.f90'
!--
module subs
 implicit none
 contains
 !--
--
 ! load paramters from gui
 !--
--
 subroutine params
 use global !for counter flags and parameters
 integer length, i
 logical para_exist
 character*256 dummy
 go = .false.
 !--
 ! inquire parameter file
 !--
 print *,"inquiring parameters.txt"
 inquire(file="input/parameters.txt",exist=para_exist)
 !--
 ! end subroutine if parameters.txt not found
 !--
 if(.not. para_exist) then
 print *,"error--parameter file (parameters.txt) not found! abandon
ship!"
 goto 89
 else
 print *,"parameters.txt found!"
 endif
 !--
 ! open and check parameter file
 !--

open(unit=19,file="input/parameters.txt",form="formatted",action="read",status="old")
 do i = 1,4
 read(19,*)
 enddo
 read(19,'(A)') dummy
 if (trim(dummy) == "MAAC GUI Ver: 0.0") then
 print *,"gui is ok!"
 read(19,'(A)') dummy
 if (trim(dummy) == "MAAC Console Ver: 1.1 alpha") then
 print *,"parameter file is ok!"
 go = .true.
 else
 print *,"error--parameter file is not compatible! abandon ship!"
 goto 89
 endif
 else
 print *,"error--gui program is not compatible! abandon ship!"
 goto 89
 endif
 rewind(19)
 !--
 ! read service history path
 !--
 do i = 1,7 !skip lines
 read(19,*) dummy
 enddo
 backspace(19) !backup
 read(19,'(A)') stress_path !read
 length = len(stress_path) !trim
 stress_path = stress_path(13:length)!trim
 length = 0 !reset

 79

 !--
 ! read output path
 !--
 read(19,*) dummy !skip
 do i = 1,1 !backup
 backspace(19)
 enddo
 read(19,'(A)') output_dir !read
 length = len(output_dir) !trim
 output_dir = output_dir(14:length) !trim
 !--
 ! read counter flags
 !--
 !rainflow
 read(19,*) dummy !advance
 backspace(19) !rewind
 read(19,'(A)') dummy !read
 dummy = dummy(21:21) !trim
 rf_flag = ichar(dummy) !convert to integer
 rf_flag = rf_flag - 48 !translate ascii value
 !Peak Counting !repeat
 read(19,'(A)') dummy
 dummy = dummy(21:21)
 pc_flag = ichar(dummy)
 pc_flag = pc_flag - 48
 !Simple Range
 read(19,'(A)') dummy
 dummy = dummy(21:21)
 sr_flag = ichar(dummy)
 sr_flag = sr_flag - 48
 !rms
 read(19,'(A)') dummy
 dummy = dummy(21:21)
 rms_flag = ichar(dummy)
 rms_flag = rms_flag - 48
 89 end subroutine params
 !--
--
 ! end of parameter loading
 !--
--
 !--
--
 ! stress history text file checking subroutine
 !--
--
 subroutine check_stress
 !--
 ! declare arguments
 !--
 use global !for n_stress and stress array
 logical stress_exist
 integer i, io
 !--
 ! check for stress text file
 !--
 go = .false.
 print *,"inquiring stress.txt"
 inquire(file=trim(stress_path),exist=stress_exist)
 !--
 ! end subroutine if stress.txt not found
 !--
 if(.not. stress_exist) then
 print *,"error--stress history file (stress.txt) not found! abandon
ship!"
 goto 97
 else
 print *,"stress.txt found!"
 endif
 !--
 ! check number of lines in stress.txt

 80

 !--

open(unit=11,file=trim(stress_path),form="formatted",action="read",status="old")
 io = 0
 i = 0
 do while (io == 0)
 read(11,*,iostat=io)
 i = i + 1
 end do
 i = i - 1
 n_stress = i
 print *,n_stress,' stress records found!'
 !--
 ! end program if stress.txt is empty
 !--
 if (i == 0) then
 print *,"error--stress history file (stress.txt) is empty! abandon
ship!"
 call print_div
 goto 97
 else
 go = .true.
 endif
 !--
 ! done with stress.txt
 !--
 close (11)
 !--
 ! end subroutine
 !--
 97 end subroutine check_stress
 !--
--
 ! end of stress history text file checking subroutine
 !--
--
 !--
--
 ! s-n-r surface loading
 !--
--
 subroutine snrload
 use global !for s, n, and r arrays

 integer i, j, io

open(unit=22,file='input/snr/sf.txt',form="formatted",action="read",status="old")
 io = 0
 i = 0
 do while (io == 0)
 read(22,*,iostat=io)
 i = i + 1
 end do
 i = i - 1
 n_s = i
 allocate(ss(n_s))
 rewind(22)
 do i = 1,n_s
 read(22,*) ss(i)
 enddo
 close(22)

open(unit=24,file='input/snr/r.txt',form="formatted",action="read",status="old")
 io = 0
 i = 0
 do while (io == 0)
 read(24,*,iostat=io)
 i = i + 1
 end do

