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ABSTRACT 

 

Predicting fatigue failure is a critical design element for many engineering 

components and structures subject to complex service conditions. In high-temperature 

and corrosive environments, many materials exhibit rate dependent phenomena that can 

significantly alter safe service life predictions. Existing cycle processing techniques such 

as Peak Counting, Simple Range, and the Rain Flow method are able to resolve complex 

service histories into sets of simple cycles, but these methods are unable to handle time-

related parameters such as engage rate and cycle sequence. To address this, a cycle 

processor was written in FORTRAN 95 later termed the Multi-Algorithm Cycle Counter 

(MACC). This code was utilized as a platform to develop, test, and study various 

methods of extracting and interpreting rate parameters extracted from cycles defined by 

existing counting algorithms. 
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1. INTRODUCTION 

1.1 Background 

It could be argued that fatigue failures are inevitable in mechanical systems. If a 

component subject to cyclic loading does not fail due to overload, shock, corrosion, wear, 

or other modes of failure, it will eventually succumb to fatigue. Generally, designs of 

components are over-engineered to ensure that the life cycle of the product outlasts any 

warranty or legal liability. These oversights very often increase production and life-cycle 

costs, while decreasing product performance. One goal of further fatigue research is to 

develop methods that lead to maximum utilization of mechanical products.  

A component or structure subject to cyclic loading either has or has not failed by 

some arbitrary definition (i.e., visible crack formation). The nature of the failure criterion 

is generally discreet, but the time-dependent relationship suggests that the phenomenon is 

actually continuous with time; a mechanical component appears to be able to withstand a 

certain number of loading events before sudden failure. This sets the stage for various 

constructs to bridge the gap between the failed and functional states—the ultimate goal of 

these constructs being to rate the remaining functional service life of the component. 

The facet of interest in this research is the improvement of fatigue failure prediction 

through more thorough service history analysis. More specifically, this research 

concentrates primarily on improving the existing cycle counting methods used to analyze 

service history data. Pivotal concepts and assumptions used in such approaches are: 

 Elements subject to variable amplitude service have a finite service life [1] 

 Service life can be estimated by (1) condensing the service history data into cycle 
events (cycle counting) [2], (2) estimating damage incurred be each cycle event 
[3], and (3) accumulating the damage incurred by each event [1]. 
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Continuing developments in the power generation industry have lead to larger, higher 

temperature and higher pressure gas and steam turbines that require more robust 

components than ever [4]. Because the material prices of austenitic stainless and Ni-base 

superalloys continues to rise, many manufacturers aim to optimize component designs to 

reduce initial manufacturing costs, and reduce life-cycle costs by increasing time 

intervals between inspection outages. One such opportunity for optimization is increasing 

the service life of a component by accounting for rate-dependence in fatigue life 

estimation. Figure 1.1 shows a typical example of fatigue life dependence on strain rate. 

Here the material exhibits two distinct regions of strong and weak strain-rate dependence. 

If rate data is not included in analysis, there are two possible consequences: (1) assuming 

fatigue resistance from the weak region will lead to overly conservative life estimates 

when high rate events are superimposed with low rate events or (2) assuming fatigue 

resistance from the strong region will result in non-conservative estimations of fatigue 

life. 

 

Figure 1.1. Strain-rate dependence of fatigue life of AISI 304L at 973 K [5] 
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In the typical setting, single-variable S-N data is used to develop a relationship 

between fatigue strength and number of repetitions to failure shown in Figure 1.2. In this 

data, material composition, condition, temperature, pressure, and cycle rate are assumed 

constant. Specific to this application, each load event magnitude is cast as a fatigue-

strength, and the relationship is used to determine Nf, the number of repetitions to failure.  

 

Figure 1.2. S-N Curve used in traditional variable amplitude fatigue analysis [1] 

Knowing this, and the number of repetitions that occurred during a service history, 

Miner’s linear damage accumulation rule is used to establish the percentage of functional 

life consumed by the load event [3,4,6]. This procedure is repeated until all loading 

events are resolved and accounted for. Although the analysis of damage accumulation 

theory is outside the scope of this research, it is the primary motivating factor behind the 

incorporation of rate parameters.  

1.2 Objectives 

Rather than utilizing a single parameter relationship to determine Nf, the number 

of repetitions to failure, this research aims to explore complementing this quantity with a 
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rate dependent metric derived from the complex service history. Capturing rate along 

with cycle magnitude can more accurately model the accumulation of damage throughout 

a complex service history. The main obstacle in utilizing such a technique is the lack of 

support for extracting cycle rate parameters in existing counting procedures [7]. The 

primary objective of this research is to develop and characterize methods for extracting 

rate parameters from post-processed service histories. In order to make any substantial 

observations about the validity of the rate extraction methods to be developed, the 

fundamental operation of the employed counting algorithms needed to be understood to 

develop a consistent and meaningful definition of a cycle. To exhibit and address the 

issue of cycle rate extraction in existing cycle processing algorithms, existing cycle 

counting procedures were developed, tested, and modified. 

1.3 Overview 

Once the algorithms of interest had been developed into programmable procedures, 

they were integrated into the Multi Algorithm Cycle Counter (MACC) code and 

subjected to a range of simple and idealized service histories. Performance characteristics 

such as processing time, number of cycles identified, feature expandability, and cycle 

validity were documented to serve as a comparison metrics to rank methods included in 

the MAAC program. The next chapter of this thesis details pertinent prior research on 

fatigue cycle counting. Afterwards, the analytical approach of this research is discussed 

and in Chapter 4 the test results of standard and modified counting algorithms are 

covered.  Chapter 5 applies these results in industry-specific case studies to examine the 

aggregate performance of the rate extraction methods. 
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2. BACKGROUND 

Cycle counting in this context is the resolution of a complex service history that is 

either too long or too complicated to count visually into a series of simple cycles that can 

be processed by a damage accumulation rule. The ASTM standard E 1049 [7] provides 

an adequate definition of some commonly used algorithms, but it does not mention a 

procedure for selecting an algorithm or the environment-dependence of their 

performance. Other fatigue texts also only outline the basic procedures of the various 

counting algorithms [3,6,8]. Industry publications such as the ASM International 

Handbook on Fatigue and Fracture [9] only mention the use of an “adequate” cycle 

counting method and do not formally define criteria for such a counting method. The 

above mentioned literature also provides little insight into developing these concepts into 

numerical procedures for practical use; analysis of this literature reveals a considerable 

gap between the formal definition of these methods and programming solutions required 

for their implementation. The prospect of rate and sequence extraction also goes virtually 

unmentioned. The literature referenced in this work served mainly to define the 

framework of the cycle counting methods as there has apparently been very little or no 

known research resulting in publications relevant to the main scope of this project. An 

exhaustive literature review has resulted in no widely available works addressing rate 

extraction. The counting algorithms are commonly grouped by the number of potential 

cycle parameters taken into consideration when the cycle is being defined. The single, 

double, and zero-parameter methods are described in the following sections. 
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2.1 Single Parameter Algorithms 

The single parameter approaches are more often used in demonstration than in 

industrial application [6,7,10]. This algorithm group analyzes a single parameter (i.e., 

difference between points, point value, etc.) to reconstruct a simple cycle and typically 

cannot properly resolve noise, secondary signals, or other highly complex signals. 

 

Figure 2.1. Basic fatigue loading parameters [7] 

2.2 Level Crossing 

When single parameter methods are defined, level-crossing counting almost 

universally appears first. The Level Crossing procedure starts with the definition of a 

reference load level. The load space (or axis) must then be divided into a meaningful 

number of subdivisions. Two categories of counts are defined: when the load data crosses 

a division line with a positive slope, a Category I count is made. When the load data 

crosses a division line with a negative slope, a Category II count is made. Once all 

sections of the load data are resolved, the elements are reassembled to form the most 

damaging cycles. Starting at the reference load level, sequentially larger Category I 

counts are assembled until there are no larger values. Starting at the last level, 

sequentially smaller Category II counts are assembled until the reference load level is 
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reached. This procedure is repeated in the negative load direction until all sections are 

accounted for. Figure 2.2 shows a typical service history before and after the application 

of the Level Crossing method. In this figure, the reference load level is assumed to be 

zero which imposes the requirement that each cycle stem from and return to this level. 

Reconstruction of the service data reveals the high magnitude master cycle, but combines 

several of the slave cycles into a more damaging, high amplitude cycle. Only two noise 

cycles are identified; several are lost in the load space subdivisions and others are 

consumed by higher magnitude cycles. 

 

Figure 2.2. (a) Sample service history data and (b) resolution by the Level Crossing method [7]. 

Visually, and without any consideration of error tolerances, the Level Crossing 

technique is relatively simple but extremely tedious to execute. The method dissects the 

service history into differential elements and reconstructs simple cycles using these 

elements. In practice, this method yields some impressive obstacles. A reoccurring theme 
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among this and other single-parameter methods is the definition of a reference load level. 

Among relatively simple service histories this may be observed visually (i.e., overall 

average load), but this idea in principal contradicts the motivation behind utilizing such 

an algorithm: to resolve complex service histories (i.e., situations where the history 

cannot be resolved visually). In common with many other single-parameter methods is 

the complete rearrangement of load values, invalidating any rate or sequence information. 

Further, dividing the load space into a “meaningful” number of sections is not formally 

defined in literature. For a given service history, the number of divisions could be 

increased until the cycle count does not exhibit any significant change; however, this also 

contradicts the underlying goal of these algorithms as the count would be performed 

indefinitely until an optimal environment is created. Further still, the method does not 

actually define any procedure for the counting of cycles. Only cycle reconstruction is 

outlined in this method. An additional procedure such as Peak Counting or Simple Range 

must be used on long service histories where the reconstructed cycles cannot simply be 

counted visually. 

2.3 Peak Counting 

One of the more intuitive single-parameter methods is Peak Counting. In common 

with the majority of the algorithms, the Peak Counting method cannot operate directly on 

service data. The service data must first be resolved into reversal points (i.e., local 

maxima and minima) [7,8,10]. There are several variations of the Peak Counting method 

found in literature. The most commonly used variation evaluates only local maxima 

above the reverence level and local minima below the reference level. These points are 

later paired to form cycles (Figure 2.3 (b)) [7]. This variation can lead to highly non-
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conservative damage estimation as a large portion of reversal points can potentially be 

discarded. This method imposes the assumption that all cycles must cross through the 

reference level. Another variation simply pairs the largest available sets of maxima and 

minima to form cycles (Figure 2.3 (c)) [7]. This variation tends to yield more 

conservative damage estimations in that many secondary or noise cycles can be counted 

as reference level-crossing, high magnitude cycles. Because this research aims to use this 

method as an upper bound for counting solutions, the latter is further explained in detail.  

The procedure starts with the definition of a somewhat arbitrary reference load level. 

Often times, the overall history average is used. Similar to many cycle counters, the load 

data must be resolved into reversal points. The largest and smallest reversal values are 

then paired until all points have been accounted for in a cycle. The difference between 

each pair is recorded as the cycle range and the mean can be recorded as the average of 

the pair. The cycle mean will by nature be biased toward the reference level and 

therefore, is generally disregarded. A demonstration of the Peak Counting method is 

shown in Figure 2.3. In this figure, because the service history is identical to that of 

Figure 2.2 (a), the reference strain level is assumed to be zero. Figure 2.3 (b) shows the 

Peak Counting method correctly resolving the high amplitude master cycle. Like the 

Level Crossing method, the Peak Counting method implicitly combines portions of noise 

cycles to form a medium amplitude cycle (cycle F-G) but yields a significantly more 

conservative counting solution as noise is cast as higher magnitude cycles. 
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Figure 2.3. (a) A sample service history, (b) simple cycles resolved by the Mean Crossing Peak Counting method 

and (c) simple cycles resolved by Peak Counting [8]. 

As with the Level Crossing technique, there is no formally defined method to 

determine a meaningful reference load level when using the Peak Counting method. In 

principal, the Peak Counting method assumes that the service history begins at the 
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reference load level, moves to a high peak value, back to the reference load level, moves 

down to a low peak value, and back to the reference level once again to form a complete 

reversal using only the peak and valley points as evidence. These assumptions propagate 

each cycle average to the overall history average, and therefore mean stress or strain 

effects cannot be accounted for. In common with the Level Crossing technique, this 

method also requires the complete rearrangement of load data, invalidating all rate and 

sequence information. 

2.4 Simple Range Method 

The Simple Range method is one of the more sophisticated single-parameter cycle 

counting algorithms. Similar to the Peak Counting method, the Simple Range algorithm 

cannot operate directly on service history data so it must first be resolved into a set of 

reversal points. Where the Level Crossing method divides the history into differential 

units, and the Peak Counting method examines peaks, the Simple Range method 

examines ranges, or differences between sequential reversal points. The difference 

between sequential points is calculated and each value is counted as a half cycle. Figure 

2.4 demonstrates this method on a complex service history. In this figure, the simple 

range method fails to correctly resolve noise and secondary cycles to uncover the master 

cycle (range D-G). The master cycle is misrepresented and masked by noise at a range of 

six units. Visual inspection reveals the master cycle at a range of nine units. 
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Figure 2.4. Service history resolution by the Simple Range method [8] 

 At the fundamental level, there are no major application issues stemming from the 

Simple Range method. An arbitrary reference level is not required, few operational 

assumptions are made, rate and sequence information are preserved, and partial cycles are 

handled in an effective manner. However, signals with a large amount of noise will 

completely mask underlying high-amplitude cycles as each reversal pair is discarded after 

being resolved as a half-cycle. 

2.5 Double Parameter Methods 

The double parameter methods generally yield the most accurate and reliable 

cycle counts [10]. In this group of counting algorithms, pairs of cycle parameters are 
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analyzed for cycle candidacy which allows for the proper resolution of noise and 

secondary cycles. The algorithm that best characterizes the double parameter methods is 

the Rainflow method developed by Endo and Matsuiski [11]. Although this method is not 

possible to implement numerically the way Endo and Matsuiski describe it, there are 

multiple numerically compatible adaptations available [3,6,8]. This algorithm adequately 

resolves noise, identifies hysteresis behavior [10], and is capable of retaining time data 

for cycles. 

