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ABSTRACT	
 

 This thesis describes a novel new method, termed the Tangent-Line-Chord (TLC) 

method, that can be used to more efficiently model creep deformation dominated by the tertiary 

regime. Creep deformation is a widespread mechanical mode of failure found in high-stress and 

temperature mechanical systems. To accurately simulate creep and its effect on structures, 

researchers utilize finite element analysis (FEA). General purpose FEA packages require 

extensive amounts of time and computer resources to simulate creep softening in components 

because of the large deformation rates that continuously evolve. The goal of this research is to 

employ multi-regime creep models, such as the Kachanov-Rabotnov model, to determine a set of 

equations that will allow creep to be simulated using as few iterations as possible. The key 

outcome is the freeing up of computational resources and the saving of time. Because both the 

number of equations and the value of material constants within the model change depending on 

the approach used, programming software will be utilized to automate this analytical process. 

The materials being considered in this research are mainly generic Ni-based superalloys, as they 

exhibit creep responses that are dominated by secondary and tertiary creep. 
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CHAPTER 1: INTRODUCTION 

1.1 Motivation 

 Finite element analysis (FEA) software is being utilized more frequently in the 

engineering industry as the complexity of mechanical systems is better understood and the cost 

of conducting experiments increases. When a mechanical component is placed into a high-stress, 

high-temperature, and high-use environment, the interaction between the physical processes is 

challenging to determine. Simulations are important in the energy sector where estimation of 

rupture lives of componentssuch as transition pieces (Figure 1.1a) and turbine blades (Figure 

1.1b) are vital for safety. Although these components are subjected to high stresses at high 

temperatures, they are expected to last for years. 

  

                                               (a)                                               (b) 

Figure 1.1: Industrial gas turbine (a) transition pieces (Courtesy Combined Cycle Journal) and (b) turbine 

blades (Courtesy Siemens) 

These types of components are comprised of primary creep resistant materials such as Ni-base 

superalloys. As such, primary creep is generally negligible while the secondary and tertiary creep 
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regimes dominate the creep life. These types of creep lives are highly nonlinear, and engineers 

generally assess the expected life of the component through FEA and rupture models, such as the 

Larson Miller Parameter. 

 A primary mode of failure in components found in industrial gas turbines is creep. The 

cost of a 40 MW industrial gas turbines is, on average, nearly twenty-seven million dollars [1]. If 

creep is not adequately characterized, then a part that needed to be replaced could 

catastrophically fail, which is expensive to the company and detrimental to its customers. 

Catastrophic failures that result from creep occur when tertiary creep is active for too long. This 

can happen if the proprietary creep models do not accurately characterize the extreme 

nonlinearities that arise during near-rupture tertiary creep. Thus, it is also necessary to develop 

creep models that can capture the near-rupture tertiary behavior in an efficient manner. 

 The goal of this research is to develop a reduced-order constitutive creep model that will 

have the ability to accurately and quickly simulate extensive creep. Constitutive modeling 

constants, which are typically optimized through regression, are optimized to best fit data over 

the entire time range. Candidate creep models for this research are the Norton model and the 

Kachanov-Rabotnov damage model. The Norton model is the fastest model to simulate, but it 

produces the most overall error when primary and tertiary regimes are dominant. The Kachanov-

Rabotnov model is a slower model with respect to solve time, but it produces more accurate 

results. 

 When dealing with long-term creep tests (i.e., 10000+ hours), it is seen that the amount of 

non-linear regression involved  to determine material constants is very high and as such, it takes 
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numerous valuable hours for a computer to complete the analysis. Creep simulations are usually 

conducted and coupled with experience and rupture experiments, to determine part replacement. 

Part replacement is ideally carried out before tertiary creep sets in. This is because metals usually 

rupture not long after this stage of deformation is reached. Subsequently, it is suggested that, for 

design purposes, the analysis can be simplified using a reduced-order model, albeit with a 

slightly increased tolerance for error that is still within the scatter of experimental data, so that 

the time to tertiary creep can be quickly determined.  

1.2 Overview of Thesis 

 The following chapter will cover all pertinent background information. Chapter 3 

explains and derivesa reduced-order modeling approach as well as summarizes the available test 

data. A parametric analysis and the results will be shown in Chapter 4. Chapter 5 compares the 

proposed reduced-order model to secondary and tertiary creep models based on the amount of 

CPU time required. The conclusions will be discussed in Chapter 6, while Chapter 7 proposes 

future work that can be carried out to further improve the reduced-order model. All of this 

isproceeded by a list of references and an appendix where all source codes will be included. 
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CHAPTER 2: BACKGROUND 

 The following sections explore the analytical methods involved in creep deformation 

modeling and their limitations. Approaches to reduced-order plasticity and creep modeling are 

also described. 

2.1 Creep Deformation 

 Engineering strain is defined as a relative displacement of particles within a material 

.Geometrically, axial strain is defined by 

0f

o

L L

L





                                                             
(2.1) 

where Lf is the final length and L0 is the initial length. A material will experience strain as a stress 

is applied to it. Creep strain is the inelastic deformation that occurs as a material undergoes 

agenerally quasi-staticstress, usually at elevated temperatures (40% of the melting temperature) 

for most industrial-grade metals. Creep can also occur at room temperature for softer metals such 

as lead. The rate at which deformation occurs depends on the characteristic stress and 

temperature as well as specific material behavior and geometry.  

 There are three microstructural mechanisms associated with creep in metals: bulk 

diffusion creep, grain boundary diffusion creep, and dislocation creep. Bulk diffusion creep, or 

Nabarro-Herring creep, is driven by material diffusion through grains. Stress gradients form 

within the material as the load is applied, with higher stresses occurring within the grain at the 

edges that lie along the loading direction. As this process is evolving, atoms diffuse through the 
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grains to the high stress locations, causing the grains to elongate. As the grains elongate, the 

strain rate decreases until it reaches steady-state, where it will continue to slowly creep until the 

grains begin to crack, at which the strain rate exponentially increases until rupture. As eachgrain 

elongates within the material, deformation is observed [2]. Grain boundary diffusion, also called 

Coble creep, is similar to Nabarro-Herring creep except that the diffusion path is primarily 

through the grain boundaries instead of the grains themselves. 

 Dislocation creep, or climb creep, results from the movement of dislocations that are 

incurred as the material reacts to the applied stress. As the load permeates a material, particles 

within the crystal lattice begin to dislocate along the glide plane [3]. As these dislocations move, 

ionic bonds are broken. New bonds are then reformed between the newly adjacent particles, and 

as the dislocations accumulate, the bonds become stronger and more resistant to creep. Once a 

critical strain is reached, the stronger bonds begin to break and an exponential strain rate is 

observed. 

 Primary creep is characterized by a decreasing strain rate and is physically produced by 

dislocations and strain hardening within the material as the material is introduced to the load. 

Secondary creep is characterized by a near-constant strain rate that is considered a transitionary 

period between hardening (primary creep) and softening (tertiary creep). In this stage, the 

strength of the dislocations have reached a semi steady-state until they reach a critical strain, at 

which point tertiary creep sets in. Tertiary creep is considered the softening stage and is 

characterized by the formation of cracks along the grain boundaries within the material [4]. A 

complete creep curve is illustrated in Figure 2.1. 
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Figure 2.1: Creep curve showing individual creep regimes 

Ni-based superalloys, which are commonly used in gas turbine components, will experience 

relatively short periods of quasi-static loading, during which creep will occur. When these 

conditions are held, critical locations of components will display secondary creep or tertiary 

creep. This is largely in part to the exceptional primary creep resistance of superalloys [5]. 

Extensive creep simulations become problematic with components that exhibit long tertiary 

creep lives because of the high degree of nonlinearity of tertiary creep. The nonlinearities arise 

because microscopic voids within the material accumulate, which results in a net area reduction 

that increases the effective stress and therefore strain rate. It is not uncommon to see strain rates 

reach 0.5 %/hr or even 1.0 %/hr. 
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2.2 Creep Models 

 Creep models are designed to correlate experimentally-acquired strain histories as a 

material experiences quasi-static stress. Accuracy is gauged based on how well it correlates to 

physical test data, including strains and strain rates. An example of a creep model accurately 

capturing primary and secondary creep behavior  is shown in Figure 2.2. 