 81

 i = i - 1
 n_r = i
 allocate(rr(n_r))
 rewind(24)
 do i = 1,n_r
 read(24,*) rr(i)
 enddo
 close(24)

open(unit=23,file='input/snr/n.txt',form="formatted",action="read",status="old")
 allocate(nn(n_r,n_s))
 do i = 1,n_s
 do j = 1,n_r
 read(23,*) nn(j,i)
 enddo
 enddo
 close(23)

 end subroutine snrload

 !--
--
 ! stress array loading subroutine
 !--
--
 subroutine load_stress
 !--
 ! declare arguments
 !--
 use global !for n_stress and stress array
 integer i
 !--
 ! load stress.txt
 !--
 print *,"allocating memory to stress array"
 allocate (stress(n_stress,4))

open(unit=12,file=trim(stress_path),form="formatted",action="read",status="old")
 do i=1,n_stress
 read(12,*) stress(i,1),stress(i,2)
 enddo
 print *,"stress history succesfully loaded!"
 close (12)
 !--
 ! end subroutine
 !--
 95 end subroutine load_stress
 !--
--
 ! end of stress array loading subroutine
 !--
--
 !--
--
 ! stress history local maxima and minima subroutine
 !--
--
 subroutine stress_peak
 !--
 ! declare arguments
 !--
 use global !for 'n_local' and 'local' array
 integer i,k,s1,s2
 real val, last, now, next, t1, t2
 !--
 ! append 1st derivate to 'stress' array (finite difference, central)
 !--
 call cpu_time(t1) !start timer

 82

 print*,"finding load rates"
 stress(1,3) = 0 !start of array
 stress(n_stress,3) = 0 !end of array
 do i=2,(n_stress-1)
 val = (stress(i+1,2) - stress(i-1,2)) / (stress(i+1,1) - stress(i-1,1))
 stress(i,3) = val
 enddo

open(unit=21,file="output/stressrate.txt",form="formatted",action="readwrite",status="rep
lace")
 do i=1,n_stress
 write(21,*) stress(i,3)
 enddo
 !--
 ! find local maxima and minima, append flags to stress array
 !--
 print*,"finding peaks"
 k = 0
 do i=2,(n_stress-1)
 last = stress(i-1,2)
 now = stress(i,2)
 next = stress(i+1,2)
 !typical conditionals
 if (last > now .and. next > now) then
 stress(i,4) = 1
 k = k + 1
 elseif (last < now .and. next < now) then
 stress(i,4) = 1
 k = k + 1
 !step function statements
 elseif (last == now .and. next < now) then
 stress(i,4) = 1
 k = k + 1
 elseif (last == now .and. next > now) then
 stress(i,4) = 1
 k = k + 1
 !elseif (last > now .and. next == now) then
 ! stress(i,4) = 1
 ! k = k + 1
 !elseif (last < now .and. next == now) then
 ! stress(i,4) = 1
 ! k = k + 1
 !no peak
 else
 stress(i,4) = 0
 endif
 enddo
 n_local = k
 if (n_local == 0) then
 print*,"error, no peaks found in stress.txt! abandon ship!"
 goto 96
 else
 go = .true.
 endif
 k = 1
 !--
 ! create local array
 !--
 allocate(local(n_local,3))
 do i=2,(n_stress-1)
 if(stress(i,4) == 1) then
 local(k,1) = stress(i,1)
 local(k,2) = stress(i,2)
 local(k,3) = i
 k = k + 1
 endif
 enddo
 !--
 ! write local array to local.txt
 !--
 print*,"writing local array to local.txt"

 83

 call cpu_time(t2) !stop stimer
 print*,"operation finished in ",t2-t1," seconds" !report time
 call print_div

open(unit=13,file="output/local.txt",form="formatted",action="readwrite",status="replace"
)
 do i=1,n_local
 write(13,*) local(i,1) , local(i,2)
 enddo
 !--
 ! end subroutine
 !--
 96 end subroutine stress_peak
 !--
--
 ! end of stress history local maxima and minima counting subroutine
 !--
--
 !--
--
 ! stress history average
 !--
--
 subroutine average(array,n)
 use global !for avg
 integer i, n
 real sum, array(n)

 sum = 0
 do i=1,n
 sum = sum + array(i)
 enddo
 avg = sum/n

 end subroutine average
 !--
--
 ! end of stress history average
 !--
--
 !--
--
 ! Peak Counting subroutine
 !--
--
 subroutine peak_count
 !--
 ! declare arguments
 !--
 use global !for peak_max and peak_min
 integer n_max, n_min, i, j, k, index, n, n_cycle
 real local_copy(n_local,2), ref, mag, max, min, delta, t1, t2
 real, dimension(:,:), allocatable :: peak
 !--
 ! set reference level and minimum cycle amplitude
 !--
 call cpu_time(t1) !start timer
 print *,"counting cycles via: --Peak Counting--"
 ref = 0
 do i=1,n_local
 ref = ref + local(i,2) !sum stress values
 enddo
 ref = ref/n_local !reference level = average of stress values
 delta = 10.0**-9 !ignore cycles less than delta
 print *,"reference level set at", ref
 print *,"ignoring cycles magnitudes under",delta
 !--
 ! count number of maximums above reference level
 !--
 print *," phase one"
 k = 0 !max counter

 84

 max = 1 !to pass while condition
 local_copy = local
 do while (abs(max - ref) > delta)
 call find_max(local_copy(:,2), n_local, max, index, ref)
 local_copy(index,2) = ref
 k = k + 1
 enddo
 n_max = k - 1
 !--
 ! dump maximums to array
 !--
 print *," phase two"
 allocate(peak_max(n_max,2))
 k = 1 !array indexer
 max = 1 !to pass while condition
 local_copy = local !reset local_copy array
 do while (abs(max-ref) > delta)
 call find_max(local_copy(:,2), n_local, max, index, ref)
 local_copy(index,2) = ref
 if (k <= n_max) then
 peak_max(k,1) = local(index,1)
 peak_max(k,2) = max
 k = k + 1
 endif
 enddo
 !--
 ! count number of minimums below reference level
 !--
 print *," phase three"
 k = 0 !reset index
 min = -1 !to pass while condition
 do while (abs(min-ref) > delta)
 call find_min(local_copy(:,2), n_local, min, index, ref)
 local_copy(index,2) = ref
 k = k + 1
 enddo
 n_min = k - 1
 !--
 ! dump minimums to array
 !--
 print *," phase four"
 allocate(peak_min(n_min,2))
 k = 1 !array indexer
 min = 1 !to pass while condition
 local_copy = local !reset local_copy array
 do while (abs(min-ref) > delta)
 call find_min(local_copy(:,2), n_local, min, index, ref)
 local_copy(index,2) = ref
 if (k <= n_min) then
 peak_min(k,1) = local(index,1)
 peak_min(k,2) = min
 k = k + 1
 endif
 enddo
 !--
 ! combine maximums and minimums to form cycles
 !--
 print *," phase five"
 if (n_max <= n_min) then
 n = n_max
 elseif (n_max > n_min) then
 n = n_min
 endif
 allocate(peak(n,3))
 do i=1,n
 peak(i,1) = (abs(ref - peak_max(i,2)) + abs(ref - peak_min(i,2))) !cylce
amplitude
 peak(i,2) = (peak_max(i,2) + peak_min(i,2)) / 2. !cycle
mean
 peak(i,3) = peak(i,1) / abs(peak_max(i,1) - peak_min(i,1)) !cycle
rate