The ASTM standard E 1049 [7] contains a definition of the Rain Flow method 

that is much simpler than the Rain Flow analogy used in many texts [6,8,10] . Similar to 

previously mentioned methods, this procedures starts with the resolution of the load data 

into reversal points. The first, second, and third reversals are cast as points i, j, and k, 

respectively. The procedure continues by evaluating the difference (or range) between 

points i and j, and points j and k. If the j-k range is larger than that of the i-j range, the i-j 

range is counted as a full cycle and the point j is discarded from further analysis. The 

procedure continues by recasting the i-j-k indices onto remaining reversal points and 

repeats this procedure until only two reversal points remain. The range of this remaining 

pair is counted as a half-cycle. There are also some exceptions to this procedure. If point i 

is the beginning entry in the reversal data and a cycle is discovered, point i is discarded 

rather than point j. Figure 2.5 is a visual representation of the ASTM Rain Flow 

procedure with the starting point exception in use. Starting at Point B, the A-B range is 

counted as a reversal because the B-C range is larger. Because Point A is a starting point, 

it is discarded rather than Point B. Upon visual inspection, this method appears to 

correctly unmask the high amplitude master cycles without altering the lower magnitude 
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secondary cycles. Because the reversal data is not rearranged or altered in the process, the 

counted cycles also retain their mean, sequence, and rate parameters. 

 

Figure 2.5. Application of the Rain Flow method 

The vast majority of the double parameter methods yield closely grouped results 

when applied to the same service history. Hayes Method, Range Pair, Ordered Overall 

Pair, Racetrack, and the Hysteresis Loop method all yield virtually identical cycle counts 

as the Rainflow method when load data is arranged in the same manner [7]. The double 
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parameter methods are all driven by the same objective: the identification of hysteresis 

loops and the extraction of their parameters. 

2.6 Zero Parameter Methods 

The zero parameter cycle counting algorithms are best employed in scenarios 

where more in-depth analysis would not be meaningful or economical. Long, random and 

invariant loading histories where the primary objective is to study the effects of noise and 

vibration on fatigue life are typical candidates for the Zero Parameter methods. Two 

commonly used algorithms are the RMS Method and the Fourier Transform Method. 

Applications primarily subject to vibration or high-speed, random loading where 

the amplitude of oscillation is significantly larger than any discontinuous events in the 

service history may be represented via the Root Mean Square (RMS) method. The proper 

use of the RMS method is neither widely published nor standardized, but most of its 

applications construct an equivalent, constant amplitude master cycle based on the RMS 

value of the high and low reversal points. The number of reversal points is assumed to be 

directly proportional to the number of cycles [3,12]. Once the RMS equivalent range is 

computed, pairs of reversal points are counted as complete cycles. This method removes 

all time related information from the load data and refines it to only two parameters:  

RMS equivalent range and the number of cycles. 

Applications that are subject to a sum of time-continuous, sinusoidal load signals 

based on an analytic function can benefit from the use of a Fourier transform [13,14,15]. 

By transforming the load signal from the time domain to the frequency domain, the 

amplitude and frequency of major sinusoidal load events can be extracted by identifying 
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the peak points in the transformed function. Knowing the frequency of a signal allows for 

an interpolation of the number of repetitions that occur in a fixed time frame. 

Relative to other commonly used methods, Fourier analysis has the narrowest of 

applications. Any non-periodic events will be neglected, and any non-sinusoidal signals 

will be erroneously represented as low-amplitude noise due to the nature of the Fourier 

Transform.  

2.7 Rate-Dependence 

Rate dependence of materials is well known and documented facet of materials 

testing [5,16,17,18]. Monotonic room temperature experiments on high-performance 

steels show increases in yield strength on the order of 10% and more [19]. Materials 

subject to high-rate conditions appear to react to loading events with higher strength as 

potential dislocations within the material do not have adequate time to reach a steady 

state and permeate [18]. Further research shows that the overall effect of an increased 

cycle rate on fatigued components in high-temperature environments can dramatically 

increase fatigue life. More importantly, the effect of low cycle rates is significantly 

decreased fatigue life [5] which may lead to premature failure. This study aims to 

develop a framework in which these effects can be accounted for by analyzing various 

cycle definitions used in literature and using these algorithms as a platform for 

developing rate handling procedures for further testing. 
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3. Research Approach 

In order to analyze cycle data, programmable algorithms are required. Existing 

software such as AFGROW, RAINFLOW from Durability, Inc. and STOFLO contain 

adequate cycle counters, but generally no commercially or publically available source 

codes are available to utilize as a platform for further research and development of the 

cycle counting methods. A small software package outlined in Figure 3.3 was written as a 

part of the current study to investigate rate handling procedures. The Multi-Algorithm 

Cycle Counter (MACC) given in Appendix A.1-A.3 accurately implements the cycle 

counting algorithms outlined in the ASTM E 1049 standard and allows for augmentations 

such as the addition of rate extraction procedures. 

The remaining sections of this chapter detail with structure and operation of the 

MACC code and conclude with a discussion of the research approach. In the final section 

it will be clearly stated how the hypothesis will be proven or disproven. 

3.1 Preliminary Procedures 

 As is the case with most cycle counters, the MACC program is coded under the 

assumption that the service history data has already been collected and is assembled in 

either a comma separated, space separated, or tab separated values in an ASCII text file 

where column zero contains the time stamp, and column one contains the service data, 

either stress, strain, force, torque, etc. 
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Figure 3.1. Typical service history text file 

Only one channel of service history is used in the current study. For the case of multi-axis 

loading, multi-channel analysis would need to be implemented into the MACC code and 

is saved for future study. Using the FORTRAN inquire command, the service history text 

file is probed to ensure any exceptions are handled and the user is returned a meaningful 

error message in case the file was not found, or unavailable. Once the availability of the 

file is ensured, it is opened and checked by stepping through each line and counting the 

number of entries. If no entries are found, the exception is handled by returning an error 

message and terminating the program. If the file has at least one entry, a dynamic array is 

allocated to match the dimensions of the text file and its contents are loaded into memory. 

Due to the potentially large number of entries to be loaded for long service histories, the 

heap memory segment is utilized rather than the default stack segment resulting in a 

slight decrease in performance but great increase in reliability when handling large 

arrays. In addition, program parameter and material property texts files are loaded into 

arrays to complete the initialization of the program. 
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3.2 Resolving Reversal Points 

 Because the vast majority of the counting algorithms cannot operate directly on 

service data, the first major operation in the MACC code is the resolution of reversal 

points. Resolving the service history into reversal points was accomplished using a 

relatively primitive technique. Preliminary attempts required the use of central finite 

differencing. Using a series of loops and conditional statements, points central to a 

minimum derivative were identified as local maxima and minima. However, when 

relatively low resolution load data was fed into the program this procedure routinely 

misidentified peak points with an error of ±1 indexed entry. Figure 3.2 illustrates such an 

example: the numerical first derivative minimum occurs at index number two, but the 

reversal point clearly occurs at index number one. 

 

Figure 3.2. Reversal point being incorrectly resolved by central finite differencing 

In light of this situation, a more primitive approach was taken to resolve the reversal 

points. The routine in the MACC program steps though the history array and observes the 

surrounding two nearest indexed values to see if they are either both greater than or less 

than the value at the index in question. If both surrounding values are greater than the 
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value in question, the point is defined as a local minimum. The same logic applies for 

local maxima. Because the number of reversal points cannot be determined in advance, 

pre-allocating the storage array for this information is not possible. Therefore, this routine 

requires two passes to complete. The first pass simply counts the number of reversal 

points and allocates resources for a properly sized array. The second pass re-identifies the 

reversal points and dumps the time stamp and value of each point to a local 

maxima/minima array declared local. A more efficient protocol that could be used in 

place of this method is array flagging. The initial service history array could have been 

allocated with an additional empty column. The reversal point locating routine simply 

could have flagged reversal points by adding a flag value to the array at the index 

location of a reversal. However, this method would have significantly complicated 

referencing reversal points from other subroutines. 

3.3 Peak Counting 

Of the cycle counting methods focused on in this thesis, Peak Counting 

(Appendix A.3) is the most computationally expensive. To initialize the procedure, a 

reference load level must be defined. Because there are no published guidelines for 

defining the reference level, the MACC program is coded to take the overall average of 

the reversal values. Once the reference level is defined, the routine aims to sort the 

reversal points into two bins: points above the reference load level, and those below. A 

reoccurring theme in the development of this chapter is memory management. Because 

the size of the bin arrays is not known a priori, this procedure also requires two passes to 

execute; each is described. 
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The first pass steps through the local array to count the number of points above 

the reference level, and those below. Once complete, the second pass dumps the values 

into the max and min arrays without their respective timestamps. The next step in the 

procedure is by far the most computationally expensive routine in the MACC program. 

To reiterate, the goal of this method is to combine the reversal points in such a way that 

each cycle incurs the maximum possible damage without reusing any points. In order to 

achieve this, a sorting algorithm was employed to arrange the high and low bins in a way 

such that their values could be paired sequentially by stepping through each array and 

simply extracting and pairing the next value. For the scope and application of this 

program, a simple bubble sort routine was employed to sort the bins from their highest to 

lowest values. The routine looks at the first value of an array for an initial value and steps 

though the array to find the largest value using a series of conditional statements and 

circular references. Once the largest value is found, the value is copied to the first 

available index in a new array, and the procedure is repeated until all values are resolved. 

A similar procedure is performed on the low-value bin array.  

Once the new sorted bins are filled, values from each bin at the sequential row 

indices are paired to form cycles. For example, the largest value from the high-bin is 

paired with the lowest value from the low-bin to from a cycle. These points are discarded 

and the next set of points are paired to form a cycle. This procedure continues until all 

points are resolved. If the high-bin and low-bin arrays are not equal length, the trailing 

value is paired with the reference level to form a half cycle. The only cycle parameter 

that can be extracted using this method is amplitude. Because the procedure assumes that 
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the load signal stems and returns to the reference level, nearly every cycle average will be 

either at or very close to the reference level. 

The bubble sort routine may be one of the least efficient implementations of a 

sorting algorithm known to computer science [20] but has been integrated into the Peak 

Counting subroutine shown in Appendix A.3. If the MACC program were to be prepared 

for application in industry, this routine would undoubtedly need to be replaced by either 

the Quicksort or Heapsort routines [21], depending on the length of the service history in 

question, to achieve more reasonable computational efficiency. 

3.4 Simple Range 

 As the name implies, the Simple Range method reduces to a relatively simple 

programming procedure. The routine steps though the local reversal array, observes the 

first and second values, computes their difference and dumps this value into a new array. 

This procedure is repeated until all reversal points are resolved and each value in the new 

difference array is counted as a half cycle. Additionally, the average of each reversal pair 

can be cast as the cycle mean. The average half-cycle rate is also extracted by dividing 

the cycle amplitude by the difference in time stamps between the parent reversal points. 

Memory management is also exceptionally simple in this method; the size of the 

difference array can be determined by dividing the size of the local reversal array by two. 

If the reversal array contains an odd number of entries, the trailing value must be 

discarded as there is no meaningful procedure to handle what is effectively a quarter-

cycle. The text version of this algorithm is shown in Appendix A.3. 
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3.5 Rain Flow 

The Rain Flow analogy could be one of the least straightforward methods to 

convey the method, and unfortunately is used almost universally to explain the concept 

behind this procedure. A more concise definition is found in the ASTM E 1049 standard 

for cycle counting standard practices, and such was utilized in the development of the 

MACC application. The fundamental operation of the Rain Flow routine is simple: the 

second index in the reversal array is used as a starting point. Next, the difference between 

this point, the next index value and the previous index value are computed. A series of 

conditional statements evaluates if the next range greater than the last. If this statement 

returns true, a full cycle is counted whose amplitude matches that of the previous range, 

and the current central point is discarded. The procedure was implemented by means of 

array flagging. First, the reversal array is copied to a new working array with an 

additional blank column. When a cycle is identified in this new working array, a flag is 

added into the blank column at the index of the central value effectively discarding the 

value. The cycle amplitude, mean, timestamps, and original array indexes are dumped to 

a new array for later analysis. Because the working array has now effectively been 

modified, the routine must restart from the first available index and start over, avoiding 

flagged indexes—characteristic of the Rain Flow algorithm. The FORTRAN routine is 

provided in Appendix A.3. 

3.6 RMS 

There are two instances of the RMS method in the MACC program. The first is 

based on the technique outlined in the ASTM STP 748 publication on the subject [22], 

and the second uses the RMS calculation in its typical sense for comparison. The ASTM 
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method requires that the load reversal array be sorted into max and min bins before 

operation. The sorting criteria for these bins are largely undefined. Based on examples 

from the publication, and in other deployments [12] the routine used in the MACC code 

was designed to sort based on a reference level similar to the Peak Counting routine. 

Once the load reversal array was sorted into high and low bins, the RMS of each was 

calculated. The difference in the RMS value from each bin is cast as the master cycle 

range, and the number of counts is defined as half of the number of reversal points. 

Because the RMS value is always positive, the code transfers the signs of the means of 

the reversal points to the RMS values before computing their difference. 

The second instance of the RMS method utilizes the RMS calculation in its 

typical sense. This routine calculates the overall RMS magnitude of the service history. 

The RMS value is cast as the master cycle magnitude, and the number of counts is 

defined similarly to the ASTM method. Both methods are included in the MACC source 

code given in Appendix A.3. 

3.7 Rate Handling 

Methods in the MACC program that supported the meaningful extraction of 

average rate information were modified to do so. In the single parameter methods, this 

was accomplished by simply dividing each cycle amplitude by the difference in time 

stamps from the parent reversal points (change in value per change in time). Because the 

Rain Flow method is a double parameter method constructed of three points (and 

therefore, two segments) separate increasing and decreasing rates were extracted for each 

cycle. In all cases, rate information was augmented to the cycle count array for each 

method. This technique operates at the reversal level and was termed RRE, for reversal 
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rate extraction. Issues mentioned later in this paper prompted the need for additional rate 

extraction techniques, the first of which was a load-level average rate extraction (as 

opposed to peak-level rate extraction). Rather than operating on the reversal points to 

obtain rate parameters for a cycle, this method averages the first time-derivative of the 

service history data within each cycle window and records this value as the average cycle 

rate. This was implemented in the MACC program by augmenting the service history 

array with a central finite difference time derivative of the load values and was termed 

the Central Finite Difference Average (CFDA) method. Each applicable cycle counting 

routine was modified to call such a routine during operation. During counting operations 

the original array indices from the service history data were used to map a window to the 

load rate data. Once this window was defined, the statistical mean and standard deviation 

were computed and recorded for later analysis and the counting routine continued. 