 

Material: Simulated Fe-Alloy
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Data Type: Time-based
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Figure 2.2: Primary and secondary creep modeling of a generic steel alloy [6] 

Creep models can be given as creep, cr , or creep rate, cr . In most instances, creep deformation 

formulae take the characteristic of  

( ) ( ) ( )cr f g T h t                                                          (2.2) 
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where  is stress, T is temperature, and t is time. To capture the behavior of the test material, 

unique constants are embedded into the mathematical models that are generally temperature-

dependent; however, more complex creep models will contain both temperature and stress-

dependent constants that can more accurately model creep on parts that experience stress and 

temperature gradients. 

 Some examples of common creep models are the Norton model [7], the Theta-Projection 

Model [8], and the Kachanov-Rabotnov model [9,10]. The Norton equation is given by 

n
cr A                                                               (2.2) 

where A and n are material constants,  is stress in MPa, and t is time in hr[6]. This model 

captures the secondary creep regime well. It is a simple linear equation with a slope, An, 

multiplying the independent variable, t. The Norton model is usually modified with the 

Arrhenius equation to capture temperature-dependence. In other cases, a time-hardening 

exponent, m, is incorporated into the time variable so that primary creep can be modeled[4]. 

 The Theta-Projection model, developed by Evans and Wilshire [8] is defined as 

   2 4
1 31 1t t

cr e e                                                    (2.3) 

where1 through 4 are material constants and t is time in hr. This model correlations the full 

range of creep, but there are two main drawbacks. The four material constants, 1-4, have no 

physical significance and are difficult to determine from experimental data alone. They are 

generally determined using extensive multi-variate regression routines. The second is that this 
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model inherently describes creep as a combination of creep softening and creep hardening, which 

correlates to a weakness of modeling long periods of secondary creep. The secondary creep 

regime is merely a small time period in which a decreasing creep rate transitions into an 

increasing creep rate [11].This is detrimental to this research because the materials being 

analyzed have creep lives that exhibit long periods of secondary and tertiary creep, with very 

little if any primary creep. 

 The Kachanov-Rabotnov model is given as 

1

n

cr A



    
                                                          (2.4) 

where the damage evolution is defined as 

 1

M 









                                                             (2.5) 

The variables A, n, M, , and  are material constants. This model introduces the concept of 

damage, , which simulates the physical phenomenon such as voids that begin accumulating at 

early stages of creep and then evolve as micro cracks over the entire creep life [4,9,10]. This 

variable continually increases from zero to unity with the progression of creep, with a value of 

one representing rupture. The continuous evolution of damage within the creep rate and damage 

rate allows the Kachanov-Rabotnov model to capture the nonlinear characteristic of tertiary 

creep with more insight than the previously discussed models. An important characteristic of the 

Kachanov-Rabotnov formulation is the equation reduces to the Norton model if damage 

evolution is restricted.  
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2.3 Limitations of Tertiary Creep Models 

 Creep models that explicitly model tertiary creep have not been developed. Any creep 

models that can model tertiary creep are also required to model secondary creep because all 

creep data includes some form of secondary creep. To adequately characterize a near linear creep 

response and a highly nonlinear response simultaneously, there must either be individual terms 

that describe each creep regime, i.e. Theta-Projection model,or a differential term that can 

account for evolving changes in strain rate, i.e. Kachanov-Rabotnov model. In both cases, 

tertiary creep is modeled as a nonlinear response that can reach strain rates of more than 1 %/hr.  

 When strain rates reach this magnitude, the computational resources that are required to 

converge on a solution increase dramatically. At the onset of tertiary creep, damage starts to 

accumulate and the material begins to neck. Because of these two factors, the effective stress 

increases at an increasing rate, which translates into an increasing strain rate. Increasing strain 

rates cause the Newton-Raphson method to use an increasingly higher number of iterations to 

converge, and the solve time is directly proportional to the number of Newton-Raphson 

iterations. Figure 2.3 illustrates this relationship between number of iterations and strain rate. 
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Figure 2.3: Illustration of newton-raphson method applied to increasing rates 

In finite element simulations, a converged solution is determined for each time step, which 

means that the iterative process illustrated in Figure 2.3 is repeated numerous times. If no 

convergence is found within a set number of iterations, then the time step is decreased and the 

process is repeated until a solution is determined.  

 From Figure 2.1, it is observed that the near-rupture portion of tertiary creep is linear. 

The Newton-Raphson method can converge in one iteration for such linear responses. However, 

the constitutive models that are used to model tertiary creep represent creep with nonlinear 

mathematical relationships, and because the Newton-Raphson is an equation driven solver, it 

treats the seemingly linear response as nonlinear. 
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2.4 Reduced-Order Plasticity Models 

 Reduced-order models are commonly employed in the area of plasticity to efficiently 

model and predict stress-strain curves. Metals generally experience linearly elastic stress-strain 

relationships up to the proportional limit. Beyond this limit, the stress-strain relationship 

becomes nonlinear and exhibits a power-law type response, but will remain elastic until the yield 

point is reached. Figure 2.4 illustrates this behavior. 

 

Figure 2.4: Stress-strain curve 

 Plasticity models require flow and hardening rules as well as a yield point. The flow rule 

defines the relationship between stress and plastic deformation, while the hardening rule 

characterizes the type of work hardening, either isotropic of kinematic hardening, that is 

experienced by the material.  
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 Isotropic hardening is characterized by a uniform increase in yield strength across all 

directions.From a stress-strain perspective this translates to the compressive yielding being 

equivalent to the tensile yielding, even after unloading. This implies that the yield surface retains 

a constant shape while changing in size [13]. This type of hardening is assumed in non-cyclic 

loading cases because it cannot account for the Bauschinger Effect, which is characterized as the 

asymmetry between tensile and compressive strengths that becomes more pronounced as the 

number of cycles increases. Figure 2.5 illustrates this effect, with the typical isotropic and 

kinematic hardening responses included. 

 

Figure 2.5: Stress-strain cyclic curve illustrating the bauschinger effect 
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 Kinematic Hardening is characterized by an increase in yield strength in the direction 

of the applied stress. Thus, if the load is tensile, the yield strength will increase in that direction 

while the compressive strength, which acts in the opposite direction, becomes weaker to 

compensate. This implies that the yield surface can translate without its size or shape changing 

[13]. From a stress-strain perspective, kinematic hardening ischaracterized by the elastic range 

remaining constant throughout the cyclic loading. This allows kinematic hardening to account 

for the Bauschinger Effect, which makes this type of hardening the most applicable for cyclic 

loading testing. 

 There are four reduced-order plasticity models that are used to characterize these 

stress-strain relationships: Bilinear Isotropic Hardening (BISO), Multilinear Isotropic Hardening 

(MISO), Bilinear Kinematic Hardening (BKIN), and Multilinear Kinematic Hardening (MKIN). 

 Bilinear isotropic hardening (BISO) and bilinear kinematic hardening (BKIN)are a 

reduced-order models in which the nonlinear stress-strain relationship that occurs after yielding 

is assumed to be linear.Multilinear isotropic hardening (MISO) and multilinear kinematic 

hardening (MKIN) are reduced-order models that reduce the nonlinear stress-strain relationship 

that occurs after yielding into a series of linear relationships. For simulations, the multilinear 

models produce the most accurate results while the bilinear models solve the quickest.  

2.5 Reduced-Order Creep Models 

 Creep is an area of research where reduced-order models are just beginning to develop. 

The primary reduced-order approach is through a geometrical simplification. This approach 

focuses on developing a micromechanical model that is inherently comprised of a much smaller 
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number of unknowns. This micromechanical model is then simulated using eigen-strains that are 

influenced by eigen-deformations. As the strain is modeled for the micromechanical model, the 

overall response of the macroscale model is modeled using a reduced-order homogenization 

[14]. This method was developed to better characterize creep of composites, where 

micromechanical elements are vital to the whole structure. Because of this, no reduction in solve 

time was observed. 

 Some research has been conducted on reducing the solve times of creep simulations. 