 85

 enddo
 print *,"counted",n,"cycles!"
 call cpu_time(t2)
 print *,"operation completed in ",t2-t1," seconds"
 !--
 ! write cycles to file
 !--

open(unit=14,file="output/peak_counting.txt",form="formatted",action="readwrite",status="
replace")
 write(14,*) " range" , " mean" , " rate"
 do i = 1,n
 write(14,*) peak(i,1) ,",", peak(i,2) ,",", peak(i,3)
 enddo
 close (14)
 !--
 ! print results to file
 !--
 print *,"printing cycle counting results to peak_counting.txt"
 call print_div
 !--
 ! end subroutine
 !--
 end subroutine peak_count
 !--
--
 ! end of Peak Counting subroutine
 !--
--
 !--
--
 ! array maximum subroutine
 !--
--
 subroutine find_max(array, n_array, max, index, ref)
 !--
 ! declare arguments
 !--
 integer i, j, k, index, n_array
 real array(n_array), ref, max, old
 !--
 ! find max of array above ref
 !--
 max = ref
 do i=1,n_array
 if (array(i) > max) then
 max = array(i)
 index = i
 endif
 enddo
 end subroutine find_max
 !--
--
 ! end of array maximum subroutine
 !--
--
 !--
--
 ! array minimum subroutine
 !--
--
 subroutine find_min(array, n_array, min, index, ref)
 !--
 ! declare arguments
 !--
 integer i, j, k, index, n_array
 real array(n_array), ref, min
 !--
 ! find max of array above ref
 !--
 min = ref

 86

 do i=1,n_array
 if (array(i) < min) then
 min = array(i)
 index = i
 endif
 enddo
 end subroutine find_min
 !--
--
 ! end of array maximum subroutine
 !--
--
 !--
--
 ! rainflow counting subroutine
 !--
--
 subroutine rainflow(array,n_array)
 !--
 ! declare argumaents
 !--
 use global !for rain array, n_rain, and ratemode
 logical stp
 integer i,j,k,n_array,indx(n_array),trash
 real x,y,mean,load_rate,unload_rate,array(n_array,3),t1,t2
 !real, dimension(:,:), allocatable :: rain !uncomment this line to use w/o
global module
 !--
 ! header
 !--
 print *,"counting cycles via: --rainflow--"
 call cpu_time(t1)
 !--
 ! create index array
 !--
 do i=1,n_array
 indx(i) = i
 end do
 !--
 ! count number of cycles
 !--
 print *," phase one"
 stp = .false. !to initially pass while condition
 n_rain = 0 !cycle counter
 i = indx(1) !initialize indices
 j = indx(2)
 k = indx(3)
 do while (.not. stp .and. k <= n_array)
 y = abs(array(i,2) - array(j,2))
 x = abs(array(j,2) - array(k,2))
 if (x >= y) then
 indx(i) = -1 !throws out indices with peaks
 indx(j) = -1 !throws out indices with peaks
 call indxld(i,j,k,indx,n_array,stp)
 n_rain = n_rain + 1
 else
 i = j
 j = k
 call k_indxld(i,j,k,indx,n_array,stp)
 endif
 enddo
 !--
 ! re-create index array
 !--
 do i=1,n_array
 indx(i) = i
 end do
 !--
 ! write cycles to array
 !--
 print *," phase two"

 87

 allocate (rain(n_rain,9))
 stp = .false. !to initially pass while condition
 n_rain = 1 !reset to array indexer
 i = indx(1) !initialize indices
 j = indx(2)
 k = indx(3)
 do while (.not. stp .and. k <= n_array)
 y = abs(array(i,2) - array(j,2))
 x = abs(array(j,2) - array(k,2))
 mean = (array(i,2) + array(j,2)) / 2.
 load_rate = y / (array(j,1) - array(i,1))
 unload_rate = x / (array(k,1) - array(j,1))
 if (x >= y) then
 rain(n_rain,1) = y
 rain(n_rain,2) = mean
 rain(n_rain,3) = load_rate
 rain(n_rain,4) = unload_rate
 rain(n_rain,5) = array(i,3)
 rain(n_rain,6) = array(j,3)
 rain(n_rain,7) = array(k,3)
 rain(n_rain,8) = -0.
 rain(n_rain,9) = -0.
 indx(i) = -1 !throws out indices with peaks
 indx(j) = -1 !throws out indices with peaks
 call indxld(i,j,k,indx,n_array,stp)
 n_rain = n_rain + 1
 else
 i = j
 j = k
 call k_indxld(i,j,k,indx,n_array,stp)
 endif
 enddo
 n_rain = n_rain - 1
 !--
 ! compute rate data
 !--
 ratemode = "wavg"
 call getrate(ratemode) !fills in rain(:,7)
 !--
 ! report status
 !--
 print *,"found",n_rain,"cycles"
 call cpu_time(t2)
 print *,"operation completed in ",t2-t1," seconds"
 print *,"printing cycle counting results to rain.txt"