Similar to earlier mentioned methods, the single parameter procedures yield a single rate 

per cycle, and the double yield two rates per cycle (load and unload). The rate handling 

subroutine was developed to run in several different modes triggered by the parameter 

file (params.txt) during startup. The routine operates in either RRE, CFDA, Linear LSR 

mode.  

Linear LSR (least squares regression) mode extracts the rate data from a more 

advanced statistical approach. Using the same load window defined above, the series of 

points are fitted with a linear least squares regression line and the slope is recorded as the 

cycle rate (or cycle engage and disengage rates for double parameter methods). The 

mathematical definitions are given in Equations 1-3. In these equations, the symbol α 

(alpha) represents the service history value (stress, strain, load, deflection, etc.) and n 
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represents the cycle window indices. Text versions are given in the MACC source code 

(Appendix A.1-A.3). 
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3.8 Post Processing and the Fast Fourier Transform Method 

Due to the complexity and narrow application of the Fast Fourier Transform 

(FFT) method, this method was not included into the MACC code. Instead, this method 

was employed in the post processing phase of analysis through MATLAB. Once the 

MACC program had been successfully executed on a service history, the input and output 

data files were passed to MATLAB for further analysis and plotting. Once these data files 

are loaded into the MATLAB environment, the built-in FFT function (Cooley-Tuckey 

algorithm [23]) is used to analyze the service history [24]. The result of this is a plot of 

the transformed load data from the time domain to the frequency domain. The remainder 

of post processing operations are the sorting of the cycle parameter packages (amplitude, 

mean, and rate) into bivariate histograms with cycle amplitude and cycle mean as the 

variations. These diagrams were used to exhibit the relative performance of each 
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counting method included in the MACC program. The MATLAB post processing code is 

given in Appendix A.4. 

 

Figure 3.3. MACC system flowchart 

3.9 User Interface 

 To simplify operation, a GUI was written in Microsoft’s Visual C# language. 

Without this element, experimentation could only be performed through the manipulation 

of the MACC source code. Because C# is a relatively powerful language compared with 

FORTRAN, for development was handled largely by Microsoft’s .NET code framework. 

The form allows the selection of a service history text file, the selection of an output 

folder, and variation of various MACC runtime parameters such as counter selections, 

units, etc. The program uses the user defined switches and values to write a MACC 

runtime parameter file (Appendix A.7) used to define various processing options. 
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Figure 3.4. MACC GUI form 

 To interact with the parameter file, many of the MACC program variables were 

passed to the global namespace module; this greatly simplified the movement of 

information throughout the system. The GUI and console system assumes that the GUI 

executable and the MACC console executable are run in the same directory. This would 

likely be handled by an installation program or a read-only runtime device. The 

parameter file loading procedure starts by probing the parameter file for existence using 

the inquire command in FORTRAN. If the file is not found, the exception is handled by 

returning an error message through the console and terminating the program. If the 

parameter file exists, it is examined line by line for compatibility by reading the version 
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number and checking content compliance through the file. As each element of this 

procedure is completed, the pertinent information from each line is loaded and assigned 

to its relevant variable.
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4. RESULTS 

This chapter documents the results of two types of tests performed in this 

research. The first sections characterize the counting solutions of the four cycle counters 

included in the MACC code. Idealized service histories (Figure 4.1) were analyzed in an 

attempt to reveal the signal-specific behavior of these algorithms. The latter sections 

characterize various rate extraction techniques on these idealized service histories to 

document their performance in commonly encountered scenarios. The next chapter 

applies these findings in case studies to document the aggregate performance of the rate 

extraction techniques developed in this research.  

4.1 Algorithm Validation 

True quantitative validation of a cycle counting algorithm appears to be 

impossible due to the self-referential definitions of the cycle criteria; the definition of a 

cycle varies with the method of cycle counting in use [7] and there is no reference 

definition available for comparison. Figure 4.2 (a) is an example of a simple service 

history where visual verification can be performed based on knowledge of trigonometric 

functions. In simple service histories such as this, the loading events are clear and can be 

compared with the output of a cycle counting algorithm. However, these are not the cases 

that actually require the use of a cycle counting algorithm and provide limited insight into 

validation on truly complex signals. Figure 4.2 (b) is an example of a complex service 

history where a manual count cannot be performed without assuming a cycle definition. 

In the case of a complex service history, a cycle counting algorithm must be employed to: 

(a) define the cycle and (b) count the cycles while extracting their parameters. Because 
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the algorithm provides the working definition of the cycle, there is no meaningful true 

count to compare with. 

 

Figure 4.1. Code snippet from the MACC service history emulator library 

 

Figure 4.2. Simple and complex service histories 

An alternative validation method could utilize the empirical results of a controlled 

fatigue test counted by algorithms of interest. The algorithm responsible for the closest 

approximation of the fatigue life could be considered the most accurate for the specific 

scenario. However, by nature this methodology may yield unclear results; a direct 
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comparison cannot be made between fatigue test results and the output of a cycle 

counting algorithm due to the required use of a damage summing rule. This type of 

validation would only compare predicted failure and actual failure as opposed to the 

algorithm cycle count and the actual cycle count, yielding a strictly empirical 

relationship. In light of these obstacles, only highly situational qualitative and relative 

quantitative comparisons can be made between algorithms. 

4.2 Algorithm Performance 

 The initial phase of this research consisted of hypothetical simulations to evaluate 

the performance of each algorithm included in the MACC code. This evaluation was 

conducted in two sub-phases: sub-phase one of the simulations consisted of analyzing 

various summations of trigonometric and discontinuous functions to explore signal-

specific cases of counting solutions handled by the MACC program. Simulated 

experiments were conducted with increasingly complex signals to exhibit the 

performance of each algorithm as service histories became more difficult to resolve. Sub-

phase two of simulation explored the performance of the counting algorithms on quasi-

random service data. The goal of this phase was to observe the underlying patterns in the 

bivariate histograms yielded by the counting algorithms included in the MACC code. 

4.3 The Simple Signal 

The simple signal shown in Figure 4.3 is based on a cosine function with a 

frequency of 10 Hz and amplitude of one unit. This signal was properly resolved into 

reversal points by the MACC code as shown in Figure 4.4. Visually, the service history 

shows eight reversals at a magnitude of two units. The counts made in Figure 4.5 Figure 

4.7 also show eight full reversals at a magnitude of two units (noting that the Simple 
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Range counts half-cycles). Because the load signal occurs at constant magnitude and 

contains only simple cycles, the RMS method also resolves eight cycles at a magnitude of 

two load units. 

 

Figure 4.3. Simple sine/cosine service history 

 

Figure 4.4. Simple service history resolved into reversal points 



 

 34

 

Figure 4.5. Peak Counting method applied to the simple service history 

 

Figure 4.6. Simple Range method applied to the simple service history 
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Figure 4.7. Rain Flow method applied to the simple service history 

 

4.4 The 2Ssum Signal 

 The 2sum signal is the sum of a master and slave cosine signal of different 

magnitudes and synchronized frequencies (Figure 4.8). Comparison of Figure 4.8 and 

Figure 4.9 exhibits the early evidence of signal cancellation where the low-amplitude 

slave signal is partially absorbed by the high-amplitude master signal. Figure 4.10 shows 

the Peak Counting method resolving a highly conservative cycle count; each reversal 

caused by the slave signal is resolved as a virtually full magnitude cycle. Figure 4.11 

shows the result of the Simple Range method on this service history. Although this 

method performs a count of marginally higher quality, it is clear that the master cycles 

are not completely resolved and masked by the slave signals. This is one of the simplest 

examples of master cycle masking in the Simple Range method. Figure 4.12 shows the 

result of the Rain Flow method on this service history. The Rain Flow method correctly 
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resolves the master cycles at eight counts, but because sixteen of the slave cycles are 

cancelled by the master cycle the remaining count does not match the function definition. 

This is a prime example of the self-referential definitions implied by the cycle counting 

methods; the cancelled cycles are not resolved in these methods because they operate 

only on reversal data, and therefore these partial cancellations are not cycles by the 

definitions imposed by the counting algorithms. If the Level Crossing technique had been 

employed in this analysis, the partial cancellations could have been used to reconstruct a 

larger cycle. Employing the ASTM RMS method on this signal yields a master cycle of 

1.67 range and 0.03 mean at 50 counts. Although detailed comparison is difficult, it could 

be argued that this method yields a counting solution at least as conservative as the Peak 

Counting method as the distribution along the mean and range axes are simply condensed 

to an approximately average value. 

 

Figure 4.8. 2Sum service history 
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Figure 4.9. 2sum service history resolved into reversal points 

 

Figure 4.10. Peak Counting method applied to the 2sum service history 
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Figure 4.11. Simple Range method applied to the 2sum service history 

 

Figure 4.12. Rain Flow method applied to the 2sum service history 
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4.5 The 3sum cycle 

The 3sum signal further exemplifies issues with secondary slave signals, most 

notably in the single parameter methods. Comparison of Figure 4.13 and Figure 4.14 

shows that there are no partial cancellations overlooked by the resolution of reversal 

points. Figure 4.15 shows the highly-conservative result yielded by the Peak Counting 

method; each reversal is assumed to cross the reference level and is paired with a reversal 

value opposite of the reference level. The Simple Range method yields a polar opposite 

result shown in Figure 4.16; the master cycle of approximately three units range is 

completely masked by the secondary slave cycles. Because only sequential half-cycles 

are constructed by this method, the highly damaging, high amplitude cycle is severely 

misrepresented by this method. The Rain Flow method shown in Figure 4.17 exhibits the 

service history correctly deconstructed and resolved. A large number of low-range and a 

lesser number of medium range secondary slave cycles are correctly resolved by this 

method. More importantly, the Rain Flow method correctly reconstructs the single, high-

amplitude master cycle that spans the history. Again, the RMS method yields a counting 

solution at least as conservative as the Peak Counting method with sixty-six cycles at 

1.53 range (3.06 amplitude) and 0.05 mean. The RMS master cycle occurs approximately 

at the center of the Peak Counting mean and range distributions. 
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Figure 4.13. 3sum service history 

 

Figure 4.14. 3sum service history resolved into reversal points 
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Figure 4.15. Peak Counting method applied to the 3sum service history 

 

Figure 4.16. Simple Range method applied to the 3sum service history 



 

 42

 

Figure 4.17. Rain Flow method applied to the 3sum service history 

4.6 Random Cycling 

 The random cycling results exaggerate the underlying bivariate histogram trends 

found in the specific signal simulations. Figure 4.18 shows a typical random service 

history with upper and lower bounds of ±20,000 load units and a running average of zero 

units. Figure 4.19 shows the result of the Peak Counting method on this load signal and 

exhibits a trend on the mean-range plane. There is a clear sinusoidal oscillation of the 

cycle mean along the range axis. Starting at zero range moving in the positive direction, 

the cycle mean completes four quasi-sinusoidal cycles in the mean axis. The pattern is 

likely caused by the nature of the service history; it is only quasi-random and has 

artificial upper and lower imposed boundaries. The cycle count yielded by the peak 

counting method is somewhat less conservative than in previous tests as many of the 

reversal pairs do cross the reference level. Relative to methods that follow, the Peak 

counting method still yields a conservative result. 
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 The result of the Simple Range method applied to the random service history is 

shown in Figure 4.20. Here a linear distribution along the range axis and a quasi-normal 

distribution about the mean axis is exhibited. Again, this shape is likely a reflection of the 

upper and lower-bounds imposed to the random number generator used to generate this 

service history. Full range cycles swing from the lower-bound to the upper-bound limits, 

which are symmetric similar to the distribution about the mean axis. This implies that a 

full magnitude cycle must occur at or very near a zero mean. 

 The results of the Rain Flow method in Figure 4.21 exhibit more complex shapes 

along the range and mean axis. Similar to the Simple Range method, a quasi-normal 

distribution is observed along the mean axis but is also likely a reflection of the artificial 

boundaries imposed on the random number generator used to produce this service 

history. However, the range axis exhibits a quasi-Weibull distribution along the range 

axis in combination with a higher number of full-range cycles. This result is a prime 

example of the ability of the Rain Flow method to handle noise in an appropriate manner. 

Although few statements can be made about the actual service history, it may be argued 

that the full-range cycles have not been masked by noise, and noise has not been counted 

as full-range cycles as with the Peak Counting method.  

The RMS method summarizes the distribution from the Peak Counting method 

with 164 counts at 261240 range and -8581 mean. Further study may be able characterize 

the quality of this counting solution by estimating the damage yielded from this count 

compared with that of the Rain Flow, Simple Range, and other counting methods. 
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Figure 4.18. Random service history 

 

Figure 4.19. Peak Counting method applied to the random service history 



 

 45

 

Figure 4.20. Simple Range method applied to the random service history 

 

 

Figure 4.21. Rain Flow method applied to random service history
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4.7 Rate Handling 

 The latter phase of simulation in this research was the development and 

evaluation of various rate extraction methods. This phase required that the scope of 

evaluation be limited to a single, superior cycle counting method identified in previous 

experimentation. Mentioned later, the algorithm selected was the ASTM Rain Flow 

method for its ability to properly resolve load noise and unmask full-amplitude master 

cycles. Further, these simulated experiments are conducted in three sub-phases: sub-

phase one evaluates a noise-free master cycle, sub-phase two evaluates combination 

master-slave cycles to further exhibit issues in the extraction of rate parameters and sub-

phase three evaluates discontinuous, noisy cycles. To analyze the effects of noise, signals 

from sub-phases one and two share a common master cycle of two load units in range and 

a zero mean. Rates from all signals are extracted using the RRE, CFDA, and Linear LSR 

methods defined in Chapter 3 (Equations 1-3) and shown in Figure 4.22. 

 

Figure 4.22. Extraction method diagram 
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4.8 Simple Signals 

 The goal of extracting rate parameters from any cycle is to summarize the load-

rate data in a single parameter that can be referenced along with range and mean 

parameters to determine fatigue life for a given load event. The pivotal issue in this 

scenario is that even simple, sinusoidal load signals exhibit rate data that is inherently 

difficult to reduce to a single parameter. In Figure 4.23 the rate of a sinusoidal half-cycle 

is summarized by the RRE, Linear LSR, and CFDA techniques. Visually, the linear LSR 

method appears to best summarize the cycle rate by accounting for derivative dwell time; 

the cycle rate is approximately constant for a large time frame near the center of the 

cycle. Using the RRE method as a reference, the CFDA method yields a rate 

approximately two percent faster. Similarly, the Linear LSR method yields a rate twenty 

percent faster. Because the linear LSR method yields a higher rate for this type of signal, 

this cycle type could potentially be cast as less damaging than if it had been analyzed 

using the RRE or CFDA techniques [18]. Relative rate data is given in Figure 4.26. 