However, this was accomplished through the large time increment (LATIN) method to quickly 

simulate primary and secondary creep so that tertiary creep simulations, which require the most 

amount of time to solve, can be executed faster [15]. These authors acknowledges the slow 

nature of the Newton-Raphson iterative method when applied to nonlinear systems, but sought to 

reduce the time it took to arrive at the nonlinearities instead of simplifying the nonlinear creep 

regime itself. As it stands, there is no research being conducted on increasing the efficiency of 

tertiary creep simulations through a reduced-order constitutive model. 

2.6 Literature Review 

 This section details a thorough literature review on the current trends in creep modeling 

research and general reduced-order modelsas they are being applied to other fields of research. 

 The current state of creep modeling research is focused on fine-tuning pre-existing creep 

models so that specific phenomenon can be accounted for, or on developing novel methods to 

determine material constants within creep models so that wider experimental parameters can be 

modeled. Creep models began as simple mathematical formulations that only accounted for 
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stress. As the field of continuum damage mechanics progresses, increasingly complex 

phenomenon with increasingly complex variables are being added into creep models so that 

creep simulations realistically model what is readily observed in experiments. 

 Temperature-dependence of material constants is a trait that is observed in numerous 

constitutive creep models and research has been carried out within the last five years to account 

for it in modern creep models such as the Kachanov-Rabotnov model. To account for 

temperature-dependence in the Kachanov-Rabotnov model, material constants were analytically 

or numerically determined fromisothermal creep data. The constants were then plotted against 

temperature and a mathematical relationship was established by utilizing regression techniques 

that adequately defined the constant as a function of temperature. In the Kachanov-Rabotnov 

model, it was determined that the secondary creep constants, A, and n, and the tertiary damage 

constant, M, exhibited temperature-dependence [12]. The equations that define these 

relationships are shown in Equations 2.6 through 2.8. 

( ) exp
Q

A T B
RT

   
 

                                                  (2.6) 

3 2 1
3 2 1 0 min( )n T n T n T n T n n                                          (2.7) 

 1 0( ) expM T M M T                                                   (2.8) 

Where B, ni, M1, and M0 are material constants, Q is the activation energy, R is the universal gas 

constant, and T is the temperature. By including the temperature-dependence of the constants 
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within the modeling routine, a more robust model is established that can calculate material 

constants for uncharacterized temperatures. 

 Anisotropy is another phenomenon that is difficult for standard creep models to 

characterize. In anisotropic materials, the three-dimensional orientation of the grains directly 

influences the damage evolution. A heavily modified Kachanov-Rabotnov model was developed 

that incorporated numerousdamage and stress tensor formulations that ultimately resulted in 

remarkably accurate simulations [16]. The ability to account for grain orientation as well as 

multiaxial stress states within a high-fidelity simulation is a complex yet novel attribute that 

makes this modified Kachanov-Rabotnov model extremely robust. However, this level of 

mathematical characterization can lead to extremely expensive computations. 

 The Theta-Projection creep model (Equation 2.3) is a poor model to use when long 

periods of secondary creep are observed. A modified Theta-Projection model was developed that 

incorporated three terms, one for each creep phase, instead of the normal two [17]. The modified 

equation is shown in Equation 2.9. 

6
51 2

1
2

3 4 7 8
5

1 1
5

tt t

cr

t
e t e e

e


     



   
 

     
                   

                        (2.9) 

This modification allowed for physical meaning to be associated with the coefficients in the new 

model, which meant that constants could be determined from experimental data. When this 

modified Theta-Projection model was used to simulate the creep response of a Ni-base 

superalloy, which is known to experience long secondary creep responses, the results were a 

large improvement compared to the standard model. 
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 A separate modification was made to the Theta-Projection model solely to develop 

material constants for the tin-silver alloy that had physical meaning [15].This version of the 

modified Theta-Projection model is shown in Equation 2.10. 

       0 1

0 01 1 1 1t t t t
cr A e A e B e B e                                              (2.10) 

The goal of the research described in this paper was to fit the modified Theta-Projection model to 

the data and then to extract the values of the constants to determine experimental parameters 

such as primary creep rate, the minimum creep rate and the time at which it occurs, and the time 

to failure. Temperature and stress-dependence relationships of the material constants were also 

developed. A creep model that has experimentally determined material constants is beneficial in 

that characteristic creep curves can be readily modeled with minimal use of fitting routines. 

However, the primary issue with the Theta-Projection model and all of its modificationsare that 

it cannot be reduced to a linear equation because of the cumulative nature of the individual creep 

terms. In the case of Equation 2.9, steady-state creep is characterized by adding the secondary 

and primary creep terms together. The secondary creep term is semi-linear, but becomes 

nonlinear as time progresses. In the case of Equation 2.3, no secondary term exists and the 

minimum creep rate is merely an inflection point where creep hardening transitions into creep 

softening. In both cases this means that a reduced-order constitutive model cannot be developed 

from the modified Theta-Projection models. 

 A notable characteristic of constitutive models for creep that are not damage-based is that 

they fail to adequately capture the tertiary creep response. Figure 2.6 illustrates this using a 

modified Norton model and a modified Theta-Projection model. 
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Figure 2.6: Illustration of poor tertiary creep response using (left) modified norton model [18] and (right) 

modified theta-projection model [15] 

 Accurately modeling tertiary creep is usually not of interest to designers because 

components are to be replaced before tertiary creep sets in, as rupture occurs not too long 

afterwards [17]. In most cases, designers simply use secondary creep models to determine when 

tertiary creep could begin. However, accurate characterization of tertiary creep is necessary in 

creep crack growth characterization or in root cause investigations of nuclear reactor or industrial 

gas turbine components. As such, the development of creep models that can capture the 

extremely nonlinear behavior of tertiary creep cannot be completely ignored. 

 Even though the modified Norton law developed by Lim et al.(2011) did not capture the 

near-rupture portion of tertiary creep, it was still utilized to determine a rule that could be 

employed to determine the onset of necking, which is the physical manifestation of near-rupture 

and rupture tertiary creep [18]. This was accomplished by using the Hart instability criterion 
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[19], which detects deformation instability through the rate of change in cross-sectional area. 

This criterion is displayed in Equation 2.11. 

 
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 
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                                                (2.11) 

where eng is the engineering strain. Coupling the instability criterion with a modified Norton 

equation allowed the researchers to accurately predict the change in cross-sectional area up to 

75% of the total creep life [18]. If a model that could more accurately capture the near-rupture 

tertiary creep life were to be coupled with the instability criterion these results could be 

dramatically improved. 

 Wen et al. (2013) coupled a modified Kachanov-Rabotnov strain-based tertiary damage 

model with crack tip stress and strain formulations in an effort to more accurately simulate the 

influence of cracks in creep of components [20]. Figure 2.7 illustrates the rapid onset of tertiary 

creep that is characteristic of the investigative material, 316 stainless steel. 

 

Figure 2.7: Characteristic creep life of 316 stainless steel [20] 
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It is observed that the modified Kachanov-Rabotnov model is able to predict the rapid onset of 

tertiary creep. This is an important characteristic because crack growth is influenced by the strain 

rate in tertiary creep and can even cause tertiary creep to begin earlier than normal because of the 

reduction in cross-sectional area relative to an undamaged specimen.This characteristic 

ultimately lead to accurate prediction of creep crack growth as observed in Figure 2.8. 

 

Figure 2.8: Comparison of experimental and simulated results [20] 
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 The work by Zhao et al. (2009) used a separate modified Kachanov-Rabotnov damage 

model to predict the damage evolution and residual strength of a specimen, which directly 

correlates to the fracture location. This kind of analysis, as in the modeling of creep crack 

growth, is dependent on the accuracy of tertiary creep simulations. A genetic algorithm was 

employed within MATLAB to determine values for the material constants that would produce 

best-fit creep curves that agreed with experimental data [21]. Figure 2.9 shows the results. 

 

Figure 2.9: Comparison of experimental and simulated results [21] 

It is observed that having a model that accurately captures tertiary creep behavior including the 

near-rupture region is vital in predicting failure. 