open(unit=15,file="output/rain.txt",form="formatted",action="readwrite",status="replace")
 write(15,*) " range mean rate"
 do i=1,n_rain
 write(15,*) rain(i,1), rain(i,2), rain(i,8),rain(i,9)

 enddo
 close(15)

 call print_div
 !--
 ! end subroutine
 !--
 end subroutine rainflow
 !--
--
 ! end of rainflow counting subroutine
 !--
--
 !--
--
 ! index loader subroutine for rainflow
 !--
--
 subroutine indxld(i,j,k,indx,n,stp)
 !--

 88

 ! declare arguments
 !--
 logical stp
 integer i,j,k,c,n,indx(n)
 !--
 ! load next elements greater than zero
 !--
 !--
 ! load i
 !--
 stp = .false.
 do c=1,n
 if (indx(c) > 0) then
 i = indx(c)
 goto 93
 endif
 enddo
 93 continue
 !--
 ! load j
 !--
 do c=i+1,n
 if (indx(c) > 0) then
 j = indx(c)
 goto 92
 endif
 enddo
 92 continue
 !--
 ! load k
 !--
 do c=j+1,n
 if (indx(c) > 0) then
 k = indx(c)
 goto 91
 endif
 enddo
 91 continue
 !--
 ! stop if i = k (end of array)
 !--
 if (i == k) stp = .true.
 !--
 ! end subroutine
 !--
 end subroutine indxld
 !--
--
 ! end of index loader subroutine for rainflow
 !--
--
 !--
--
 ! index loader subroutine for rainflow
 !--
--
 subroutine k_indxld(i,j,k,indx,n,stp)
 !--
 ! declare arguments
 !--
 logical stp
 integer i,j,k,c,n,indx(n)
 !--
 ! load next k-element greater than zero
 !--
 stp = .false.
 !--
 ! load k
 !--
 do c=j+1,n
 if (indx(c) > 0) then

 89

 k = indx(c)
 goto 91
 endif
 enddo
 91 continue
 !--
 ! stop if i = k (end of array)
 !--
 if (i == k) stp = .true.
 !--
 ! end subroutine
 !--
 end subroutine k_indxld
 !--
--
 ! end of index loader subroutine for rainflow
 !--
--
 !--
--
 ! Simple Range counting subroutine
 !--
--
 subroutine simple_range (array,n_array)
 !--
 ! declare arguments
 !--
 integer i,n_array
 real array(n_array,2),x,y,range,mean,rate,tx,ty,t1,t2
 !--
 ! find ranges, means and rates between all points
 !--

open(unit=16,file="output/simple_range.txt",form="formatted",action="readwrite",status="r
eplace")
 write(16,*) " range ","mean ","rate"
 print *,"counting cycles via: --Simple Range--"
 call cpu_time(t1)
 do i=1,n_array-1
 x = array(i,2)
 tx = array(i,1)
 y = array(i+1,2)
 ty = array(i+1,1)
 range = abs(y - x)
 mean = (x + y) / 2.
 rate = range / (ty - tx)
 write(16,*) range ,",", mean ,",", rate
 enddo
 close(16)
 print *,"found",int((n_array-1)/2.),"cylces"
 call cpu_time(t2)
 print *,"operation completed in ",t2-t1," seconds"
 print *,"printing cycle counting results to simple_range.txt"
 call print_div
 !--
 ! end subroutine
 !--
 end subroutine simple_range
 !--
--
 ! end of Simple Range counting subroutine
 !--
--
 !--
--
 ! rms mehod - astm stp 748
 !--
--
 subroutine rms_count
 !--
 ! declare arguments

 90

 !--
 use global !for peak_max and peak_min
 integer i, n_max, n_min, n_rms
 real avg_max, avg_min, rms_max, rms_min, rms_range, dummy, t1, t2
 !--
 ! header
 !--
 print *,"counting cycles via --rms--"
 call cpu_time(t1)
 !--
 ! find array size
 !--
 n_max = size(peak_max,1)
 n_min = size(peak_min,1)
 !--
 ! find rms of maximums
 !--
 print *," phase one"
 dummy = 0
 do i=1,n_max
 dummy = dummy + peak_max(i,2)**2.
 enddo
 dummy = dummy/n_max
 dummy = sqrt(dummy)
 rms_max = dummy
 !--
 ! find rms of minimums
 !--
 print *," phase two"
 dummy = 0
 do i=1,n_min
 dummy = dummy + peak_min(i,2)**2.
 enddo
 dummy = dummy/n_min
 dummy = sqrt(dummy)
 rms_min = dummy
 !--
 ! find average of maximums
 !--
 print *," phase three"
 dummy = 0
 do i=1,n_max
 dummy = dummy + peak_max(i,2)
 enddo
 dummy = dummy/n_max
 avg_max = dummy
 !--
 ! find average of minumums
 !--
 print *," phase four"
 dummy = 0
 do i=1,n_min
 dummy = dummy + peak_min(i,2)
 enddo
 dummy = dummy/n_min
 avg_min = dummy
 !--
 ! transfer signs of averages to minimums
 !--
 rms_max = sign(rms_max,avg_max)
 rms_min = sign(rms_min,avg_min)
 !--
 ! declare rms range and number of cycles
 !--
 rms_range = abs(rms_max - rms_min)
 n_rms = n_local/2
 !--
 ! write rms cycles to text file
 !--
 print *,"counted",n_rms,"cycles at range",rms_range
 call cpu_time(t2)