 

Figure 4.23. Rate examination of a simple signal 

4.9 Noisy Continuous Signals 

The analysis of noisy continuous signals starts with the 2sum signal used in 

previous sections. Figure 4.24 shows the half-cycle sample used for rate extraction 
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analysis. Using the RRE method as a reference, the CFDA technique only yields a 

slightly higher cycle rate with a one percent increase. Similarly, the linear LSR method 

yields a rate approximately twelve percent faster than the RRE method. This is likely due 

to the statistical insignificance of the final points in the cycle which take a relatively 

sharp turn in the positive load direction. Analyzing the underlying master cycle, the 2sum 

signal yields virtually the same result when the RRE and CFDA methods are applied. 

However, the LSR method yields a 6.2% decrease in extracted load rate, potentially 

casting the common master cycle as more damaging compared to the simple signal. 

 

Figure 4.24. Rate examination of the 2sum half-cycle 

To further exhibit the effects of noise on cycle rate extraction, the 3sum signal 

from Chapter 3 was analyzed using the three extraction methods. Compared with the 

simple and 2sum results, this signal exhibits more closely grouped results. Again using 

the RRE method as a reference, the CFDA method yields a rate 0.8% slower rate, and the 

linear LSR method yields a 7.8% slower rate. Using the simple signal as a reference to 

analyze the common master cycle, the RRE and CFDA methods both measure an 

approximately 22% faster rate. In contrast, the linear LSR method measures a 5.2% 

slower master cycle rate which again casts this cycle as potentially more damaging than 

the RRE and CFDA methods. 
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Figure 4.25. Rate examination of the 3sum half-cycle 

4.10 Relative Performance 

The relative performance of the continuous signals and counting methods used in 

sections 4.8-4.9 are shown in Figure 4.26Figure 4.27. Figure 4.26 utilizes the simple 

signal as a reference rate. In this figure, the RRE and CFDA methods yield a sharply 

increasing rate with increasing noise and complexity added into the master cycle. The 

Linear LSR method yields a less distinct pattern, but exhibits the highest stability as it 

extracts the master cycle rate within 6.2% of the actual rate. This may imply that the RRE 

and CFDA methods could yield considerably less conservative damage estimates 

compared with that of the Linear LSR method. However, the effect of noise on fatigue 

life is outside of the scope of this research.  

Figure 4.27 uses the RRE method as a reference for each signal. In this figure, the 

CFDA method extracts a slightly higher rate (+1.9%) from the simple signal that 

decreases with increasing complexity to reach a 0.8% slower rate. The linear LSR 

initially extracts a 20% faster rate than the RRE method on the simple signal, but 

decreases with increasing complexity to a 7.2% slower rate than the RRE method. 
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Figure 4.26. Relative extraction performance with increasing signal complexity (Simple signal reference) 

 

Figure 4.27. Relative extraction performance (RRE method reference) 
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4.11 Discontinuous Load Signals 

 Sudden or discontinuous cycle events are commonly encountered in fatigue 

analysis [1,3,10,13] and present a relatively complicated set of issues in cycle counting 

and rate extraction. Figure 4.28 shows a pure step load event as identified by the Rain 

Flow cycle counting method. Based on the cycle identification made by the Rain Flow 

method, the cycle includes not only the cycle event, but an extended dwell time which is 

not properly resolved. The inclusion of these dwell points causes considerable skewing of 

the RRE, CFDA and linear LSR methods, which visually appear to be invalid. This 

scenario represents the fundamental issue in handling discontinuous service events. 

Further research in discontinuities and dwell handling may resolve problematic results 

such as these.  

 

Figure 4.28. Rate examination of a step cycle 

A more realistic load signal shown in Figure 4.29 is a half-cycle from the 

step2sum service history defined in Figure 4.1. Analysis of this signal cannot be applied 

to make any comment about the underlying master cycle, because it has been severely 

clipped and discretized to form a step function. Using the RRE method as a reference, the 

CFDA method returns a 0.7% slower rate and the linear LSR returns a 5.2% slower rate 

resulting in a cycle of potentially higher damage. 
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Figure 4.29. Rate examination of the step2sum half-cycle 

4.12 Relative Performance 

The relative performance of the RRE, CFDA, and Linear LSR methods are shown 

in Figure 4.30 using the step signal as a reference. Upon visual inspection, the methods 

extract rates that differ by considerable margins. However, this is a reflection of the cycle 

window definition imposed by the Rain Flow cycle counting method used in this 

experiment. Figure 4.28 shows the problematic cycle window resolved by this method. 

Because the window includes the cycle dwell time, the rate is severely skewed to a lower 

value which in turn will lead to a more conservative damage estimation. Until a 

procedure for handling discontinuous service events is augmented to the existing Rain 

Flow procedure, little conclusions can be drawn from these tests. Figure 4.31 shows the 

relative performance of the rate extraction methods using the RRE method as a reference. 

In this figure, the CFDA and Linear LSR methods extract significantly slower rates that 

may lead to more conservative damage estimates using existing models. Because of the 

limited data available, no conclusion can be drawn on extraction performance with 

increasing complexity. 
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Figure 4.30. Relative extraction performance on discontinuous signals (step reference) 

 

Figure 4.31. Relative extraction performance on discontinuous signals (RRE Reference) 
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function generator, reversal point resolution, and counting procedures. Data for this study 

was generated using a basic IA-32 x86 hardware environment with the MACC executable 

assigned its own thread affinity from the multi-core processor. This helped to eliminate 

environment variables such as background threads and user interaction. Figure 4.32 

shows the general trend of time requirements for each top-level subroutine to execute. A 

characteristic of the Rain Flow method not previously exhibited in this research is its 

growth rate; although the Rain Flow method executes in considerably shorter time, it 

appears to grow at the same rate as the Peak Counting method. Figure 4.33 implies that 

the number of operations required by the Rain Flow method as coded in the MACC 

program grows in correlation with the square of the number of data points in the service 

history. 

 

Figure 4.32. CPU time used in MACC execution - Step input 
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Figure 4.33. CPU time used by Rain Flow method - 2sum signal 
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5. Applications 

The rate handling results from Chapter 4 were applied in three case studies to 

simulate scenarios commonly found in industry [3,6,8,10]. As the results from Chapter 4 

measured the effect of noise and secondary cycles on the rate extracted by the RRE, 

CFDA, and Linear LSR methods, these case studies aim to observe their aggregate 

performance in possible industrial applications. Using cycles counted by the Rain Flow 

method, the RRE, CFDA, and Linear LSR methods are applied to three different 

scenarios and the rate extraction results are represented by bivariate histograms as in 

Chapter 4. In these plots, the engage and disengage rates are used as the variations and 

the number of counts are plotted on the vertical axis. The results are summarized by the 

unsigned engage and disengage rate means and 95% confidence intervals to represent the 

statistical variety of rates that may be extracted in these scenarios. 

5.1 Offshore Structures 

The offshore structure test is intended to represent periods of calm and stormy 

seas experienced by offshore structures such as oil rigs, pipelines, weather stations, 

barges, and other structures subject to wind and waves. The service history sample shown 

in Figure 5.1 has arbitrary scales about the time and amplitude axes and is plotted with 

the reversal data resolved by the MACC program. 
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Figure 5.1. Offshore structure service history sample 

 The RRE extraction method results, shown in Figure 5.2, exhibit the majority of 

the identified cycles engaging at relatively low rates (4.49 ± 7.26 units per second). 

Because each cycle is roughly symmetric, the disengaging rates exhibit similar grouping 

(5.79 ± 4.96 units per second). The CFDA extraction results (Figure 5.3) exhibit 

engaging rates slightly higher and with similar grouping (6.05 ± 6.13 units per second). 

Characteristic of the service history, the disengaging rates exhibit similar grouping (6.77 

± 5.04 units per second).The Linear LSR extraction method results shown in Figure 5.4 

yield similar engaging rates as the CFDA method (4.74 ± 7.73 units per second) and 

disengaging rates (6.81 ± 6.86 units per second). 

 A comparison of these results is shown in Figure 5.5. Comparison of these results 

does not yield any definitive conclusion about the various extraction methods. In this 

service scenario, all three extraction methods yield closely grouped results. This is likely 

attributable to the characteristics of the service history; the history does not contain any 

major secondary signals or noise to skew the service history away from the lines (and 

therefore, rates) that connect the reversal points (Figure 5.1). 
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Figure 5.2. RRE method applied the offshore service history 

 

Figure 5.3. CFDA method applied to the offshore service history 
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Figure 5.4. Linear LSR method applied to the offshore service history 

 

Figure 5.5. Extraction method comparison (offshore structure) 
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passing) and noise (i.e., irregularities in the road surface and other vibrations). Figure 5.6 

shows a sample of such a service history used in this test. Again, the data has semi-

arbitrary scales about the amplitude and time axes. Figure 5.7 shows a closer view of the 

noise cycles contained in this history. The RRE extraction results (Figure 5.8) yield 

engage rates of 38.48 ± 13.35 units per second and disengage rates of 54.93 ± 24.21 units 

per second. The CFDA method returns similar rates of 30.02 ± 6.62 and 50.62 ± 26.06 

units per second. The Linear LSR method yields engage and disengage rates centered at 

approximately the same values of 37.90 and 55.67 units per second, respectively. In 

contrast, the LSR method uncovers a much wider range of cycle rates both higher and 

lower than that of the RRE and CFDA methods at ±40.25 and ±49.98 units per second, 

respectively. 

Comparison of these results (Figure 5.11) reveals that the mean of the rates 

extracted by the three methods is approximately the same. However, the range of rates 

extracted by the methods differs considerably when comparing the RRE and CFDA 

methods to the Linear LSR method. In this scenario, the LSR method extracts rates 25%-

36% faster and slower than the RRE and CFDA methods. Although damage estimation is 

outside the scope of this research, it appears that the Linear LSR method may yield 

considerably different fatigue characteristics than that of the RRE and CFDA methods. 

Further observation uncovers a potential issue with this data. As noted in Chapter 4, 

discontinuities in the service history lead to miscalculation of cycle windows. This in turn 

leads to asymmetric engaging and disengaging rates to be extracted from the skewed 

windows. In this service history, the cycle windows are shifted forward in time leading to 
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increased engaging and decreased disengaging rates. This issue will be addressed in 

further research. 

 

Figure 5.6. Land-base structure service history sample 

 

Figure 5.7. Secondary cycles from the Land-base structure service history 
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Figure 5.8. RRE extraction method applied to the land-based structure service history 

 
Figure 5.9. CFDA extraction method applied to the land-based structure service history 
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Figure 5.10. Linear LSR extraction method applied to the land-based structure service history 

 

Figure 5.11. Extraction method comparison (land-based structure) 
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under several repetitions. The test data includes the torque curve shapes from a typical 

mid-displacement (3-4 Liters) I-6 engine with variable valve timing. Discontinuous steps 

are also included by modeling gear shifts through a 6-speed automatic transmission. This 

configuration yields secondary loading events and dwelling making it an ideal candidate 

for rate extraction testing. The full service history (Figure 5.12) shows 15 sequential top-

speed runs with torque loads up to 4000 lb-ft. Observation of a single cycle (Figure 5.13) 

reveals the challenges of extracting a meaningful rate from such a history. The cycle 

definition imposed by the Rain Flow algorithm casts each run as a single cycle with 

multiple discontinuities and dwells. 

The RRE extraction method yields rates with very close grouping at 2960 ± 8.654  

units per second engaging and 354.4 ± 0.1 units per second disengaging. This close 

grouping is expected as each cycle is virtually identical. The CFDA extraction method 

returns significantly higher engaging rates at 2945 ± 8.462 units per second and similar 

disengaging rates at 433.9 ± 0.196 units per second. The Linear LSR method returns 

engaging rates similar to that of the RRE method at 1862 ± 98.56 units per second but 

significantly slower disengaging rates at 331.9 ± 0.991 units per second. 

Because the engaging and disengaging rates vary by an order of magnitude, the 

comparison plot was split into its respective halves. Comparison of the engaging rates 

(Figure 5.17) shows the RRE and CFDA methods to return approximately identical 

values. However, the Linear LSR method returns a 66% slower engaging rate which may 

lead to more conservative damage estimations. In contrast, comparison of the 

disengaging rates (Figure 5.18) shows the RRE and LSR methods returning an 
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approximately identical rate. The CFDA method returns a rate approximately 25% slower 

that may be skewed by the discontinuities in the disengaging portion of the cycle. 

 

Figure 5.12. Automotive axle service history 

 

Figure 5.13. Single cycle from the automotive axle service history 
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Figure 5.14. RRE extraction method applied to the automotive axle service history 

 

Figure 5.15. CFDA extraction method applied to the automotive axle service history 
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Figure 5.16. LSR extraction method applied to the automotive axle service history 

 

Figure 5.17. Comparison of engaging rates (automotive) 
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Figure 5.18. Comparison of disengaging rates (automotive) 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Cycle Counting 

This research involves the evaluation of the zero, single, and double parameters 

cycle counting methods and documented their development into programmable 

procedures. Analysis at the procedural level of these methods uncovers some significant 

issues with the single parameter methods.  

If the definition of cycle counting is to extract, process, and sort simple cycles 

from a complex loading history, then it may be argued that the Level Crossing technique 

is technically not a complete cycle counter. Although this procedure employs a unique 

method to break down a service history at the load level (rather than the reversal level) 

into discreet elements, the process only covers the reconstruction of simple cycles. 

Although this yields simple cycles that can be counted visually, all load points are 

accounted for in the reconstruction and visually counting long reconstructions is not 

optimal. This method requires an additional counting procedure to reduce the data set into 

counts. Because the reconstructed cycles oscillate about the reference load level and no 

longer contain noise, the Peak Counting or Simple Range methods can be employed to 

properly resolve the reconstructed load data. 

The Peak Counting method mimics the intuitive procedure an operator may use to 

count a simple service history visually. However, developing this process into a cycle 

counting algorithm for use on complex service histories yields extremely conservative 

results. Because this and other methods can only operate directly on reversal data, when 

peaks below and above the reference load level are counted and sorted, noise is processed 
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as if it fulfills the fundamental assumptions made by this method; most notably, that all 

reversal points stem and return to the reference load level. Further, this method employs 

one of the most computationally intense routines found in numerical programming: value 

sorting within an array. The culmination of these features reveals a highly conservative 

method with high computational expense. However, this method could be employed to 

establish a crude lower-bound on a confidence interval of service damage in further 

research. 