 Reduced-order models are designed to reduce the amount of computational resources that 

are required to solve a large-scale simulation, while still maintaining a satisfactory degree of 

accuracy so that necessary results can be ascertained. Two primary approaches that are generally 

employed to solve this: a reduced-geometry model or a reduced-calculational model. Reduced-

geometry models decrease the number of unknowns in a given problem through a simplification 
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of the experimental model or environment. Some examples of this included reducing a three-

dimensional flow field into a series of two-dimensional profiles or a reduction of a three-

dimensional material model into an axisymmetric two-dimensional model. Reduced-

calculational models are less common, but they seek to reduce the complexity of the problem 

through physical assumptions that are problem specific. An example of this is the 

computationally expensive Navier-Stokes compressible equations are replaced with Euler 

equations, which are computationally simple. 

 Reduced-order models are implemented heavily in computationally-intensive fields such 

as aerodynamics and fluid mechanics. Approximations in these fields are generally established 

through low-accuracy simulations and wind tunnel testing. In recent years there has been a 

dramatic increase in the use of high-fidelity simulations as quicker and more in-depth analyses 

are required to develop more efficient designs in a shorter amount of time. With these high-

fidelity simulations, computational solve times of multiple days are becoming more 

commonplace. This is largely because of the inherent complexity of three-dimensional flow 

fields as well as high Reynolds numbers that complicate the governing Navier-Stokes equations. 

Alonso et al. (2012) successfully developed a reduced-order models that reduces the solve time 

from days to minutes. Its primary approach was to reduce the larger problem into a series of 

smaller problems that are solved independently and then coalesced for a complete analysis. This 

was accomplished in part by utilizing Euler equations, which are computationally simple, in 

place of compressible Navier-Stokes equations, which are computationally taxing [22]. This 

approach is similar to what is explored in this thesis. 
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 Another approach that has been observed in reduced order models involves implanting 

statistical techniques within pre-existing reduced order models so that a higher degree of 

accuracy is obtained. Researchers used this concept to add stochastic estimation, mean-square 

error minimization, and conditional expectations within the OPSTROM reduced-order model to 

increase the resolution of simulating a nonlinear beam response [23]. This paper was influential 

because it redeemed the negative aspect of this specific reduced-order models in that it over-

emphasized efficiency at the cost of accuracy. Figure 2.10 illustrates the improvement in 

accuracy compared to the original reduced-order model. 

 

Figure 2.10: Comparison of fully resolved simulation (FRS) amd an under resolved simulation with and 

without the OPSTROM statistical additions [23] 

The increase in solve times because of the added statistical calculations was a necessary trade-off 

for the sake of accuracy. The ultimate goal of a reduced-order model is to maintain a satisfactory 

level of accuracy while also reducing the computational resources required to fully simulate and 
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solve the large problem. This author outlines a possible approach that can be utilized if the 

proposed reduced-order model that is discussed in this thesis introduces too much error into the 

creep simulation. 

 In summary, it has become apparent that the current state of creep characterization and 

research is focused on accuracy with respect to the primary and secondary creep regimes. This is 

plausible because most industries that are concerned with creep are only interested in 

determining when tertiary creep begins, as a part will generally be retired not too long after the 

onset of tertiary creep. Some structural steels and super alloys, however, exhibit creep lives that 

are dominated by tertiary creep. If the standard part replacement rules were applied to those 

steels, parts would be replaced much too soon, thereby wasting resources. Increasing the 

accuracy of tertiary creep modeling is largely ignored because simulations that involve tertiary 

creep take exponentially longer than primary and secondary creep simulations because of the 

extreme non-linear nature of tertiary creep. This thesis proves researchers will be able to 

simulate the entire creep life including near-rupture tertiary creep with a higher degree of 

accuracy in an exponentially shorter amount of time. This will lead to more effort being focused 

on understanding tertiary creep because simulations can be carried out much more quickly. 

 Many researchers and designers that are involved with structural steels or superalloys 

utilize the Kachanov-Rabotnov model [12, 14, 16, 20, 21]. The Kachanov-Rabotnov model has 

proven itself to be the best candidate for modeling tertiary creep because of the damage 

phenomenon that it introduces. Damage, , is a number that classifies the state of the 

microstructure of the material, starting at zero and increasing towards one, which correlates to 
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rupture. Tertiary creep is so non-linear because, in physical terms, the material starts to deform 

and crack, and these deformations reduce the effective-area of the material, which increases 

stress and therefore strain rate. This is exactly what the coupled Kachanov-Rabotnov equations 

characterize because both equations incorporate the current value of damage. As the damage 

evolves the strain rate and damage rate increase as well. This lends itself to characterizing 

tertiary creep relatively well. The Kachanov-Rabotnov equation is widely used in creep research 

because it is simple to implement in a finite element analysis because the strain and damage 

equations are provided in rate forms.  

 It was very difficult to find any research that discussed simulation time with respect to 

creep simulations because simulation time of creep modeling is generally not quantified in 

literature. Reduced-order models are used in many other fields of research to increase the 

efficiency of simulations. Reduced-order modeling approaches can vary. In the two papers that 

explored reduced-order models for creep [14,15], a reduction of geometrical complexity and 

non-tertiary creep was employed. An aerodynamics-based reduced-order model reduced the 

mathematical complexity of the simulation through physical assumptions and reduced the 

geometrical complexity through generalized node locations [22]. A reduced-order model was 

also developed to model a nonlinear beam response that reduced the complexity of a beam 

vibration problem by combining a low-resolution algorithm with a statistical optimization 

routine [23]. 

 After an extensive literature review, there appears to have been no progress in developing 

a reduced-order creep model by reducing the mathematical complexity of the equations even 

though in a few papers [12,16] and a monograph on creep [4] it has been stated that the 
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Kachanov-Rabotnov tertiary model reduces to a secondary model when damage is restricted. No 

researchers have deduced that it is possible to utilize multiple sets of material constants to 

increase the strain rate sequentially so as to reduce the tertiary creep regime, which is non-linear 

and computationally expensive to simulate, to a series of increasing slopes, which are linear and 

computationally simple to simulate. 

 Increasing the efficiency of simulations is an important step in this field of research, as 

increasing demands for accuracy are increasing the amount of computational resources needed. 

The rate at which creep can be researched and analyzed will increase dramatically as researchers 

can quickly carry out accurate simulations on their personal desktops. As creep is further 

researched and understood, the service lives of energy-producing turbines can be more 

accurately and quickly predicted. This results in fewer resources being wasted in replacing 

turbine components prematurely or, alternatively, wasting resources to repair other components 

that were damaged when a part failed before being replaced. 
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CHAPTER 3: REDUCED-ORDER MODELING APPROACH 

 This section will explore the assumptions and considerations that influence the reduced 

order model. The Tangent-Line-Chord (TLC) Model will then be derived and the available test 

data will be provided. 

3.1 Analytical Model Considerations 

 Nearlyseventy percent of the CPUsolve time in a creep simulation is utilized simulating 

tertiary creep. The solve time increases exponentially as the strain rate increases because of the 

mechanics behind the Newton-Raphson solver (Figure 2.3). In later stages of tertiary creep the 

strain rate reaches such a large magnitude that it can be considered linear. A Kachanov-Rabotnov 

governed simulation was carried out and the percentage of total time required as a function of 

time was calculated. The results are shown in Figure 3.1. 
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Figure 3.1: Illustration of CPU solve time evolution during creep deformation 
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It is observed that nearly forty percent of the total solve time was required for the last hundred 

hours of the eight hundred hour simulation. Visually, tertiary creep begins at roughly five 

hundred hours, which would place the tertiary creep solve time at nearly seventy percent. 

 Most finite element solvers have difficulty simulating tertiary creep because they 

simulate creep using the rate-dependent Newton-Raphson method, which inherently means that 

finite element solvers can simulate secondary creep very quickly. It is plausible that the required 

CPU time for creep simulations could be dramatically reduced if the entire creep curve was 

governed by modified secondary creep, i.e. linear, equations. This is illustrated in Figure 3.2. 

 

Figure 3.2: Illustration of linear interpolation approach with key data points shown 

This concept spurned the creation of a reduced order constitutive model for creep. Any potential 

reduced-order constitutive creep models willbe limited by the assumption that the slope is always 

increasing, as well as the error that is induced from an interpolation-based approach. The former 

limitation becomes an issue when attempting to simulate compressive strain experiments. 
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Discussed next are the possible mathematical approaches that can be employed to derive the 

proposed reduced order model. 