 91

 print *,"operation completed in ",t2-t1," seconds"
 print *,"writing cycles to rms.txt"

open(unit=18,file="output/rms.txt",form="formatted",action="readwrite",status="replace")
 write(18,*) "cycle range"
 do i=1,n_rms
 write(18,*) rms_range, avg !avg pulled from global, produced by 'average'
sub
 enddo
 close(18)
 call print_div
 !--
 ! end subroutine
 !--
 end subroutine rms_count
 !--
--
 ! end of rms method subroutine
 !--
--
 !--
--
 ! rms method - typical
 !--
--
 subroutine rms_count2
 !--
 ! declare arguments
 !--
 use global !for stress array and n_stress value
 integer i, n_rms
 real sumsq, rms, t1, t2
 !--
 ! find rms of load signal
 !--
 print *,"counting cycles via --rms--"
 call cpu_time(t1)

 sumsq = 0
 do i = 1,n_stress
 sumsq = sumsq + stress(i,2)**2.
 enddo

 rms = sqrt(sumsq/n_stress)
 n_rms = n_stress/2

 print *,"counted",n_rms,"cycles at range",rms
 call cpu_time(t2)
 print *,"operation completed in ",t2-t1," seconds"
 print *,"writing cycles to rms.txt"

open(unit=23,file="output/rms2.txt",form="formatted",action="readwrite",status="replace")
 write(23,*) "cycle range"
 do i=1,n_rms
 write(23,*) rms, avg !avg pulled from global, produced by 'average' sub
 enddo
 close(23)
 call print_div
 !--
 ! end subroutine
 !--
 end subroutine rms_count2
 !--
--
 ! end of rms method subroutine
 !--
--
 !--
--
 ! cycle rate handling subroutine

 92

 !--
--
 subroutine getrate(mode)
 use global !to get rain and stress arrays
 integer i1, i2, i3, i, j, n
 real avrg, xavrg, yavrg, sumx, sumy, sumxx, sumxy, ls_slope
 character*20, intent(in):: mode

 if (trim(mode) == "avg") then
 avrg = 0.
 do i = 1,(n_rain)
 i1 = rain(i,5) !i
 i2 = rain(i,7) !k
 !take average, append to rain array
 do j = i1,i2
 avrg = avrg + abs(stress(j,3))
 enddo
 avrg = avrg/(i2-i1+1)
 rain(i,8) = avrg
 avrg = 0.
 enddo
 endif

 if (trim(mode) == "wavg") then
 sumx = 0.
 sumy = 0.
 sumxx = 0.
 sumxy = 0.
 do i = 1,(n_rain)
 i1 = rain(i,5) !i
 i2 = rain(i,6) !j
 i3 = rain(i,7) !k
 !find least squares slope from i to j
 do j = i1,i2
 n = i2-i1+1
 sumx = sumx + stress(j,1)
 sumy = sumy + stress(j,2)
 sumxx = sumxx + (stress(j,1))**2
 sumxy = sumxy + stress(j,1)*stress(j,2)
 enddo
 xavrg = sumx/(n)
 yavrg = sumy/(n)
 ls_slope = (sumxy - sumx*yavrg) / (sumxx - sumx*xavrg)
 rain(i,8) = ls_slope
 !reset
 sumx = 0.
 sumy = 0.
 sumxx = 0.
 sumxy = 0.
 !find least squares slope from j to k
 do j = i2,i3
 n = i3-i2+1
 sumx = sumx + stress(j,1)
 sumy = sumy + stress(j,2)
 sumxx = sumxx + (stress(j,1))**2
 sumxy = sumxy + stress(j,1)*stress(j,2)
 enddo
 xavrg = sumx/(n)
 yavrg = sumy/(n)
 ls_slope = (sumxy - sumx*yavrg) / (sumxx - sumx*xavrg)
 rain(i,9) = ls_slope
 !reset
 sumx = 0
 sumy = 0
 sumxx = 0
 sumxy = 0
 enddo
 endif

 end subroutine getrate

 93

 !--
--
 ! end of cycle rate handling subroutine
 !--
--
 !--
--
 ! stress history emulator subroutine
 !--
--
 subroutine stresswrite(func)
 use global
 character*20 func, mode
 integer slave
 real s,pi,f,w,mag,val, t1, t2, i, dt, max
 parameter (dt = 0.001)
 parameter (max = (10)/10. + .006) !number in brackets is the number of master
cycles

 call cpu_time(t1) !start clock
 print *,"emulating stress history"
 print *,"mode is set to: ",func

open(unit=11,file="input/stress.txt",form="formatted",action="readwrite",status="replace"
)

 i = 0
 do while (i <= max) !i = time (s)
 call funcgen(i,func,val)
 if (.not. go) goto 90
 write(11,*) i,val
 i = i + dt
 enddo

 call cpu_time(t2)
 print *,"operation finished in ",t2-t1," seconds"
 call print_div
 close (11)
 90 end subroutine stresswrite
 !--
--
 ! end of stress history emulator subroutine
 !--
--
 !--
--
 ! function generator
 !--
--
 subroutine funcgen(x,f,y)

 use global
 character*20, intent(in) :: f
 real, intent(out) :: y
 real, intent(in) :: x
 real dt
 parameter (dt = .003)

 real j,fq,pi,w,trash
 integer slave, offset
 parameter(fq = 10., & !frequency
 pi = 3.14159265358979323846, & !pi
 w = 2*pi*fq, & !angular argument for periodic functions
(omega)
 slave = 10) !number of slave cycles per master
cycle

 go = .false.