As the name implies, the Simple Range method is one of the simplest counting 

procedures in that it does not require sorting, rearrangement, or intense processing of any 

kind—ranges between reversals points are simply counted as half cycles. However, the 

counting solution yielded from this method is highly sensitive to noise. If there are any 

interruptions between master cycle reversal points, the method simply splits the cycle 

into continuous, low-amplitude segments that are counted as half-cycles. From a cycle 

counting perspective, this is highly erroneous. For any given complex service history, this 

method may at best be employed as a lower bound for damage estimation. 

The double parameter methods are aggregated to a single counting procedure in 

this study as each of the methods performs the same underlying task masked by 

variations in terminology. The Hayes, Range Pair, Ordered Overall Pair, Racetrack, 

Hysteresis Loop, and Rainflow methods all operate on the basis of identification of 

hysteresis loops in load data [7]. Although the computational expense of this method 

grows at a similar rate as the Peak Counting method with the number of reversals to 

process, it yields a robust counting solution that appears to be able to properly resolve all 

continuous signal types. 
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6.2 Rate Handling 

Of the rate extraction methods developed in this research, there does not appear to 

be a clear and meaningful trend among the results that leads to the selection of a single 

technique. Analyzing identical continuous master cycles with increasing noise and 

secondary cycles, the LSR method exhibits the most stability; analyzing the Simple, 

2sum, and 3sum signals sequentially reveals less than a 5% change in extracted rate by 

the LSR method. In contrast, the RRE and CFDA methods exhibited excellent stability 

on the 2sum signal with no noticeable change, but returned a 20% faster rate when 

applied to the 3sum signal. Based on these results, it may be concluded that the LSR 

method is the superior of the three techniques for extracting rate parameters from cycles 

defined by the Rain Flow cycle counting technique. 

Results from the analysis of discontinuous signals yield uncertain conclusions. 

The CFDA and LSR methods returned rates up to 80% slower than that of the RRE 

method on both pure and noisy step signals. Although the cycle definition was identical 

throughout these tests, the effect of dwells and discontinuities in the service history are 

handled in fundamentally different manners among the three extraction methods. The 

issue of cycle definition in the presence of dwell and discontinuous periods along with 

the fatigue life characteristics of these events needs to be addressed in further research 

before any conclusion can be drawn about the performance of these extraction methods 

on discontinuous signals. 

The case studies reveal the aggregate performance of the extraction methods 

developed in this paper in three possible industrial applications. For off-shore structures, 

or perhaps any machine element or structure subject to relatively noise-free service of 

variable amplitude may not benefit from any one particular method. The RRE, CFDA, 
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and Linear LSR methods yielded results too close to make a definitive distinction among 

them. For land-based structures, or any component of interest subject to discontinuous, 

noisy service histories with secondary cycles the LSR method appears to be able to 

uncover a wider range of rates that may lead to more precise damage estimations. Further 

research will determine the validity of the LSR method in this scenario. For some 

automotive applications subject to relatively clean service histories with discontinuities it 

appears that the Linear LSR method is adept to reveal the lowest (and perhaps most 

damaging) cycle rates. Few definitive conclusions can be drawn from this test data with 

respect to the RRE and CFDA methods. 

6.3 Future Research 

Concerning further development of the MACC code, there are three major facets that 

may lead to more definitive conclusions in this research scope. First and foremost is code 

refinement. Many of the computational expenses calculated by the MACC program are 

merely products of the specific implementations used by the programmer. For instance, it 

could be argued that the bubble-sort routine is the least efficient implementation of a 

sorting algorithm found in literature [20]. This routine is included in the MACC program 

due to its ease of implementation and short code length. A non-optimized sorting 

algorithm is also present in the Rain Flow routine that grows at a similar rate. This raises 

the question of whether the computational expenses calculated by the MACC program 

reveal characteristics about the inner-workings of the cycle counting algorithms, or 

merely their manifestations in the program. 

Regarding the analysis of extracted rate parameters, the MACC program requires 

additional development to handle discontinuous signals. The analysis of discontinuous 
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and dwelling signals from Chapter 4 and their application in Chapter 5 exhibit rates 

heavily skewed by improper window definitions calculated by the Rain Flow algorithm. 

Further development in the Rain Flow procedure and its implementation in the MACC 

code may alleviate these issues. 

Another facet of interest in further development is the creation of an upper and lower-

bound counts computed by the Simple Range and Peak Counting methods. In Chapters 2 

and 3 these methods were characterized as highly-conservative and non-conservative, 

respectively. Using these methods to develop upper and lower bound counts restates a 

complex underlying issue mentioned in Chapter 4; reducing and summarizing this 

information into a single parameter in a meaningful and consistent manner is neither 

defined nor standardized. One proposed method is to pass the counting solutions to a 

damage accumulation routine (such as Miner’s Rule) that returns the percentage of some 

arbitrary (but standardized) standard service life consumed by the loading history. To 

accomplish this, a set of standard fatigue properties and parameters would need to be 

analyzed and established for various scenarios. This would create a standard framework 

on which meaningful comparisons could be made among fatigue analysis elements such 

as cycle counting and rate extraction. 
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APPENDIX A.1: MACC PARENT MODULE (main.f90) 

!-----------=[header]=----------- 
 
! language:    FORTRAN 90 
! format:      free 
! written by:  ryan o'kelley 
! version:     alpha 1.0 
 
!-------------------------------------------------------------------------------------- 
! main program 
!-------------------------------------------------------------------------------------- 
program main 
!-------------------------------------------------------------------------------------- 
! declare arguments 
!-------------------------------------------------------------------------------------- 
    use subs !subroutines from 'subs.f90' 
    use global !for commonly used arguments: 'global.f90' 
    character*20 mode 
    real zo1 
!-------------------------------------------------------------------------------------- 
! call stress history emulator subroutine to write stress.txt 
!-------------------------------------------------------------------------------------- 
    mode = "simple" 
    call stresswrite(mode) 
!-------------------------------------------------------------------------------------- 
! data file and loading operations 
!-------------------------------------------------------------------------------------- 
    !------------------------------------------------------ 
    ! check and load parameters.txt 
    !------------------------------------------------------ 
        call params 
        if (.not. go) goto 99 
    !------------------------------------------------------ 
    ! check and load stress.txt 
    !------------------------------------------------------ 
        n_stress = 0 
        call check_stress 
        if (.not. go) goto 99 
        call load_stress 
    !------------------------------------------------------ 
    ! check and load snr surface 
    !------------------------------------------------------ 
        call snrload 
!-------------------------------------------------------------------------------------- 
! cycle counting 
!-------------------------------------------------------------------------------------- 
    !------------------------------------------------------ 
    ! count and load local maxima and minima of stress history 
    !------------------------------------------------------ 
        local = 0 
        n_local = 0 
        go = .false. 
        call stress_peak 
        if (.not. go) goto 99 
    !------------------------------------------------------ 
    ! Peak Counting 
    !------------------------------------------------------ 
        if (pc_flag == 1)call peak_count                  
    !------------------------------------------------------ 
    ! rainflow 
    !------------------------------------------------------ 
        if (rf_flag == 1)call rainflow(local,n_local) 
    !------------------------------------------------------ 
    ! Simple Range 
    !------------------------------------------------------ 
        if (sr_flag == 1)call simple_range(local,n_local) 
    !------------------------------------------------------ 
    ! rms    !------------------------------------------------------ 
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        if (rms_flag == 1)call rms_count 
!-------------------------------------------------------------------------------------- 
! debug 
!--------------------------------------------------------------------------------------   
    print *,'debug' 
    print *,'s--------------------------' 
     print *,ss   
     print *,'n--------------------------'     
     print *,nn 
     print *,'r--------------------------' 
     print *,rr   
     print *,'end debug'        
!------------------------------------------------------ 
! pause, end main program 
!------------------------------------------------------ 
99 pause 
end program main 
!-------------------------------------------------------------------------------------- 
! end of main program 
!--------------------------------------------------------------------------------------



  

 77

APPENDIX A.2: MACC GLOBAL NAMESPACE MODULE (global.f90) 

!-------------------------------------------------------------------------------------- 
! global storage module 
!-------------------------------------------------------------------------------------- 
module global 
implicit none 
     
    !subroutine error flag 
        logical go 
    !runtime parameters 
        integer rf_flag, pc_flag, sr_flag, rms_flag !1 = on, 0 = off 
        character*256 :: stress_path, output_dir 
        character*32  :: ratemode 
    ! service history 
        real, dimension(:,:), allocatable :: stress 
        integer n_stress 
    ! local stress peaks    
        real, dimension(:,:), allocatable :: local 
        integer n_local 
    !s-n-r surface 
        real, dimension(:), allocatable :: ss 
        real, dimension(:,:), allocatable :: nn 
        real, dimension(:), allocatable :: rr 
        integer n_s, n_n, n_r 
    ! used by rms and Peak Counting subroutines 
        real, dimension(:,:), allocatable :: peak_max, peak_min  
    ! used by rms 
        real avg 
    ! used by rainflow 
        real, dimension(:,:), allocatable :: rain 
        integer n_rain 
               
end module global 
!-------------------------------------------------------------------------------------- 
! end of global storage module 
!--------------------------------------------------------------------------------------



  

 78

APPENDIX A.3: MACC SUBROUTINE MODULE (subs.f90) 

!-------------------------------------------------------------------------------------- 
! module for subroutines used in 'sfd.f90' 
!-------------------------------------------------------------------------------------- 
module subs 
    implicit none 
    contains 
    !------------------------------------------------------------------------------------
-- 
    ! load paramters from gui 
    !------------------------------------------------------------------------------------
-- 
        subroutine params 
            use global !for counter flags and parameters 
            integer length, i 
            logical para_exist 
            character*256 dummy 
            go = .false. 
            !------------------------------------------------------ 
            ! inquire parameter file 
            !------------------------------------------------------ 
                print *,"inquiring parameters.txt" 
             inquire(file="input/parameters.txt",exist=para_exist) 
            !------------------------------------------------------ 
         ! end subroutine if parameters.txt not found 
         !------------------------------------------------------ 
                if(.not. para_exist) then 
                print *,"error--parameter file (parameters.txt) not found! abandon 
ship!" 
                goto 89 
                else  
                  print *,"parameters.txt found!" 
             endif 
            !------------------------------------------------------ 
            ! open and check parameter file 
            !------------------------------------------------------ 
                
open(unit=19,file="input/parameters.txt",form="formatted",action="read",status="old") 
                do i = 1,4 
                    read(19,*) 
                enddo 
                read(19,'(A)') dummy 
                if (trim(dummy) == "MAAC GUI Ver: 0.0") then 
                    print *,"gui is ok!" 
                    read(19,'(A)') dummy 
                    if (trim(dummy) == "MAAC Console Ver: 1.1 alpha") then 
                        print *,"parameter file is ok!" 
                        go = .true. 
                    else  
                        print *,"error--parameter file is not compatible! abandon ship!" 
                        goto 89 
                    endif 
                else  
                    print *,"error--gui program is not compatible! abandon ship!" 
                    goto 89 
                endif 
                rewind(19) 
            !------------------------------------------------------ 
            ! read service history path 
            !------------------------------------------------------ 
                do i = 1,7                          !skip lines 
                    read(19,*) dummy 
                enddo    
                backspace(19)                       !backup  
                read(19,'(A)') stress_path          !read 
                length = len(stress_path)           !trim 
                stress_path = stress_path(13:length)!trim 
                length = 0                          !reset 
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            !------------------------------------------------------ 
            ! read output path 
            !------------------------------------------------------ 
                read(19,*) dummy                    !skip 
                do i = 1,1                          !backup 
                    backspace(19) 
                enddo 
                read(19,'(A)') output_dir           !read 
                length = len(output_dir)            !trim 
                output_dir = output_dir(14:length)  !trim 
            !------------------------------------------------------ 
            ! read counter flags 
            !------------------------------------------------------ 
                !rainflow 
                    read(19,*) dummy                !advance 
                    backspace(19)                   !rewind 
                    read(19,'(A)') dummy            !read 
                    dummy = dummy(21:21)            !trim 
                    rf_flag = ichar(dummy)          !convert to integer 
                    rf_flag = rf_flag - 48          !translate ascii value 
                !Peak Counting                      !repeat 
                    read(19,'(A)') dummy 
                    dummy = dummy(21:21) 
                    pc_flag = ichar(dummy) 
                    pc_flag = pc_flag - 48 
                !Simple Range 
                    read(19,'(A)') dummy 
                    dummy = dummy(21:21) 
                    sr_flag = ichar(dummy) 
                    sr_flag = sr_flag - 48 
                !rms 
                    read(19,'(A)') dummy 
                    dummy = dummy(21:21) 
                    rms_flag = ichar(dummy) 
                    rms_flag = rms_flag - 48 
    89  end subroutine params 
    !------------------------------------------------------------------------------------
-- 
    ! end of parameter loading 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! stress history text file checking subroutine 
    !------------------------------------------------------------------------------------
-- 
        subroutine check_stress 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            use global !for n_stress and stress array 
            logical stress_exist 
            integer i, io 
        !------------------------------------------------------ 
        ! check for stress text file 
        !------------------------------------------------------ 
            go = .false. 
            print *,"inquiring stress.txt" 
         inquire(file=trim(stress_path),exist=stress_exist) 
            !------------------------------------------------------ 
         ! end subroutine if stress.txt not found 
         !------------------------------------------------------ 
                if(.not. stress_exist) then 
                print *,"error--stress history file (stress.txt) not found! abandon 
ship!" 
                goto 97 
                else  
                  print *,"stress.txt found!" 
             endif 
        !------------------------------------------------------     
        ! check number of lines in stress.txt 
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        !------------------------------------------------------ 
            
open(unit=11,file=trim(stress_path),form="formatted",action="read",status="old") 
            io = 0 
            i = 0 
            do while (io == 0) 
              read(11,*,iostat=io) 
              i = i + 1 
            end do 
            i = i - 1 
            n_stress = i 
            print *,n_stress,' stress records found!' 
            !------------------------------------------------------     
            ! end program if stress.txt is empty 
            !------------------------------------------------------ 
                if (i == 0) then 
                  print *,"error--stress history file (stress.txt) is empty! abandon 
ship!" 
                  call print_div 
                  goto 97 
                else 
                  go = .true. 
                endif 
        !------------------------------------------------------     
        ! done with stress.txt 
        !------------------------------------------------------ 
            close (11) 
        !------------------------------------------------------     
        ! end subroutine 
        !------------------------------------------------------            
            97 end subroutine check_stress 
    !------------------------------------------------------------------------------------
-- 
    ! end of stress history text file checking subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! s-n-r surface loading 
    !------------------------------------------------------------------------------------
-- 
        subroutine snrload 
            use global !for s, n, and r arrays 
             
            integer i, j, io 
             
            
open(unit=22,file='input/snr/sf.txt',form="formatted",action="read",status="old") 
            io = 0 
            i = 0 
            do while (io == 0) 
              read(22,*,iostat=io) 
              i = i + 1 
            end do 
            i = i - 1 
            n_s = i 
            allocate(ss(n_s)) 
            rewind(22) 
            do i = 1,n_s 
                read(22,*) ss(i) 
            enddo 
            close(22) 
             
            
open(unit=24,file='input/snr/r.txt',form="formatted",action="read",status="old") 
            io = 0 
            i = 0 
            do while (io == 0) 
              read(24,*,iostat=io) 
              i = i + 1 
            end do 
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            i = i - 1 
            n_r = i 
            allocate(rr(n_r)) 
            rewind(24) 
            do i = 1,n_r 
                read(24,*) rr(i) 
            enddo 
            close(24) 
             
            
open(unit=23,file='input/snr/n.txt',form="formatted",action="read",status="old") 
            allocate(nn(n_r,n_s)) 
            do i = 1,n_s 
                do j = 1,n_r 
                    read(23,*) nn(j,i) 
                enddo 
            enddo 
            close(23) 
             