3.2 Reduced Order Model Approach 

 Two separate approaches were considered in deriving a reduced-order constitutive model 

that would adequately characterize tertiary creep: a direct linear interpolation approach and a 

time-shift interpolation approach. 

 The direct linear interpolation approach requires that a pre-determined number of data 

points be chosen so that slopes and -intercepts can be calculatedfor as many interpolated lines 

that are required. Numerical software such as MATLAB simplifies this task greatly with built in 

interpolation functions. The problem arises when attempting to define the data points, which are 

illustrated in Figure 3.2, that will be used in the interpolation. Linear interpolation is simple and 

automatic when an entire data set is used. If the number of interpolants needs to be controlled, 

then linear interpolation becomes a manual process as the points used for interpolating must be 

individually chosen. When dealing with large data sets such as in creep experiments,this manual 

task becomes tedious and more resources are spent preparing the data then what could be saved 

with a reduced order model. The only way to automate this task is to develop a routine that 

defines these key data points based on strain rates relative to the minimum strain rate. The main 

issue with this method is that strain rate histories vary greatly between any two distinct isostress 

creep curves, even those that involve the same temperature. If the same strain rate relations were 

used for each creep curve, then the amount of secondary creep equations would not be 

controllable, which leads to a fluctuation in simulation times and no control over the induced 
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error. To accurately interpolate the creep curve, strain rate profiles would have to be 

characterized for each data set to ensure that a controllable number of equations would be 

produced.  

 An abstract, but simple approach to implement multilinear modeling is a time-shift based 

approach. If the original data is time-shifted a predetermined amount, then key points can be 

determined based on when the secondary creep equations intersect the original and time-shifted 

creep curves. Mathematically, during primary creep the projected line would chord the original 

data and be tangent to the time-shifted data. During secondary and tertiary creep, the projected 

lines would chord the time-shifted data and be tangent to the original data. This approach is 

illustrated in Figure 3.3. 

 

Figure 3.3: Illustration of time-shift data approach 
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It can be observed that as the time-shift is increased the number of interpolating lines that can be 

generated decreases. This occurs because larger time shifts result in farther extending 

interpolated lines that require a higher percentage of total creep time to intersect the opposite 

curve. A lower number of linesis expected to result in faster solve times at the cost of increased 

error. As the time shift approaches zero, the amount of error approaches zero and the number of 

interpolated lines, and therefore the solve time, increases. This quality of the model is useful in 

that simulations can be executed efficiently while knowing how much error will be introduced. 

This method is advantageous in that the model generation is not governedbya strain rate 

relationship as it is in the linear interpolation approach. The lines will numerically follow the 

curvature of the data as the tangent and chord conditions are numerically solved. 

3.3 The TLC Model Numerical Implementation 

 The TangentLine, Chord(TLC) Model,is derived using novel mathematical manipulations 

implemented into a multi-paradigm numerical computing environment. The process will be 

discussed in this section and the routine implemented in MATLAB will be included in the 

appendices. 

 The TLC approach relies on an existing creep deformation curve. As previously 

discussed, the model works well on any material response, however, creep histories that are 

dominated by tertiary creep are modeled with the most benefit.The existing creep deformation 

curve is established by an interpolation routine using the creep strain rate formulation of the 

Kachanov-Rabotnov model, Equation 3.1, with known material constants.  This equation is the 

substitution of the damage rate, Equation 2.5, into the strain rate formulation, Equation 2.4. 
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The advantage of the this latter approach is that the final model can be utilized to correlate 

material constants and for parametric analyses. If a data-based approach were utilized instead of 

interpolation, accurate individual fits would be generated, but it would be costly to generate 

models that correlate over multiple stresses and temperatures because of the strain rate profile 

process that was discussed earlier. 

 A channel for the TLC interpolation is developed by time-shifting the creep curve so that 

appropriate tangent lines and chords can be determined. Numerically, this is accomplished by 

simply creating a new data matrix where the time values are equal to the original values plus the 

set time-shift, and the strain values are equal to the original creep curve. The time-shift can be in 

either the positive or negative direction. It is feasible that positive or negative strain-shifts could 

also be utilized, but the same effect would be observed as with the time-shift. In most Ni-base 

superalloys, secondary and tertiary creep regimes dominate the component life [24,25]. In such 

cases, every line generated by the TLC model will be tangent relative to the original creep curve 

and will chord the time-shifted creep curve. If a negative time-shift is utilized, then the opposite 

relations would be observed. When primary creep is present, some lines will be generated that 

will be tangent to the time-shifted curve and will chord the original creep curve. This is due to 

the concave nature of primary creep that is characterized by a decreasing strain rate and the 

convex nature of tertiary creep that is characterized by an increasing strain rate.  
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 Numerically, the initial tangent line is generated by projecting a line that has a slope 

equal to the mean slope of the original secondary creep data points, which is mathematically 

represented in Equation 3.2.  
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where projis the projected creep strain,  is the original creep strain, and t is time. When this 

initial projected line numerically intersects the time-shifted creep curve, i.e. the difference 

between the projected line and the time-shifted creep curve equals a set tolerance value close to 

zero, ideally on the order of 10-3, then the time and strain values that correspond to that 

intersection are stored. A new line is then projected from that location until it intersects both the 

original and time-shifted creep curves. The intersection of the original creep curve corresponds 

to the tangent point and the subsequent intersection of the time-shifted creep curve ensures that 

the generated line is also a chord. If the original curve is not intersected at any point along the 

projection, the slope of the projected line is slightly increased and the process is iteratively 

repeated until those conditions are met. This process continues until neither creep curve can be 

intersected or the slope exceeds 1.0mm/mm/hr. In the first case, the end of the creep data is 

reached and in the second case rupture is assumed. A complete TLC analysis will produce a 

figure such as the one observed in Figure 3.4.  
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Figure 3.4: TLC generated plot using MATLAB with a time shift of 15 hours 

The percent errors between the final time and strain are also calculated relative to the original 

data using Equations 3.3 and 3.4. 
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These error metrics were only used to ensure that the generated TLC model adequately captured 

the near-rupture strain history. The size of the time shift influences the amount of overall error, 
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but in some cases a larger time step can result in a smaller difference in final strains and times 

relative to a smaller time shift. This is illustrated in Figure 3.5. 

TLC Model Time Shift Comparison

Time, t (hr)

0 200 400 600 800 1000 1200 1400

S
tr

a
in

, 
  

(m
m

/m
m

)

0.0

0.1

0.2

0.3

0.4

0.5

Original Creep Data
50 hour time shift
85 hour time shift

 

Figure 3.5: TLC model illustrating the effect of the time-shift 

In this figure, a time shift of 85 hr resulted in a final strain error or 6.54% and a runtime error of 

0.46%, whereas the 50 hr time shift resulted in a final strain error of 14.76% and a runtime error 

of -2.31%. However, as stated earlier, the 85 hr time shift is less accurate in every other aspect. 

This is an aspect of the proposed model that must be taken into consideration when applying it to 

creep prediction. 

 Knowing that the derivative of the Kachanov-Rabotnov damage model is simply the 

Norton model, Equation 2.2, it is necessary to calculate the material constants that will generate 

each subsequent TLC line. The two possible approaches to this are to assume that A is constant 

and that n changes with each line, or that A changes and n remains constant. Both methods 

facilitate the desired result of an increasing slope, and because both constants exhibit the same 
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level of stress and temperature dependence [12], either method is plausible. For this research, the 

former method was arbitrarily chosen. To calculate each n, Eq. 3.5 was used, which is the Norton 

equation manipulated to solve for n. 
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Here, n is the Norton constant for the TLC line that has slope equal to cr . The number of n 

constants will change depending on the magnitude of the time shift used. In Figure 3.5, the 50 hr 

time shift resulted in five different values for n and the 85 hr time shift resulted in four different 

values for n. If material constant was the variable to be solved for in each TLC increment, then 

Equation 3.6 would be used. 
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 For a single creep curve, the TLC Model MATLAB program saves the resulting n values, 

the time range of each TLC line, and the testing parameters (stress and temperature), to text files. 