 94

 if (f == "simple") then
 y = cos(w*(x-dt))
 go = .true.
 elseif (f == "2sum") then
 y = cos(w*(x-dt)) + (1./8.)*cos(slave*w*(x-dt))
 go = .true.
 elseif (f == "3sum") then !first term is a super-master cycle
 y = cos(w/slave*(x-dt)) + (1./4.)*cos(w*(x-dt)) + (1./8.)*cos(slave*w*(x-
dt))
 go = .true.
 elseif (f == "impulse") then
 y = int(cos(w*(x-dt)))
 go = .true.
 elseif (f == "step") then
 y = int(1.9*cos(w*(x-dt)))
 go = .true.
 elseif (f == "stepsum") then
 y = int(1.9*cos(w*(x-dt))) + (1./8.)*cos(slave*w*(x-dt))
 go = .true.
 elseif (f == "stepsum2") then !first term is a super-master cycle
 y = int(1.99*cos(w/slave*(x-dt))) + (1./4.)*cos(w*(x-dt)) +
(1./8.)*cos(slave*w*(x-dt))
 go = .true.
 elseif (f == "stepinc") then
 y = (1+int(x/.05))*cos(w*(x-dt))
 go = .true.
 elseif (f == "random") then

open(unit=17,file="input/stress_rand.txt",form="formatted",action="read",status="old")
 do j=1,x
 read(17,*) trash,y
 enddo
 close(17)
 go = .true.

 else
 print *,"error--no function specified or function not in library! abandon
ship!"
 endif

 end subroutine funcgen
 !--
--
 ! end of function generator
 !--
--
 !--
--
 ! print divider to screen subroutine
 !--
--
 subroutine print_div
 print *,"---"
 end subroutine print_div
 !--
--
 ! end of print divider to screen subroutine
 !--
--
 !--
--
 ! 3d interpolater subroutine
 !--
--
 subroutine int3d(xi1, yi1, xi2, yi2, zi11, zi12, zi21, zi22, xo1, yo1, zo1)
 implicit none
 real, intent(in) :: xi1, yi1, xi2, yi2, zi11, zi12, zi21, zi22, xo1, yo1
 real, intent(out) :: zo1
 real m11, m22, m33, p11, p22, p33

 !21-11

 95

 m11 = (zi21-zi11)/(xi2-xi1)
 p11 = xi1 + m11*xo1

 !22-12
 m22 = (zi22-zi12)/(xi2-xi1)
 p22 = xi1 + m11*xo1

 !y-cross
 m33 = (p22-p11)/(yi2-yi1)
 p33 = p11 + m33*yo1

 !define z
 zo1 = p33

 end subroutine int3d
 !--
--
 ! end of 3d interpolater subroutine
 !--
--
 !--
--
 ! nearest neighbor subroutine
 !--
--
 subroutine near(val, dir, array, n, index)
 integer, intent(in) :: n
 integer, intent(out) :: index
 integer i, dir
 real, intent(in) :: array(n), val
 real old, new

 old = abs(val - array(1))
 index = 1

 do i = 2,n
 new = abs(val - array(i))
 if (new < old) then
 if (dir == +1) then
 if (array(i) >= val) then
 old = new
 index = i
 endif
 endif
 if (dir == -1) then
 if (array(i) <= val) then
 old = new
 index = i
 endif
 endif
 endif
 enddo

 end subroutine near
 !--
--
 ! nearest neighbor subroutine
 !--
--
!--
! end of subroutine module
!--
end module subs

 96

APPENDIX A.4: MATLAB POST PROCESSING

%----====[header]====----
% objective: create bivariate histogram of cycle counting data
% method: hist3 matlab subroutine
% coded by: ryan o'kelley
% version: 0.0 alpha
%----====[end of header]====----
% workspace clean up
 clear all
 close all
 clc
% load cycle counting data
 % cylce history
 sh = textread('stress.txt');
 sh = sh(:,1:2);
 sh(:,1) = sh(:,1);
 % local
 local = textread('local.txt');
 local(:,1) = local(:,1);
 % rainflow
 rf = csvread('rain.txt');
 rf = rf(:,1:2);
 % Peak Counting
 pc = csvread('peak_counting.txt');
 pc = pc(:,1:2);
 % Simple Range
 sr = csvread('simple_range.txt');
 sr = sr(:,1:2);
 %rms
 rms(:,1) = csvread('rms.txt');
 avg = mean(sh(:,2));
 rms(:,2) = avg;
% run fft on history.txt
 %array size
 sz = size(sh);
 sz = sz(1);
 %sample rate, data length
 Fs = sh(2,1) - sh(1,1);
 nfft = 2^nextpow2(sz);
 %fft
 shm = sh(:,2); %remove time column
 y = fft(shm,nfft)/sz;
 f = (Fs/2) * (linspace(0,1,nfft/2+1));
 %plot
 subplot(2,1,2)
 plot(f,2*abs(y(1:nfft/2+1)));
 title('Amplitude Spectrum')
 xlabel('Frequency (Hz)')
 ylabel('Magnitude')
 %table
 fft_table(:,1) = f;
 fft_table(:,2) = 2*abs(y(1:nfft/2+1));
% create plots
 % cycle history
 subplot(2,1,1)
 %figure
 plot(sh(:,1),sh(:,2));
 hold on
 plot(local(:,1),local(:,2),'--rs','MarkerSize',4);
 title('Service history and Peaks')
 xlabel('Time (s)')
 ylabel('Amplitude (Unit)')

 legend('Load Data','Reversal Data')
 %rms
 figure
 subplot(2,3,3)
 hist3(rms,'Nbins',[40,40]);

 97

 title('RMS')
 xlabel('Cycle Range')
 ylabel('Count')