 
             
        end subroutine snrload 
             
    !------------------------------------------------------------------------------------
-- 
    ! stress array loading subroutine 
    !------------------------------------------------------------------------------------
-- 
        subroutine load_stress 
        !------------------------------------------------------     
        ! declare arguments 
        !------------------------------------------------------  
            use global !for n_stress and stress array 
            integer i 
        !------------------------------------------------------     
        ! load stress.txt 
        !------------------------------------------------------  
            print *,"allocating memory to stress array" 
            allocate (stress(n_stress,4)) 
            
open(unit=12,file=trim(stress_path),form="formatted",action="read",status="old") 
            do i=1,n_stress 
              read(12,*) stress(i,1),stress(i,2)  
            enddo 
            print *,"stress history succesfully loaded!" 
            close (12) 
        !------------------------------------------------------     
        ! end subroutine 
        !------------------------------------------------------  
            95 end subroutine load_stress 
    !------------------------------------------------------------------------------------
-- 
    ! end of stress array loading subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! stress history local maxima and minima subroutine 
    !------------------------------------------------------------------------------------
--  
        subroutine stress_peak 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            use global !for 'n_local' and 'local' array 
            integer i,k,s1,s2 
            real val, last, now, next, t1, t2 
        !------------------------------------------------------ 
        ! append 1st derivate to 'stress' array (finite difference, central) 
        !------------------------------------------------------ 
            call cpu_time(t1) !start timer  
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            print*,"finding load rates" 
            stress(1,3) = 0         !start of array 
            stress(n_stress,3) = 0  !end of array 
            do i=2,(n_stress-1) 
              val = (stress(i+1,2) - stress(i-1,2)) / (stress(i+1,1) - stress(i-1,1)) 
              stress(i,3) = val 
            enddo 
            
open(unit=21,file="output/stressrate.txt",form="formatted",action="readwrite",status="rep
lace") 
            do i=1,n_stress 
                write(21,*) stress(i,3) 
            enddo 
        !------------------------------------------------------ 
        ! find local maxima and minima, append flags to stress array 
        !------------------------------------------------------ 
            print*,"finding peaks" 
            k = 0 
            do i=2,(n_stress-1) 
              last = stress(i-1,2) 
              now = stress(i,2) 
              next = stress(i+1,2) 
              !typical conditionals 
                  if (last > now .and. next > now) then 
                    stress(i,4) = 1 
                    k = k + 1 
                  elseif (last < now .and. next < now) then 
                    stress(i,4) = 1 
                    k = k + 1 
              !step function statements 
                  elseif (last == now .and. next < now) then 
                    stress(i,4) = 1 
                    k = k + 1 
                  elseif (last == now .and. next > now) then 
                    stress(i,4) = 1 
                    k = k + 1 
                  !elseif (last > now .and. next == now) then 
                  !  stress(i,4) = 1 
                  !  k = k + 1 
                  !elseif (last < now .and. next == now) then 
                  !  stress(i,4) = 1 
                  !  k = k + 1 
              !no peak 
                  else 
                    stress(i,4) = 0 
                  endif 
            enddo 
            n_local = k 
            if (n_local == 0) then 
              print*,"error, no peaks found in stress.txt! abandon ship!" 
              goto 96 
            else 
              go = .true. 
            endif 
            k = 1 
        !------------------------------------------------------ 
        ! create local array 
        !------------------------------------------------------ 
            allocate(local(n_local,3)) 
            do i=2,(n_stress-1) 
              if(stress(i,4) == 1) then 
                local(k,1) = stress(i,1) 
                local(k,2) = stress(i,2) 
                local(k,3) = i 
                k = k + 1 
              endif 
            enddo 
        !------------------------------------------------------ 
        ! write local array to local.txt 
        !------------------------------------------------------ 
            print*,"writing local array to local.txt" 



  

 83

            call cpu_time(t2) !stop stimer 
            print*,"operation finished in ",t2-t1," seconds" !report time 
            call print_div 
            
open(unit=13,file="output/local.txt",form="formatted",action="readwrite",status="replace"
) 
            do i=1,n_local 
              write(13,*) local(i,1) , local(i,2) 
            enddo 
        !------------------------------------------------------     
        ! end subroutine 
        !------------------------------------------------------ 
         96 end subroutine stress_peak 
    !------------------------------------------------------------------------------------
-- 
    ! end of stress history local maxima and minima counting subroutine 
    !------------------------------------------------------------------------------------
--  
    !------------------------------------------------------------------------------------
-- 
    ! stress history average 
    !------------------------------------------------------------------------------------
--  
        subroutine average(array,n) 
            use global !for avg 
            integer i, n 
            real sum, array(n) 
             
            sum = 0 
            do i=1,n 
                sum = sum + array(i) 
            enddo 
            avg = sum/n 
             
        end subroutine average 
    !------------------------------------------------------------------------------------
-- 
    ! end of stress history average 
    !------------------------------------------------------------------------------------
--  
    !------------------------------------------------------------------------------------
-- 
    ! Peak Counting subroutine 
    !------------------------------------------------------------------------------------
--  
        subroutine peak_count 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            use global !for peak_max and peak_min 
            integer n_max, n_min, i, j, k, index, n, n_cycle 
            real local_copy(n_local,2), ref, mag, max, min, delta, t1, t2 
            real, dimension(:,:), allocatable :: peak 
        !------------------------------------------------------ 
        ! set reference level and minimum cycle amplitude 
        !------------------------------------------------------ 
            call cpu_time(t1) !start timer 
            print *,"counting cycles via: --Peak Counting--" 
            ref = 0 
            do i=1,n_local 
              ref = ref + local(i,2) !sum stress values 
            enddo 
            ref = ref/n_local  !reference level = average of stress values 
            delta = 10.0**-9 !ignore cycles less than delta 
            print *,"reference level set at", ref 
            print *,"ignoring cycles magnitudes under",delta 
        !------------------------------------------------------ 
        ! count number of maximums above reference level 
        !------------------------------------------------------ 
            print *,"   phase one" 
            k = 0 !max counter 
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            max = 1 !to pass while condition 
            local_copy = local 
            do while (abs(max - ref) > delta) 
              call find_max(local_copy(:,2), n_local, max, index, ref) 
              local_copy(index,2) = ref 
              k = k + 1 
            enddo 
            n_max = k - 1 
        !------------------------------------------------------ 
        ! dump maximums to array 
        !------------------------------------------------------ 
            print *,"   phase two" 
            allocate(peak_max(n_max,2)) 
            k = 1 !array indexer 
            max = 1 !to pass while condition 
            local_copy = local !reset local_copy array 
            do while (abs(max-ref) > delta) 
              call find_max(local_copy(:,2), n_local, max, index, ref) 
              local_copy(index,2) = ref 
              if (k <= n_max) then 
                peak_max(k,1) = local(index,1)  
                peak_max(k,2) = max 
                k = k + 1 
              endif 
            enddo 
        !------------------------------------------------------ 
        ! count number of minimums below reference level 
        !------------------------------------------------------ 
            print *,"   phase three" 
            k = 0 !reset index 
            min = -1 !to pass while condition 
            do while (abs(min-ref) > delta) 
              call find_min(local_copy(:,2), n_local, min, index, ref) 
              local_copy(index,2) = ref 
              k = k + 1 
            enddo 
            n_min = k - 1 
        !------------------------------------------------------ 
        ! dump minimums to array 
        !------------------------------------------------------ 
            print *,"   phase four" 
            allocate(peak_min(n_min,2)) 
            k = 1 !array indexer 
            min = 1 !to pass while condition 
            local_copy = local !reset local_copy array 
            do while (abs(min-ref) > delta) 
              call find_min(local_copy(:,2), n_local, min, index, ref) 
              local_copy(index,2) = ref 
              if (k <= n_min) then 
                peak_min(k,1) = local(index,1) 
                peak_min(k,2) = min 
                k = k + 1 
              endif 
            enddo 
        !------------------------------------------------------ 
        ! combine maximums and minimums to form cycles 
        !------------------------------------------------------ 
            print *,"   phase five" 
            if (n_max <= n_min) then 
              n = n_max 
            elseif (n_max > n_min) then 
              n = n_min 
            endif 
            allocate(peak(n,3)) 
            do i=1,n 
              peak(i,1) = ( abs(ref - peak_max(i,2)) + abs(ref - peak_min(i,2)) ) !cylce 
amplitude 
              peak(i,2) = (peak_max(i,2) + peak_min(i,2)) / 2.                    !cycle 
mean 
              peak(i,3) = peak(i,1) / abs(peak_max(i,1) - peak_min(i,1))          !cycle 
rate 
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            enddo 
            print *,"counted",n,"cycles!" 
            call cpu_time(t2) 
            print *,"operation completed in ",t2-t1," seconds" 
        !------------------------------------------------------ 
        ! write cycles to file 
        !------------------------------------------------------ 
            
open(unit=14,file="output/peak_counting.txt",form="formatted",action="readwrite",status="
replace") 
            write(14,*) "  range" , "         mean" , "           rate" 
            do i = 1,n 
              write(14,*) peak(i,1) ,",", peak(i,2) ,",", peak(i,3) 
            enddo 
            close (14) 
        !------------------------------------------------------ 
        ! print results to file 
        !------------------------------------------------------ 
            print *,"printing cycle counting results to peak_counting.txt" 
            call print_div 
        !------------------------------------------------------ 
        ! end subroutine 
        !------------------------------------------------------ 
            end subroutine peak_count 
    !------------------------------------------------------------------------------------
-- 
    ! end of Peak Counting subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! array maximum subroutine 
    !------------------------------------------------------------------------------------
--  
        subroutine find_max(array, n_array, max, index, ref) 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            integer i, j, k, index, n_array 
            real array(n_array), ref, max, old 
        !------------------------------------------------------ 
        ! find max of array above ref 
        !------------------------------------------------------ 
            max = ref 
            do i=1,n_array 
              if (array(i) > max) then 
                max = array(i) 
                index = i  
              endif        
            enddo 
        end subroutine find_max 
    !------------------------------------------------------------------------------------
-- 
    ! end of array maximum subroutine 
    !------------------------------------------------------------------------------------
--   
    !------------------------------------------------------------------------------------
-- 
    ! array minimum subroutine 
    !------------------------------------------------------------------------------------
--  
        subroutine find_min(array, n_array, min, index, ref) 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            integer i, j, k, index, n_array 
            real array(n_array), ref, min 
        !------------------------------------------------------ 
        ! find max of array above ref 
        !------------------------------------------------------ 
            min = ref 
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            do i=1,n_array 
              if (array(i) < min) then 
                min = array(i) 
                index = i  
              endif        
            enddo 
        end subroutine find_min 
    !------------------------------------------------------------------------------------
-- 
    ! end of array maximum subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! rainflow counting subroutine 
    !------------------------------------------------------------------------------------
-- 
        subroutine rainflow(array,n_array) 
        !------------------------------------------------------ 
        ! declare argumaents 
        !------------------------------------------------------ 
            use global !for rain array, n_rain, and ratemode 
            logical stp 
            integer i,j,k,n_array,indx(n_array),trash 
            real x,y,mean,load_rate,unload_rate,array(n_array,3),t1,t2 
            !real, dimension(:,:), allocatable :: rain !uncomment this line to use w/o 
global module 
        !------------------------------------------------------ 
        ! header 
        !------------------------------------------------------         
            print *,"counting cycles via: --rainflow--" 
            call cpu_time(t1) 
        !------------------------------------------------------ 
        ! create index array 
        !------------------------------------------------------ 
            do i=1,n_array 
                indx(i) = i 
            end do 
        !------------------------------------------------------ 
        ! count number of cycles  
        !------------------------------------------------------ 
            print *,"   phase one" 
            stp = .false. !to initially pass while condition 
            n_rain = 0   !cycle counter 
            i = indx(1)   !initialize indices 
            j = indx(2) 
            k = indx(3) 
            do while (.not. stp .and. k <= n_array) 
              y = abs(array(i,2) - array(j,2)) 
              x = abs(array(j,2) - array(k,2)) 
              if (x >= y) then 
                indx(i) = -1 !throws out indices with peaks 
                indx(j) = -1 !throws out indices with peaks 
                call indxld(i,j,k,indx,n_array,stp)  
                n_rain = n_rain + 1 
              else 
                i = j 
                j = k 
                call k_indxld(i,j,k,indx,n_array,stp) 
              endif 
            enddo 
        !------------------------------------------------------ 
        ! re-create index array 
        !------------------------------------------------------ 
            do i=1,n_array 
                indx(i) = i 
            end do 
        !------------------------------------------------------ 
        ! write cycles to array  
        !------------------------------------------------------ 
            print *,"   phase two" 
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            allocate (rain(n_rain,9)) 
            stp = .false. !to initially pass while condition 
            n_rain = 1   !reset to array indexer 
            i = indx(1)   !initialize indices 
            j = indx(2) 
            k = indx(3) 
            do while (.not. stp .and. k <= n_array) 
              y = abs(array(i,2) - array(j,2)) 
              x = abs(array(j,2) - array(k,2)) 
              mean = (array(i,2) + array(j,2)) / 2. 
              load_rate = y / (array(j,1) - array(i,1)) 
              unload_rate = x / (array(k,1) - array(j,1)) 
              if (x >= y) then 
                rain(n_rain,1) = y 
                rain(n_rain,2) = mean 
                rain(n_rain,3) = load_rate 
                rain(n_rain,4) = unload_rate 
                rain(n_rain,5) = array(i,3) 
                rain(n_rain,6) = array(j,3) 
                rain(n_rain,7) = array(k,3) 
                rain(n_rain,8) = -0. 
                rain(n_rain,9) = -0. 
                indx(i) = -1 !throws out indices with peaks 
                indx(j) = -1 !throws out indices with peaks 
                call indxld(i,j,k,indx,n_array,stp)  
                n_rain = n_rain + 1 
              else 
                i = j 
                j = k 
                call k_indxld(i,j,k,indx,n_array,stp) 
              endif 
            enddo 
            n_rain = n_rain - 1 
        !------------------------------------------------------ 
        ! compute rate data 
        !------------------------------------------------------ 
            ratemode = "wavg" 
            call getrate(ratemode) !fills in rain(:,7) 
        !------------------------------------------------------ 
        ! report status 
        !------------------------------------------------------  
            print *,"found",n_rain,"cycles" 
            call cpu_time(t2) 
            print *,"operation completed in ",t2-t1," seconds" 
            print *,"printing cycle counting results to rain.txt" 
            