These files are then input into the ANSYS software environment. Using the input files that are 

provided in the appendices, a 1-D element was successfully simulated. The process as a whole 

was designed to be as automated as possible. Once the Kachanov-Rabotnov material constants 

and the testing parameters are entered into the MATLAB routine and a TLC model is generated, 

the user simply needs to run the provided input file to carry out a TLC model driven simulation. 
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3.4 Available Test Data 

 Creep data are available for some generic Ni-base superalloys used in turbine engines, 

where high stresses and temperatures are experienced. These superalloys are unique in that they 

exhibit creep lives that are dominated by secondary and tertiary creep, such as the creep curve 

shown in Figure 3.1. Two generic polycrystalline Ni-base superalloys, referred to as Alloy A and 

Alloy B, will be simulated using the TLC Model. These alloys were chosen because both the 

Norton and Kachanov-Rabotnov material constants are known for these materials in the 

corresponding testing parameters. The available data for both superalloys will be shown in 

Figures 3.6 through 3.13. 

Material: Alloy A
Temp: 649 oC

Normalized Time, t (hr)

0.0 0.2 0.4 0.6 0.8 1.0 1.2

S
tr

ai
n

, 
  

(%
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

310 MPa (1)
310 MPa (2)
345 MPa (1)
345 MPa (2)

 

Figure 3.6: Normalized creep curve for alloy A at 649oC 
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Figure 3.7: Normalized creep curve for alloy A at 760oC 

Material: Alloy A
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Figure 3.8: Normalized creep curve for alloy A at 871oC 
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Material: Alloy A
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Figure 3.9: Normalized creep curve for alloy A at 982oC 

Material: Alloy B
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Figure 3.10: Normalized creep curve for alloy B at 649oC 
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Material: Alloy B
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Figure 3.11: Normalized creep curve for alloy B at 760oC 
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Figure 3.12: Normalized creep curve for alloy B at 871oC 
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Material: Alloy B
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Figure 3.13: Normalized creep curve for alloy B at 982oC 
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CHAPTER 4: VALIDATION 

 This chapter provides a parametric analysis of the TLC model including effects of stress 

and time-shifts as well as the results of the TLC model in terms of its correlation to experimental 

data. 

4.1 Parametric Analysis 

 Generally, parametric analyses are carried out to determine the effect that certain 

parameters will have on a system,model,etc. This can also be conducted for analysis of 

constitutive model behavior. Some examples of a parametric analysisinclude varying stress, 

temperature, strain rate, etc. with regard to creep behavior. Stress and temperature can be varied 

to determinehow each parameter influences the model. Because this model is a first generation 

approach, explicit temperature dependence is not yet included within the model, and is instead 

incorporated in the material constants. An analysis will be carried out to model the effect of 

stress because of its natural inclusion within the Norton equation, as well as the affect that the 

time-shift has on the TLC model .Figure 4.1 confirms that the model reacts to different levels of 

stress realistically. 
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Figure 4.1: Parametric analysis illustrating correct response to changes in stress 

The material constants were fixed for each stress case. Strain histories correlated correctly with 

changes in stress. A small change in stress were used because the material constants are 

extremely sensitive, as a 10% increase in stress can produce a strain history that is several orders 

of magnitude higher than the default strain history. This again emphasizes the importance of 

using accurate constants when creating the Kachanov-Rabotnov interpolated data. 

 Another influential parameter in the TLC model is the time shift that determines the 

amount of TLC increments that are generated. In Figure 3.5 it is observed that the size of the 

time shift directly influences how accurately the TLC model fits the Kachanov-Rabotnov data, 

both as a whole and in terms of the final strain value. Set values of 3%, 6%, 9%, 12%, and 

24%time shifts were applied to four sets of data, each characterized by a different stress and 

temperature, to determine any possible trends. Figure 4.2, summarizes the results. 
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Figure 4.2: Parametric analysis illustrating time-step size affect on four data sets 
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From these results it is observed that 9% and 12% time shifts produce TLC models that do not 

adequately characterize the maximum tertiary strain rate or the rupture time. The 24% time shift 

was able to capture the final strain rate and rupture time with more accuracy, despite having a 

lower degree of correlation compared to the 9% and 12% time-shifts. 

 Overall correlation was measured using an area-approximation approach. The area 

between the data and each curve is numerically calculated by multiplying each successive 

increment of strain with each successive increment of time. This variable is referred to as the 

cumulative strain energy (%hr). Table 4.1 summarizes the results for Figure 4.2a, and represent 

the general trend that is observed between the time-shift and overall correlation. 

Table 4.1: Summary of cumulative strain energy as a function of time-shift 

 

It is now quantified that as the time-shift increases, the overall correlation decreases. With this 

information it is up to the user of the TLC model to determine whether overall goodness of fit or 

near-rupture characterization is important for a specific creep simulation. 

Time‐Shift (%) Strain Energy (%hr)

3 17.404

6 21.797

9 24.552

12 26.576

24 50.383
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4.2 Results 

 Out of the available data, preliminary simulations are carried out with given Kachanov-

Rabotnov material constants on a differential element of a dog bone specimen, as seen in Figure 

4.3, to determine which data sets would correlate with a high degree of accuracy.  

 

Figure 4.3: Standard tensile specimen geometry (inches) with differential element shown 

If the Kachanov-Rabotnov model correlates strongly with the data, then the TLC model will 

correlate just as well. Because this research is not focused on creating best fit lines, data sets that 

were not adequately characterized by the given Kachanov-Rabotnov constants were omitted. The 

results are evaluated based on final strain rate predictions to gauge if the reduced-order model 

adequately characterized the near-rupture tertiary creep strain rate. Overall correlation was 

measured using the cumulative strain energy formulation. The TLC model is indicated by the 

relative time-shift used, with the number of increments generated in parenthesis. Norton model 

results were included to illustrate how a secondary creep model grossly underestimates the creep 

life. Simulations were carried out on two cores of a quad-core Intel i5 4.2 GHz processor that 

was coupled with 8 GB of DDR3 1600 ram. Figures 4.4 through 4.13 summarize the Alloy A 

results. 
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Figure 4.4: Alloy A creep modeling results for 148 MPa at 760oC 

 For the 148 MPa data set, the strain rate at rupture was 0.201 %/hr. The 18 increment 

TLC model predicted a final strain rate of  0.096 %/hr while the 6 increment TLC model 

predicted a final strain rate of 0.167 %/hr. The Kachanov-Rabotnov model predicted a final 

strain rate of 0.065 %/hr while the Norton model predicted a final strain rate of 0.0019 %/hr. The 

cumulative strain energy for the TLC model was 13.74% worse than the Kachanov-Rabotnov 

model. 

Stress (MPa) Temp (oC) Data 0.5% (18) 5.1% (6) KR Norton

0.201 0.096 0.167 0.065 0.002

Norton

4620

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
148 760

5.1% (6) KR

1763 1550
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Figure 4.5: Alloy A creep modeling results for 159 MPa at 760oC 

 For the 159 MPa data set, the strain rate at rupture was 0.278 %/hr. The 14 increment 

TLC model predicted a final strain rate of 0.078 %/hr while the 7 increment TLC model 

predicted a final strain rate of 0.060 %/hr. The Kachanov-Rabotnov model predicted a final 

strain rate of 0.056 %/hr while the Norton model predicted a final strain rate of 0.0043 %/hr. The 

cumulative strain energy for the TLC model was 18.91% better than the Kachanov-Rabotnov 

model. 

Stress (MPa) Temp (oC) Data 0.6% (14) 3.1% (6) KR Norton

0.278 0.078 0.060 0.056 0.004

Norton

2900

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
159 760

3.1% (6) KR

403 497
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Figure 4.6: Alloy A creep modeling results for 62 MPa at 871oC 

 For the 62 MPa data set, the strain rate at rupture was 0.187 %/hr. The 20 increment TLC 

model predicted a final strain rate of  0.323 %/hr while the 6 increment TLC model predicted a 

final strain rate of 0.466 %/hr. The Kachanov-Rabotnov model predicted a final strain rate of 

0.389 %/hr while the Norton model predicted a final strain rate of 0.0025 %/hr. The cumulative 

strain energy for the TLC model was 22.16% better than the Kachanov-Rabotnov model. 