 % Peak Counting
 subplot(2,3,4)
 hist3(pc,'Nbins',[40,40]);
 title('Peak Counting')
 xlabel('Cycle Range')
 ylabel('Cycle Mean')
 zlabel('Cycle Counts')
 % Simple Range
 subplot(2,3,5)
 hist3(sr,'Nbins',[40,40]);
 title('Simple Range')
 xlabel('Cycle Range')
 ylabel('Cycle Mean')
 zlabel('Cycle Counts')
 % rainflow
 subplot(2,3,6)
 %figure
 hist3(rf,'Nbins',[40,40]);
 title('Rain Flow')
 xlabel('Cycle Range')
 ylabel('Cycle Mean')
 zlabel('Cycle Counts')

 98

APPENDIX A.5: C# MACC GUI

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Diagnostics;

namespace MAACGUI
{
 public partial class mainform : Form
 {
 static string Input_File = "";
 static string Output_File = "";
 static string Output_Path = "";
 static string Units = "";
 static string SampleRate = "";
 static string RefMethod = "";
 static string RateMode = "";
 static double RefLevel = 0.0;
 static double MinAmplitude = 0.0;
 static int RF_Flag = 0;
 static int PC_Flag = 0;
 static int SR_Flag = 0;
 static int RMS_Flag = 0;

 public mainform()
 {
 InitializeComponent();
 }

 private void button1_Click(object sender, EventArgs e)
 //prompt user for service history file
 {
 openFD.InitialDirectory = "";
 openFD.Filter = "ASCII Text File (*.txt)|*.txt|All Files (*.*)|*.*";
 openFD.Title = "Select Service history File";

 if (openFD.ShowDialog() != DialogResult.Cancel)
 {
 Input_File = openFD.FileName;
 textBox1.Text = Input_File;
 }
 }

 private void button2_Click(object sender, EventArgs e)
 {
 if (folderbrowse.ShowDialog() != DialogResult.Cancel)
 {
 Output_Path = folderbrowse.SelectedPath;
 textBox2.Text = Output_Path;
 }
 }

 public static void ParamFile()
 {
 TextWriter tw = new StreamWriter("parameters.txt");
 tw.WriteLine("---------------------");
 tw.WriteLine(" MAAC Parameter File ");
 tw.WriteLine("---------------------");
 tw.WriteLine("");
 tw.WriteLine("MAAC GUI Ver: 0.0");
 tw.WriteLine("MAAC Console Ver: 1.1 alpha");
 tw.WriteLine("");
 tw.Write("Date: ");

 99

 tw.WriteLine(DateTime.Now);
 tw.WriteLine("");
 tw.Write("Input File: ");
 tw.WriteLine(Input_File);
 tw.Write("Output_File: ");
 tw.WriteLine(Output_Path);
 tw.WriteLine("");
 tw.Write("Rainflow Flag: ");
 tw.WriteLine(RF_Flag);
 tw.Write("Peak Counting Flag: ");
 tw.WriteLine(PC_Flag);
 tw.Write("Simple Range Flag: ");
 tw.WriteLine(SR_Flag);
 tw.Write("RMS Flag: ");
 tw.WriteLine(SR_Flag);
 tw.WriteLine("");
 tw.Write("Units: ");
 tw.WriteLine(Units);
 tw.Write("Sample Rate: ");
 tw.WriteLine(SampleRate);
 tw.Write("Reference Level Method: ");
 tw.WriteLine(RefMethod);
 tw.Write("User Refernce Level (optional): ");
 tw.WriteLine(RefLevel);
 tw.Write("Rate Mode: ");
 tw.WriteLine(RateMode);
 tw.Close();
 }

 public void cFlaggers()
 {
 if (RFcheck.Checked == true)
 RF_Flag = 1;
 if (PCcheck.Checked == true)
 PC_Flag = 1;
 if (SRcheck.Checked == true)
 SR_Flag = 1;
 if (RMSCheck.Checked == true)
 RMS_Flag = 1;

 Units = TBunits.Text;
 SampleRate = TBsamplerate.Text;
 RefMethod = CBrefmethod.Text;
 RateMode = ratemode.Text;
 if (TBreflevel.Text != "")
 { RefLevel = double.Parse(TBreflevel.Text); }
 }

 public void StartMaac()
 {
 Process MAAC = new Process();
 MAAC.StartInfo.FileName = "MAAC.exe";
 MAAC.Start();
 }

 private void button3_Click(object sender, EventArgs e)
 {
 cFlaggers();
 ParamFile();
 StartMaac();
 }

 public void button3_Click_1(object sender, EventArgs e)
 {
 //this.close();
 }
 }
}

 100

APPENDIX A.6: MATLAB RATE ANALYSIS

clear all
close all
clc

%load files
 stress = textread('stress.txt');
 reversals = textread('local.txt');

%cfd avg on stress file
 sz = size(stress);
 n = sz(1);
 clear sz

 for i=2:n-1
 stress(i,3) = (stress(i+1,2) - stress(i-1,2)) / (stress(i+1,1) - stress(i-1,1));
 end

 avg = 0;
 for i=2:n-1
 avg = avg + stress(i,3);
 end
 avg = avg/(n-2);

 disp('cfd avg = ');
 disp(avg);

%cfd avg points
 syms('xd');
 yd = stress(1,2) + avg * xd;

%slope of reversal points
 sz = size(reversals);
 nr = sz(1);
 clear sz
 slp = (reversals(nr,2) - reversals(1,2)) / (reversals(nr,1) - reversals(1,1));

 disp('rev avg = ');
 disp(slp);

%linear lsr on stress file
 c = polyfit(stress(:,1),stress(:,2),1);

 disp('lsr slp = ');
 disp(c(1));