open(unit=15,file="output/rain.txt",form="formatted",action="readwrite",status="replace") 
            write(15,*) "  range         mean           rate" 
            do i=1,n_rain 
              write(15,*) rain(i,1), rain(i,2), rain(i,8),rain(i,9) 
 
            enddo 
            close(15) 
             
            call print_div 
        !------------------------------------------------------ 
        ! end subroutine 
        !------------------------------------------------------ 
            end subroutine rainflow 
    !------------------------------------------------------------------------------------
-- 
    ! end of rainflow counting subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! index loader subroutine for rainflow 
    !------------------------------------------------------------------------------------
-- 
        subroutine indxld(i,j,k,indx,n,stp) 
        !------------------------------------------------------ 
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        ! declare arguments 
        !------------------------------------------------------ 
            logical stp 
            integer i,j,k,c,n,indx(n) 
        !------------------------------------------------------ 
        ! load next elements greater than zero 
        !------------------------------------------------------ 
            !------------------------------------------------------ 
            ! load i 
            !------------------------------------------------------ 
                stp = .false. 
                do c=1,n 
                  if (indx(c) > 0) then 
                    i = indx(c) 
                    goto 93 
                  endif 
                enddo 
             93 continue 
            !------------------------------------------------------ 
            ! load j 
            !------------------------------------------------------ 
                do c=i+1,n 
                  if (indx(c) > 0) then 
                    j = indx(c) 
                    goto 92 
                  endif 
                enddo 
             92 continue 
            !------------------------------------------------------ 
            ! load k 
            !------------------------------------------------------ 
                do c=j+1,n 
                  if (indx(c) > 0) then 
                    k = indx(c) 
                    goto 91 
                  endif 
                enddo 
             91 continue 
            !------------------------------------------------------ 
            ! stop if i = k (end of array) 
            !------------------------------------------------------ 
                if (i == k) stp = .true. 
        !------------------------------------------------------ 
        ! end subroutine 
        !------------------------------------------------------ 
            end subroutine indxld 
    !------------------------------------------------------------------------------------
-- 
    ! end of index loader subroutine for rainflow 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! index loader subroutine for rainflow 
    !------------------------------------------------------------------------------------
-- 
        subroutine k_indxld(i,j,k,indx,n,stp) 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            logical stp 
            integer i,j,k,c,n,indx(n) 
        !------------------------------------------------------ 
        ! load next k-element greater than zero 
        !------------------------------------------------------ 
            stp = .false. 
            !------------------------------------------------------ 
            ! load k 
            !------------------------------------------------------ 
                do c=j+1,n 
                  if (indx(c) > 0) then 
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                    k = indx(c) 
                    goto 91 
                  endif 
                enddo 
             91 continue 
            !------------------------------------------------------ 
            ! stop if i = k (end of array) 
            !------------------------------------------------------ 
                if (i == k) stp = .true. 
        !------------------------------------------------------ 
        ! end subroutine 
        !------------------------------------------------------ 
            end subroutine k_indxld 
    !------------------------------------------------------------------------------------
-- 
    ! end of index loader subroutine for rainflow 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! Simple Range counting subroutine 
    !------------------------------------------------------------------------------------
-- 
        subroutine simple_range (array,n_array) 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            integer i,n_array 
            real array(n_array,2),x,y,range,mean,rate,tx,ty,t1,t2 
        !------------------------------------------------------ 
        ! find ranges, means and rates between all points 
        !------------------------------------------------------ 
            
open(unit=16,file="output/simple_range.txt",form="formatted",action="readwrite",status="r
eplace") 
            write(16,*) " range          ","mean           ","rate" 
            print *,"counting cycles via: --Simple Range--" 
            call cpu_time(t1) 
            do i=1,n_array-1 
                x = array(i,2) 
                tx = array(i,1) 
                y = array(i+1,2) 
                ty = array(i+1,1) 
                    range = abs(y - x) 
                    mean = (x + y) / 2. 
                    rate = range / (ty - tx) 
                write(16,*) range ,",", mean ,",", rate 
            enddo 
            close(16) 
            print *,"found",int((n_array-1)/2.),"cylces" 
            call cpu_time(t2) 
            print *,"operation completed in ",t2-t1," seconds" 
            print *,"printing cycle counting results to simple_range.txt" 
            call print_div 
        !------------------------------------------------------ 
        ! end subroutine 
        !------------------------------------------------------ 
            end subroutine simple_range 
    !------------------------------------------------------------------------------------
-- 
    ! end of Simple Range counting subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! rms mehod - astm stp 748 
    !------------------------------------------------------------------------------------
-- 
        subroutine rms_count 
        !------------------------------------------------------ 
        ! declare arguments 
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        !------------------------------------------------------ 
            use global !for peak_max and peak_min 
            integer i, n_max, n_min, n_rms 
            real avg_max, avg_min, rms_max, rms_min, rms_range, dummy, t1, t2 
        !------------------------------------------------------ 
        ! header 
        !------------------------------------------------------ 
            print *,"counting cycles via --rms--" 
            call cpu_time(t1) 
        !------------------------------------------------------ 
        ! find array size 
        !------------------------------------------------------ 
            n_max = size(peak_max,1) 
            n_min = size(peak_min,1) 
        !------------------------------------------------------ 
        ! find rms of maximums 
        !------------------------------------------------------ 
            print *,"   phase one"           
            dummy = 0 
            do i=1,n_max 
              dummy = dummy + peak_max(i,2)**2. 
            enddo 
            dummy = dummy/n_max 
            dummy = sqrt(dummy) 
            rms_max = dummy 
        !------------------------------------------------------ 
        ! find rms of minimums 
        !------------------------------------------------------ 
            print *,"   phase two" 
            dummy = 0 
            do i=1,n_min 
              dummy = dummy + peak_min(i,2)**2. 
            enddo 
            dummy = dummy/n_min 
            dummy = sqrt(dummy) 
            rms_min = dummy 
        !------------------------------------------------------ 
        ! find average of maximums 
        !------------------------------------------------------ 
            print *,"   phase three" 
            dummy = 0 
            do i=1,n_max 
              dummy = dummy + peak_max(i,2) 
            enddo 
            dummy = dummy/n_max 
            avg_max = dummy 
        !------------------------------------------------------ 
        ! find average of minumums 
        !------------------------------------------------------    
            print *,"   phase four"             
            dummy = 0 
            do i=1,n_min 
              dummy = dummy + peak_min(i,2) 
            enddo 
            dummy = dummy/n_min 
            avg_min = dummy 
        !------------------------------------------------------ 
        ! transfer signs of averages to minimums 
        !------------------------------------------------------ 
            rms_max = sign(rms_max,avg_max) 
            rms_min = sign(rms_min,avg_min) 
        !------------------------------------------------------ 
        ! declare rms range and number of cycles 
        !------------------------------------------------------ 
            rms_range = abs(rms_max - rms_min) 
            n_rms = n_local/2          
        !------------------------------------------------------ 
        ! write rms cycles to text file 
        !------------------------------------------------------ 
            print *,"counted",n_rms,"cycles at range",rms_range 
            call cpu_time(t2) 
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            print *,"operation completed in ",t2-t1," seconds" 
            print *,"writing cycles to rms.txt" 
            
open(unit=18,file="output/rms.txt",form="formatted",action="readwrite",status="replace") 
            write(18,*) "cycle range" 
            do i=1,n_rms 
              write(18,*) rms_range, avg !avg pulled from global, produced by 'average' 
sub 
            enddo 
            close(18) 
            call print_div 
        !------------------------------------------------------ 
        ! end subroutine 
        !------------------------------------------------------           
            end subroutine rms_count 
    !------------------------------------------------------------------------------------
-- 
    ! end of rms method subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! rms method - typical 
    !------------------------------------------------------------------------------------
-- 
        subroutine rms_count2 
        !------------------------------------------------------ 
        ! declare arguments 
        !------------------------------------------------------ 
            use global !for stress array and n_stress value 
            integer i, n_rms 
            real sumsq, rms, t1, t2 
        !------------------------------------------------------ 
        ! find rms of load signal 
        !------------------------------------------------------  
            print *,"counting cycles via --rms--" 
            call cpu_time(t1) 
             
            sumsq = 0 
            do i = 1,n_stress 
                sumsq = sumsq + stress(i,2)**2. 
            enddo 
             
            rms = sqrt(sumsq/n_stress) 
            n_rms = n_stress/2 
             
            print *,"counted",n_rms,"cycles at range",rms 
            call cpu_time(t2) 
            print *,"operation completed in ",t2-t1," seconds" 
            print *,"writing cycles to rms.txt" 
            
open(unit=23,file="output/rms2.txt",form="formatted",action="readwrite",status="replace") 
            write(23,*) "cycle range" 
            do i=1,n_rms 
              write(23,*) rms, avg !avg pulled from global, produced by 'average' sub 
            enddo 
            close(23) 
            call print_div 
        !------------------------------------------------------ 
        ! end subroutine 
        !------------------------------------------------------           
            end subroutine rms_count2 
    !------------------------------------------------------------------------------------
-- 
    ! end of rms method subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! cycle rate handling subroutine 
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    !------------------------------------------------------------------------------------
-- 
        subroutine getrate(mode) 
            use global !to get rain and stress arrays 
            integer i1, i2, i3, i, j, n 
            real avrg, xavrg, yavrg, sumx, sumy, sumxx, sumxy, ls_slope 
            character*20, intent(in):: mode 
                         
            if (trim(mode) == "avg") then 
                avrg = 0. 
                do i = 1,(n_rain) 
                    i1 = rain(i,5) !i 
                    i2 = rain(i,7) !k 
                    !take average, append to rain array 
                        do j = i1,i2 
                            avrg = avrg + abs(stress(j,3)) 
                        enddo 
                        avrg = avrg/(i2-i1+1) 
                        rain(i,8) = avrg 
                        avrg = 0. 
                enddo 
            endif 
             
            if (trim(mode) == "wavg") then 
                sumx =  0. 
                sumy =  0. 
                sumxx = 0. 
                sumxy = 0. 
                do i = 1,(n_rain) 
                    i1 = rain(i,5) !i 
                    i2 = rain(i,6) !j 
                    i3 = rain(i,7) !k 
                    !find least squares slope from i to j 
                        do j = i1,i2 
                            n = i2-i1+1 
                            sumx  = sumx  + stress(j,1) 
                            sumy  = sumy  + stress(j,2) 
                            sumxx = sumxx + (stress(j,1))**2 
                            sumxy = sumxy + stress(j,1)*stress(j,2) 
                        enddo 
                        xavrg = sumx/(n) 
                        yavrg = sumy/(n) 
                        ls_slope = (sumxy - sumx*yavrg) / (sumxx - sumx*xavrg) 
                        rain(i,8) = ls_slope 
                    !reset 
                        sumx =  0. 
                        sumy =  0. 
                        sumxx = 0. 
                        sumxy = 0. 
                    !find least squares slope from j to k 
                        do j = i2,i3 
                            n = i3-i2+1 
                            sumx  = sumx  + stress(j,1) 
                            sumy  = sumy  + stress(j,2) 
                            sumxx = sumxx + (stress(j,1))**2 
                            sumxy = sumxy + stress(j,1)*stress(j,2) 
                        enddo 
                        xavrg = sumx/(n) 
                        yavrg = sumy/(n) 
                        ls_slope = (sumxy - sumx*yavrg) / (sumxx - sumx*xavrg) 
                        rain(i,9) = ls_slope 
                    !reset 
                        sumx  = 0 
                        sumy  = 0 
                        sumxx = 0 
                        sumxy = 0 
                enddo 
            endif 
             
           end subroutine getrate 
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    !------------------------------------------------------------------------------------
-- 
    ! end of cycle rate handling subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! stress history emulator subroutine 
    !------------------------------------------------------------------------------------
--        
        subroutine stresswrite(func) 
            use global 
            character*20 func, mode 
            integer slave 
            real s,pi,f,w,mag,val, t1, t2, i, dt, max 
            parameter (dt = 0.001) 
            parameter (max = (10)/10. + .006) !number in brackets is the number of master 
cycles 
 
                       
            call cpu_time(t1) !start clock 
            print *,"emulating stress history" 
            print *,"mode is set to: ",func 
            
open(unit=11,file="input/stress.txt",form="formatted",action="readwrite",status="replace"
) 
 
            i = 0 
            do while (i <= max) !i = time (s) 
              call funcgen(i,func,val) 
              if (.not. go) goto 90 
              write(11,*) i,val 
              i = i + dt 
            enddo 
             
            call cpu_time(t2) 
            print *,"operation finished in ",t2-t1," seconds" 
            call print_div 
            close (11) 
      90 end subroutine stresswrite     
    !------------------------------------------------------------------------------------
-- 
    ! end of stress history emulator subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! function generator  
    !------------------------------------------------------------------------------------
-- 
        subroutine funcgen(x,f,y) 
         
            use global 
            character*20, intent(in) :: f 
            real, intent(out) :: y 
            real, intent(in) :: x 
            real dt 
            parameter (dt = .003) 
 