Stress (MPa) Temp (oC) Data 0.5% (20) 6.0% (6) KR Norton

0.187 0.323 0.466 0.389 0.003

Norton

5160

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
62 871

6.0% (6) KR

2090 2685
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Figure 4.7: Alloy A creep modeling results for 69 MPa at 871oC 

 For the 69 MPa data set,the strain rate at rupture was 0.088 %/hr. The 10 increment TLC 

model predicted a final strain rate of  0.109 %/hr while the 4 increment TLC model predicted a 

final strain rate of 0.13 %/hr. The Kachanov-Rabotnov model predicted a final strain rate of 

0.122 %/hr while the Norton model predicted a final strain rate of 0.0099 %/hr. The cumulative 

strain energy for the TLC model was 51.46% worse than the Kachanov-Rabotnov model. 

Stress (MPa) Temp (oC) Data 1.0% (10) 7.0% (4) KR Norton

0.088 0.109 0.130 0.122 0.010

Norton

2980

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
69 871

7.0% (4) KR

415 274
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 In summary, these results show that the TLC model excels at characterizing the entire 

creep response while also capturing near-rupture strain rates of tertiary creep. The overall 

correlation analysis reveals that the higher time-shift TLC model is the most accurate model 

when the Kachanov-Rabotnov model is conservative, and is less accurate when the Kachanov-

Rabotnov model under-predicts the response. This is the trend that is visually observed in the 

data. It is also seen that the higher time-shift TLC model shows similar levels of correlation 

compared to the Kachanov-Rabotnov model when the magnitude of the cumulative strain energy 

for the Norton model is considered. The TLC model predicts the final strain rates with a higher 

degree of accuracy compared to the Kachanov-Rabotnov model. When the Kachanov-Rabotnov 

model overestimated or underestimated the final strain rate, the higher increment TLC models 

were closer to the actual values in each result. The lower increment TLC model was the most 

accurate model in regards to final strain rate predictions for the 148 MPa data at 760oC only, and 

this can be attributed to a unique time-shift that, in a sense, got lucky. The results for Alloy B are 

shown on the following pages in Figures 4.8 through 4.13. 
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Figure 4.8: Alloy B creep modeling results for 231 MPa at 649oC 

 For the 231 MPa data set, the strain rate at rupture was 1.45 %/hr. The 39 increment TLC 

model predicted a final strain rate of  1.50 %/hr while the 8 increment TLC model predicted a 

final strain rate of 0.255 %/hr. The Kachanov-Rabotnov model predicted a final strain rate of 

0.434 %/hr while the Norton model predicted a final strain rate of 0.013 %/hr. The cumulative 

strain energy for the TLC model was 21.74% worse than the Kachanov-Rabotnov model. 

Stress (MPa) Temp (oC) Data 0.08% (39) 1.5% (8) KR Norton

1.449 1.504 0.255 0.434 0.013

Norton

17560

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
231 649

1.5% (8) KR

1305 1072
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Figure 4.9: Alloy B creep modeling results for 252 MPa at 649oC 

 For the 252 MPa data set, the strain rate at rupture was 0.601 %/hr. The 12 increment 

TLC model predicted a final strain rate of 0.411%/hr while the 6 increment TLC model predicted 

a final strain rate of 2.20 %/hr. The Kachanov-Rabotnov model predicted a final strain rate of 

0.336 %/hr while the Norton model predicted a final strain rate of 0.031 %/hr. The cumulative 

strain energy for the TLC model was 21.66% better than the Kachanov-Rabotnov model. 

Stress (MPa) Temp (oC) Data 0.7% (12) 3.3% (6) KR Norton

0.601 0.411 2.204 0.336 0.031

Norton

11400

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
252 649

3.3% (6) KR

2062 2632
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Figure 4.10: Alloy B creep modeling results for 110 MPa at 760oC 

 For the 110 MPa data set, the strain rate at rupture was 0.680 %/hr. The 25 increment 

TLC model predicted a final strain rate of  0.268 %/hr while the 4 increment TLC model 

predicted a final strain rate of 0.273 %/hr. The Kachanov-Rabotnov model predicted a final 

strain rate of 0.179 %/hr while the Norton model predicted a final strain rate of 0.015 %/hr. The 

cumulative strain energy for the TLC model was 41.49% worse than the Kachanov-Rabotnov 

model. 

Stress (MPa) Temp (oC) Data 0.2% (25) 6.7% (4) KR Norton

0.680 0.268 0.273 0.179 0.015

Norton

3550

Testing Parameters Final Strain Rate (%/hr)
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Figure 4.11: Alloy B creep modeling results for 121 MPa at 760oC 

 For the 121MPa data set, the strain rate at rupture was 0.603 %/hr. The 20 increment 

TLC model predicted a final strain rate of 0.606 %/hr while the 4 increment TLC model 

predicted a final strain rate of 0.660 %/hr. The Kachanov-Rabotnov model predicted a final 

strain rate of 0.555 %/hr while the Norton model predicted a final strain rate of 0.038 %/hr. The 

cumulative strain energy for the TLC model was 32.98% worse than the Kachanov-Rabotnov 

model. 

Stress (MPa) Temp (oC) Data 0.3% (20) 7.1% (4) KR Norton

0.603 0.606 0.660 0.555 0.038

Norton

3740

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
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7.1% (4) KR

504 379
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Figure 4.12: Alloy B creep modeling results for 43 MPa at 871oC 

 For the 43 MPa data set, the strain rate at rupture was 0.362 %/hr. The 13 increment TLC 

model predicted a final strain rate of  0.258%/hr while the 4 increment TLC model predicted a 

final strain rate of 0.434 %/hr. The Kachanov-Rabotnov model predicted a final strain rate of 

0.395 %/hr while the Norton model predicted a final strain rate of 0.011 %/hr. The cumulative 

strain energy for the TLC model was 41.87% worse than the Kachanov-Rabotnov model. 

Stress (MPa) Temp (oC) Data 0.8% (13) 8.3% (4) KR Norton

0.362 0.258 0.434 0.395 0.011

Norton

3850

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
43 871

8.3% (4) KR

986 695
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Figure 4.13: Alloy B creep modeling results for 50 MPa at 871oC 

 For the 50MPa data set,the strain rate at rupture was 0.335 %/hr. The 20 increment TLC 

model predicted a final strain rate of 0.559 %/hr while the 6 increment TLC model predicted a 

final strain rate of 0.399 %/hr. The Kachanov-Rabotnov model predicted a final strain rate of 

0.428 %/hr while the Norton model predicted a final strain rate of 0.03 %/hr. The cumulative 

strain energy for the TLC model was 14.08% worse than the Kachanov-Rabotnov model. 

Stress (MPa) Temp (oC) Data 0.3% (20) 2.9% (6) KR Norton

0.335 0.559 0.399 0.428 0.030

Norton

3020

Testing Parameters Final Strain Rate (%/hr)

Cumulative Strain Error (%hr)
50 871

2.9% (6) KR

81 71
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 In summary, these results again illustrate that the TLC model is nearly just as accurate as 

the Kachanov-Rabotnov model. The same trend between the overall correlation of the TLC 

model and the conservativeness of the Kachanov-Rabotnov model is observed for Alloy B. It is 

also observed again that the TLC model is more accurate in regards to characterizing the near-

rupture tertiary creep. The results for the 871oC data were in favor of the Kachanov-Rabotnov 

model over both the higher and lower increment TLC models. For the 649oC data set, the lower 

increment TLC model dramatically underestimated and overestimated the near-rupture strain rate 

while the higher increment TLC model was the most accurate. For the 760oC data set, the lower 

increment TLC model was the most accurate at the 100 MPa stress level and the higher 

increment TLC model was the most accurate at the 121 MPa stress level. 
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CHAPTER 5: BENCHMARKING 

 This section analyzes the effectiveness of the TLC model with respect to the amount of 

CPU time that was required to completely solve the creep simulation. Simulations were carried 

out on a differential element of a dog bone specimen, as illustrated in Figure 4.3. All simulations 

were executed on two cores of a quad-core Intel i5 4.2 GHz processor that was coupled with 8 

GB of DDR3 1600 ram. In each table, the first two models represent the time-shift as a 

percentage of rupture time with the number of resulting increments in parenthesis. 