%line points
 x = [stress(1,1) , max(stress(:,1))];
 y = [c(2) + stress(1,1)*c(1) , c(2) + max(stress(:,1))*c(1)];

%plot
 subplot(1,3,1)
 hold on
 plot(stress(:,1),stress(:,2),'r');
 plot(reversals(:,1),reversals(:,2))
 xlabel('Time (s)');
 ylabel('Load (unit)');
 legend('Service history','Reversal Line')

 subplot(1,3,2)
 hold on
 plot(stress(:,1),stress(:,2),'r');
 plot(x,y)
 xlabel('Time (s)');
 ylabel('Load (unit)');
 legend('Service history','Linear LSR')

 subplot(1,3,3)

 101

 hold on
 plot(stress(:,1),stress(:,2),'r');
 ezplot(yd,[stress(1,1),stress(n,1)]);
 xlabel('Time (s)');
 ylabel('Load (unit)');
 legend('Service history','CFD Average')

 102

APPENDIX A.7: MACC Parameter File (params.txt)

 103

REFERENCES

[1] J.E. Shigley, R.G. Budynas, and J.K. Nisbett, Shigley's Mechanical Engineering
Design, 8th ed. New York: McGraw-Hill, 2006.

[2] R.W. Wetzel, "Fatigue Under Complex Loading: Analysis and Experiements," AE-
6, 1977.

[3] Les Pook, Metal Fatigue. Dordecht, Kingdom of the Netherlands: Springer, 2007.

[4] S.C. Lee and S.W. Nam, "Effect of strain rate on the fatigue cavitation during
continuous cycling of 12% Cr-Mo-V steel at 600°C," International Journal of
Fatigue, vol. 13, no. 1, pp. 79-83, 1991.

[5] J. Dong and N. Soo Woo, "Strain-rate effect on high temperature low-cycle fatigue
deformation of AISI 304L stainless, steel," Journal of Material Science, vol. 23, pp.
1024-1029, 1988.

[6] R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs, Metal Fatigue in
Engineering, 2nd ed. New York: John Wiley and Sons, 2001.

[7] American Society for Testing and Materials, "Standard Practices for Cycle
Counting in Fatigue Analysis," E 1049, 2005.

[8] J.A. Bannantine, J.J. Comer, and J.L. Handrock, Fundamentals of Metal Fatigue
Analysis.: Prentice Hall, 1989.

[9] ASM International, "ASM International Handbook," ASM International, Volume
19 - Fatigue and Fracture, 1997.

[10] Y.L. Lee, Fatigue Testing and Anlysis: Theory and Practice. Burlington: Mass
Elsevier, 2005.

[11] M. Matsuishi and T. Endo, "Fatigue of Metals Subjected to Varying Loading,"
Japan Society of Mechanical Engineers, Fukuoka, Japan, 1968.

[12] S.T. Kim, D. Tadjiev, and H.T. Yang, "Fatigue Life Prediction under Random
Loading Conditions in 7475–T7351 Aluminum Alloy using the RMS Model,"
International Journal of Damage Mechanics, vol. 15, pp. 89-101, January 2006.

[13] C. Leser, S. Thangjitham, and N. Dowling, "Modelling of random vehicle loading
histories for fatigue analysis," International Journal of Vehicle Design, vol. 15, no.
3/4/5, pp. 467-483, 1994.

[14] S. Abdullah, C. Nizwan, and M. Nuawi, "A Study of Fatigue Data Editing using the
Short-Time Fourier Transform (STFT)," American Journal of Applied Sciences,
vol. 6, no. 4, pp. 565-575, 2009.

[15] H.J. Sutherland, "Frequency-Domain Stress Prediction Algorithm for the LIFE2
Fatigue Analysis Code," Wind Energy Research Division, Sandia National
Laboratories, Albuquerque, 1991.

[16] American Society for Testing and Materials, "Standard Test Methods for Tension
Testing of Metallic Materials," E 8, 2004.

[17] American Society for Testing and Materials, "Standard Test Methods for Elevated
Temperature Tension Tests of Metallic Materials," E 21, 2003.

 104

[18] K. Chang, G. Jang, C. Park, and H. Gil, "Strain-rate dependence of mechanical
behavior and hysteretic characteristics of TMCP steel (SM570-TMC) and its
modeling," Computational Materials Science, vol. 45, pp. 669-673, 2009.

[19] Y Haidong, Yongjin G., and L. Xinmin, "Rate-dependent behavior and constitutive
model of DP600 steel at strain rate from 10^-4 to 10^-3 s^-11," Materials and
Design, vol. 30, no. 7, pp. 2501-2505, 2009.

[20] D.E. Knuth, The art of computer programming: Sorting and searching, Volume 3,
2nd ed.: Addison-Wesley, 1998.

[21] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical
Recipes in FORTRAN 77, 2nd ed. New York, UNited States of America: Press
Syndicate of the University of Cambridge, 1986.

[22] J.B. Chang and C.M. Hudson, Methods and Models for Predicting Fatigue Crack
Growth Under Random Loading., 1982.

[23] J. Cooley and J. Tuckey, "An Algorithm for the Machine Computation of the
Complex Fourier Series," Mathematics of Computation, vol. 19, pp. 297-301, April
1965.

[24] The MathWorks Corp. (2010, April) MATLAB Documentation. [Online].
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/fft.shtml

[25] R.C. Juvinall and K.M. Marsheck, Fundementals of Machine Component Design,
2nd ed. New York: John Wiley and Sons, 1991.

[26] R. Weicker, "Dhrystone: a synthetic systems programming benchmark,"
Communications of the ACM, vol. 27, no. 10, pp. 1013-1030, October 1984.