             
            real j,fq,pi,w,trash 
            integer slave, offset 
            parameter(fq = 10.,                     & !frequency 
                      pi = 3.14159265358979323846, & !pi 
                      w = 2*pi*fq,             & !angular argument for periodic functions 
(omega) 
                      slave = 10                    ) !number of slave cycles per master 
cycle 
                       
            go = .false. 
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            if (f == "simple") then             
              y = cos(w*(x-dt)) 
              go = .true. 
            elseif (f == "2sum") then 
              y = cos(w*(x-dt)) + (1./8.)*cos(slave*w*(x-dt)) 
              go = .true. 
            elseif (f == "3sum") then !first term is a super-master cycle 
              y = cos(w/slave*(x-dt)) + (1./4.)*cos(w*(x-dt)) + (1./8.)*cos(slave*w*(x-
dt)) 
              go = .true. 
            elseif (f == "impulse") then 
              y = int(cos(w*(x-dt))) 
              go = .true. 
            elseif (f == "step") then 
              y = int(1.9*cos(w*(x-dt))) 
              go = .true. 
            elseif (f == "stepsum") then 
              y = int(1.9*cos(w*(x-dt))) + (1./8.)*cos(slave*w*(x-dt)) 
              go = .true. 
            elseif (f == "stepsum2") then !first term is a super-master cycle 
              y = int(1.99*cos(w/slave*(x-dt))) + (1./4.)*cos(w*(x-dt)) + 
(1./8.)*cos(slave*w*(x-dt)) 
              go = .true. 
            elseif (f == "stepinc") then 
              y = (1+int(x/.05))*cos(w*(x-dt)) 
              go = .true. 
            elseif (f == "random") then 
              
open(unit=17,file="input/stress_rand.txt",form="formatted",action="read",status="old") 
              do j=1,x 
                read(17,*) trash,y 
              enddo 
              close(17) 
              go = .true. 
 
            else  
              print *,"error--no function specified or function not in library! abandon 
ship!" 
            endif 
             
        end subroutine funcgen          
    !------------------------------------------------------------------------------------
-- 
    ! end of function generator  
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! print divider to screen subroutine 
    !------------------------------------------------------------------------------------
--  
        subroutine print_div 
        print *,"-----------------------------------------" 
        end subroutine print_div     
    !------------------------------------------------------------------------------------
-- 
    ! end of print divider to screen subroutine 
    !------------------------------------------------------------------------------------
-- 
    !------------------------------------------------------------------------------------
-- 
    ! 3d interpolater subroutine 
    !------------------------------------------------------------------------------------
--  
        subroutine int3d(xi1, yi1, xi2, yi2, zi11, zi12, zi21, zi22, xo1, yo1, zo1) 
            implicit none 
            real, intent(in)  :: xi1, yi1, xi2, yi2, zi11, zi12, zi21, zi22, xo1, yo1 
            real, intent(out) :: zo1 
            real m11, m22, m33, p11, p22, p33 
             
            !21-11 
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                m11 = (zi21-zi11)/(xi2-xi1) 
                p11 = xi1 + m11*xo1 
                 
            !22-12 
                m22 = (zi22-zi12)/(xi2-xi1) 
                p22 = xi1 + m11*xo1 
                 
            !y-cross 
                m33 = (p22-p11)/(yi2-yi1) 
                p33 = p11 + m33*yo1 
                 
            !define z 
                zo1 = p33 
                 
        end subroutine int3d 
    !------------------------------------------------------------------------------------
-- 
    ! end of 3d interpolater subroutine 
    !------------------------------------------------------------------------------------
--  
    !------------------------------------------------------------------------------------
-- 
    ! nearest neighbor subroutine 
    !------------------------------------------------------------------------------------
--  
        subroutine near(val, dir, array, n, index) 
            integer, intent(in)  :: n 
            integer, intent(out) :: index 
            integer                 i, dir 
            real, intent(in)     :: array(n), val 
            real                    old, new 
                
            old = abs(val - array(1)) 
            index = 1    
                     
            do i = 2,n 
                new = abs(val - array(i)) 
                if (new < old) then 
                    if (dir == +1) then 
                        if (array(i) >= val) then 
                            old = new 
                            index = i 
                        endif 
                    endif 
                    if (dir == -1) then 
                        if (array(i) <= val) then 
                            old = new 
                            index = i 
                        endif 
                    endif 
                endif 
            enddo 
             
        end subroutine near 
    !------------------------------------------------------------------------------------
-- 
    ! nearest neighbor subroutine 
    !------------------------------------------------------------------------------------
--                           
!-------------------------------------------------------------------------------------- 
! end of subroutine module 
!--------------------------------------------------------------------------------------               
end module subs
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APPENDIX A.4: MATLAB POST PROCESSING 

%----====[header]====---- 
% objective: create bivariate histogram of cycle counting data 
% method: hist3 matlab subroutine 
% coded by: ryan o'kelley 
% version: 0.0 alpha 
%----====[end of header]====---- 
% workspace clean up 
    clear all 
    close all 
    clc 
% load cycle counting data 
    % cylce history 
        sh = textread('stress.txt'); 
        sh = sh(:,1:2); 
        sh(:,1) = sh(:,1); 
    % local 
        local = textread('local.txt'); 
        local(:,1) = local(:,1); 
    % rainflow 
        rf = csvread('rain.txt'); 
        rf = rf(:,1:2); 
    % Peak Counting 
        pc = csvread('peak_counting.txt'); 
        pc = pc(:,1:2); 
    % Simple Range 
        sr = csvread('simple_range.txt'); 
        sr = sr(:,1:2); 
    %rms 
        rms(:,1) = csvread('rms.txt'); 
        avg = mean(sh(:,2)); 
        rms(:,2) = avg; 
% run fft on history.txt 
    %array size 
        sz = size(sh); 
        sz = sz(1); 
    %sample rate, data length 
        Fs = sh(2,1) - sh(1,1); 
        nfft = 2^nextpow2(sz); 
    %fft 
        shm = sh(:,2); %remove time column 
        y = fft(shm,nfft)/sz; 
        f = (Fs/2) * (linspace(0,1,nfft/2+1)); 
    %plot 
        subplot(2,1,2) 
        plot(f,2*abs(y(1:nfft/2+1))); 
        title('Amplitude Spectrum') 
        xlabel('Frequency (Hz)') 
        ylabel('Magnitude') 
    %table 
        fft_table(:,1) = f; 
        fft_table(:,2) = 2*abs(y(1:nfft/2+1)); 
% create plots 
    % cycle history 
        subplot(2,1,1) 
        %figure 
            plot(sh(:,1),sh(:,2)); 
        hold on 
            plot(local(:,1),local(:,2),'--rs','MarkerSize',4); 
            title('Service history and Peaks') 
            xlabel('Time (s)') 
            ylabel('Amplitude (Unit)') 
             
            legend('Load Data','Reversal Data') 
    %rms 
        figure 
        subplot(2,3,3) 
        hist3(rms,'Nbins',[40,40]); 
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        title('RMS') 
        xlabel('Cycle Range') 
        ylabel('Count') 
  
    % Peak Counting 
        subplot(2,3,4) 
        hist3(pc,'Nbins',[40,40]); 
        title('Peak Counting') 
        xlabel('Cycle Range') 
        ylabel('Cycle Mean') 
        zlabel('Cycle Counts') 
    % Simple Range 
        subplot(2,3,5) 
        hist3(sr,'Nbins',[40,40]); 
        title('Simple Range') 
        xlabel('Cycle Range') 
        ylabel('Cycle Mean') 
        zlabel('Cycle Counts') 
    % rainflow 
        subplot(2,3,6) 
        %figure 
        hist3(rf,'Nbins',[40,40]); 
        title('Rain Flow') 
        xlabel('Cycle Range') 
        ylabel('Cycle Mean') 
        zlabel('Cycle Counts') 
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APPENDIX A.5: C# MACC GUI 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Text; 
using System.Windows.Forms; 
using System.IO; 
using System.Diagnostics; 
 
namespace MAACGUI 
{ 
    public partial class mainform : Form 
    { 
        static string Input_File = ""; 
        static string Output_File = ""; 
        static string Output_Path = ""; 
        static string Units = ""; 
        static string SampleRate = ""; 
        static string RefMethod = ""; 
        static string RateMode = ""; 
        static double RefLevel = 0.0; 
        static double MinAmplitude = 0.0; 
        static int RF_Flag = 0; 
        static int PC_Flag = 0; 
        static int SR_Flag = 0; 
        static int RMS_Flag = 0; 
 
        public mainform() 
        { 
            InitializeComponent(); 
        } 
 
      private void button1_Click(object sender, EventArgs e) 
        //prompt user for service history file 
        { 
            openFD.InitialDirectory = ""; 
            openFD.Filter = "ASCII Text File (*.txt)|*.txt|All Files (*.*)|*.*"; 
            openFD.Title = "Select Service history File"; 
 
            if (openFD.ShowDialog() != DialogResult.Cancel) 
            { 
                Input_File = openFD.FileName; 
                textBox1.Text = Input_File; 
            } 
        } 
         
        private void button2_Click(object sender, EventArgs e) 
        { 
            if (folderbrowse.ShowDialog() != DialogResult.Cancel) 
            { 
                Output_Path = folderbrowse.SelectedPath; 
                textBox2.Text = Output_Path; 
            } 
        } 
 
        public static void ParamFile() 
        { 
            TextWriter tw = new StreamWriter("parameters.txt"); 
            tw.WriteLine("---------------------"); 
            tw.WriteLine(" MAAC Parameter File "); 
            tw.WriteLine("---------------------"); 
            tw.WriteLine(""); 
            tw.WriteLine("MAAC GUI Ver: 0.0"); 
            tw.WriteLine("MAAC Console Ver: 1.1 alpha");  
            tw.WriteLine(""); 
            tw.Write("Date: "); 
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            tw.WriteLine(DateTime.Now); 
            tw.WriteLine(""); 
            tw.Write("Input File: "); 
            tw.WriteLine(Input_File); 
            tw.Write("Output_File: "); 
            tw.WriteLine(Output_Path); 
            tw.WriteLine(""); 
            tw.Write("Rainflow Flag:      "); 
            tw.WriteLine(RF_Flag); 
            tw.Write("Peak Counting Flag: "); 
            tw.WriteLine(PC_Flag); 
            tw.Write("Simple Range Flag:  "); 
            tw.WriteLine(SR_Flag); 
            tw.Write("RMS Flag:           "); 
            tw.WriteLine(SR_Flag); 
            tw.WriteLine(""); 
            tw.Write("Units: "); 
            tw.WriteLine(Units); 
            tw.Write("Sample Rate: "); 
            tw.WriteLine(SampleRate); 
            tw.Write("Reference Level Method: "); 
            tw.WriteLine(RefMethod); 
            tw.Write("User Refernce Level (optional): "); 
            tw.WriteLine(RefLevel); 
            tw.Write("Rate Mode: "); 
            tw.WriteLine(RateMode); 
            tw.Close(); 
        } 
 
        public void cFlaggers() 
        { 
            if (RFcheck.Checked == true) 
                RF_Flag = 1; 
            if (PCcheck.Checked == true) 
                PC_Flag = 1; 
            if (SRcheck.Checked == true) 
                SR_Flag = 1; 
            if (RMSCheck.Checked == true) 
                RMS_Flag = 1; 
 
            Units = TBunits.Text; 
            SampleRate = TBsamplerate.Text; 
            RefMethod = CBrefmethod.Text; 
            RateMode = ratemode.Text; 
            if (TBreflevel.Text != "") 
            { RefLevel = double.Parse(TBreflevel.Text); } 
        } 
 
        public void StartMaac() 
        { 
            Process MAAC = new Process(); 
            MAAC.StartInfo.FileName = "MAAC.exe"; 
            MAAC.Start(); 
        } 
 
        private void button3_Click(object sender, EventArgs e) 
        { 
            cFlaggers(); 
            ParamFile(); 
            StartMaac(); 
        } 
 
        public void button3_Click_1(object sender, EventArgs e) 
        { 
            //this.close(); 
        } 
    } 
}
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APPENDIX A.6: MATLAB RATE ANALYSIS 

clear all 
close all 
clc 
  
%load files 
    stress = textread('stress.txt'); 
    reversals = textread('local.txt'); 
     
%cfd avg on stress file 
    sz = size(stress); 
    n = sz(1); 
    clear sz 
     
    for i=2:n-1 
        stress(i,3) = (stress(i+1,2) - stress(i-1,2)) / (stress(i+1,1) - stress(i-1,1)); 
    end 
     
    avg = 0; 
    for i=2:n-1 
        avg = avg + stress(i,3); 
    end 
    avg = avg/(n-2); 
     
    disp('cfd avg = '); 
    disp(avg); 
     
%cfd avg points 
    syms('xd'); 
    yd = stress(1,2) + avg * xd; 
     
%slope of reversal points 
    sz = size(reversals); 
    nr = sz(1); 
    clear sz 
    slp = (reversals(nr,2) - reversals(1,2)) / (reversals(nr,1) - reversals(1,1)); 
     
    disp('rev avg = '); 
    disp(slp); 
     
%linear lsr on stress file 
    c = polyfit(stress(:,1),stress(:,2),1); 
     
    disp('lsr slp = '); 
    disp(c(1)); 
     
%line points 
    x = [stress(1,1) , max(stress(:,1))]; 
    y = [c(2) + stress(1,1)*c(1) , c(2) + max(stress(:,1))*c(1)]; 
     
%plot 
    subplot(1,3,1) 
    hold on 
    plot(stress(:,1),stress(:,2),'r'); 
    plot(reversals(:,1),reversals(:,2)) 
    xlabel('Time (s)'); 
    ylabel('Load (unit)'); 
    legend('Service history','Reversal Line') 
     
    subplot(1,3,2) 
    hold on 
    plot(stress(:,1),stress(:,2),'r'); 
    plot(x,y) 
    xlabel('Time (s)'); 
    ylabel('Load (unit)'); 
    legend('Service history','Linear LSR') 
     
    subplot(1,3,3) 



  

 101

    hold on 
    plot(stress(:,1),stress(:,2),'r'); 
    ezplot(yd,[stress(1,1),stress(n,1)]); 
    xlabel('Time (s)'); 
    ylabel('Load (unit)'); 
    legend('Service history','CFD Average') 
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APPENDIX A.7: MACC Parameter File (params.txt) 
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