5.1 Comparison with Secondary Creep Model 

 Secondary creep models are utilized when a swift and rough approximation of creep is 

desired. The TLC model, in both higher and lower increments, was simulated alongside the 

Norton secondary creep model to analyze how the theoretical increase in solve time compares to 

the degree of accuracy achieved when using the TLC model. Table 5.1 summarizes the results 

for Alloy A. The number in parenthesis indicates the number of increments used in the TLC 

model. 

Table 5.1: Summary of benchmark results for Alloy A comparing TLC model to secondary creep model 

 

Stress (MPa) Temp (oC)

0.5% (18) 5.1% (6) Norton

148 760 47.891 25.172 13.844

0.6% (14) 3.1% (6) Norton

159 760 39.922 26.562 13.641

0.5% (20) 6.0% (6) Norton

62 871 54.703 25.359 13.938

1.0% (10) 7.0% (4) Norton

69 871 32.828 20.797 13.969

Testing Parameters
CPU Time (sec)
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 From these results it is apparent that the CPU solve time required to solve the TLC-

driven creep simulation is directly influenced by the number of TLC increments that are used. 

The Norton secondary creep model can be considered a one increment TLC model, so the similar 

times that are observed for each Norton simulation are consistent with theory. At first, it appears 

that the higher increment TLC models solve in a more efficient amount of time because of the 

ratio between the number of increments and the solve time. However, when the time required to 

ramp the load in the simulation is taken into account (~12 seconds) and subtracted from all of the 

benchmark results, it was determined that the average CPU time required for each TLC 

increment is 1.7 seconds. It should be noted that the Norton model and TLC model both used the 

same automatic time-stepping parameters for ramping the load, which can be seen in the input 

files found in Appendix A. The time difference between the TLC and Norton models can be 

considered negligible when one considers the dramatic increase in accuracy that the TLC model 

produces compared to the Norton model. Table 5.2 summarizes the benchmarking results 

between the TLC and Norton models for Alloy B. 
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Table 5.2. Summary of benchmark results for Alloy B comparing TLC model to secondary creep model 

 

 These results are very similar to the results shown in Table 5.1a. The CPU time required 

to simulate secondary creep using the Norton model is nearly constant while the TLC model 

requires an average of 2.0 seconds per increment when factoring out the initial load ramping. 

The perceived benefit from the fast solve time of the Norton model is again offset dramatically 

by the degree of accuracy that is achieved with the TLC model. It should again be noted that the 

automatic time-stepping parameters within the initial loading step are equal between the two 

input files used for the respective models. 

5.2 Comparison with Tertiary Creep Model 

 Tertiary creep models are utilized when a more thorough and accurate approximation of 

creep is desired. The TLC model, in both higher and lower increments, was simulated alongside 

the Kachanov-Rabotnov tertiary creep model to determine whether the solve time can be reduced 

by a large enough amount to warrant the level of error that is induced with the reduced-order 

Stress (MPa) Temp (oC)

0.08% (39) 1.5% (8) Norton

231 649 75.172 26.469 13.25

0.7% (12) 3.3% (6) Norton

252 649 34.516 22.844 13.031

0.2% (25) 6.7% (4) Norton

110 760 54.031 19.969 13.422

0.3% (20) 7.1% (4) Norton

121 760 50.812 20.062 13.469

0.8% (13) 8.3% (4) Norton

43 871 37.594 20.531 13.562

0.3% (20) 2.9% (6) Norton

50 871 52.094 24.141 13.719

Testing Parameters
CPU Time (sec)
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TLC model. Table 5.3 summarizes the results for Alloy A. The number in parenthesis indicates 

the number of increments used in the TLC model. In each test the same automatic time-stepping 

parameters were chosen. 

Table 5.3: Summary of benchmark results for Alloy A comparing TLC model to tertiary creep model 

 

 From these results it can be seen that the TLC model solves in a less amount of time than 

the Kachanov-Rabotnov model in every test. The time required to solve the Kachanov-Rabotnov 

simulation is directly related to the strain rate evolution that is produced by the material 

constants. Figures 4.4 through 4.7 reveal that the final strain rate trend correlates with the solve 

time trend seen in Table 5.3. However, a direct relationship between the ratio of final strain rates 

and solve times cannot be established from this data alone.  

 

 

 

 

Stress (MPa) Temp (oC)

0.5% (18) 5.1% (6) KR

148 760 47.891 25.172 70.328

0.6% (14) 3.1% (6) KR

159 760 39.922 26.562 64.578

0.5% (20) 6.0% (6) KR

62 871 54.703 25.359 158.02

1.0% (10) 7.0% (4) KR

69 871 32.828 20.797 86.844

Testing Parameters
CPU Time (sec)
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Table 5.4: Summary of benchmark results for Alloy B comparing TLC model to tertiary creep model 

 

 These results further prove the TLC models effectiveness in reducing the solve time 

required for the simulation compared to the Kachanov-Rabotnov model. The 39 increment, 

0.08% time-shift TLC model required more time than the Kachanov-Rabotnov model for the 231 

MPa simulation at 649oC. This contradicts the purpose of the reduced-order model, but  in this 

case the TLC model wasdramatically more accurate than the Kachanov-Rabotnov model at 

capturing the near-rupture tertiary creep. Initially one would infer that the highest magnitude of 

final strain rate would be for the 43 MPa simulation at 871oC. However, the highest final strain 

rate is observed for the 121MPa simulation at 760oC. Among isothermal tests the expected 

pattern is not observed. The 252 MPa simulation at 649oC had a markedly lower final strain 

compared to the 231 MPa simulation, but it required a longer CPU time. The same trend is seen 

in the 871oC simulations. As such, no definitive pattern can be established between the 

Kachanov-Rabotnov final strain rates and solve times. 

Stress (MPa) Temp (oC)

0.08% (39) 1.5% (8) KR

231 649 75.172 26.469 72.609

0.7% (12) 3.3% (6) KR

252 649 34.516 22.844 86.094

0.2% (25) 6.7% (4) KR

110 760 54.031 19.969 81.438

0.3% (20) 7.1% (4) KR

121 760 50.812 20.062 101.53

0.8% (13) 8.3% (4) KR

43 871 37.594 20.531 139.53

0.3% (20) 2.9% (6) KR

50 871 52.094 24.141 118.47

Testing Parameters
CPU Time (sec)
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 In summary, it is observed that the TLC model requires less CPU time than the 

Kachanov-Rabotnov model. It is also observed that the strain rate sensitivity of the Kachanov-

Rabotnov model is not a factor for the TLC model. The greatest influence on the CPU time 

required for the TLC model is the relative time-shift percentage. Figures 5.1 and 5.2 illustrate 

these relationships. 
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Figure 5.1: Illustration of slight strain rate sensitivity of Kachanov-Rabotnov model 



67 
 

Number of TLC Increments

0 10 20 30 40 50

C
P

U
 T

im
e

 (
se

c)

10

20

30

40

50

60

70

80

 

Figure 5.2: Illustration of linear relationship between CPU Time and # of TLC increments 
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CHAPTER 6: CONCLUSION 

 The goal of this research is to develop a reduced-order constitutive model that would 

require reduced CPU time to simulate compared to the Kachanov-Rabotnov tertiary creep model 

while still maintaining a satisfactory degree of accuracy. By utilizing a novel mathematical 

manipulation, a model comprised of a variable number of secondary creep curves, which are 

easy for finite element packages to solve, was developed that allows for tertiary creep to be 

simulated more efficiently, even until rupture. Tertiary creep models are susceptible to strain rate 

sensitivity because of the Newton-Raphson mechanics that are used in non-linear systems to 

converge upon a solution. The TLC model is free of strain rate sensitivity because of its multi-

linear nature. It is observed that when attempting to minimize error by utilizing a very small 

time-shift, that solve times can potentially exceed that of the Kachanov-Rabotnov model. As the 

number of TLC increments decreases, the amount of error increases and the CPU time required 

decreases. In some cases smaller increment TLC models were more accurate in predicting final 

strain rates than higher increment TLC models or the Kachanov-Rabotnov model, but this is 

entirely dependent on the material constants and experimental parameters used. In general, the 

TLC model solves faster than the Kachanov-Rabotnov model and is very similar in overall 

correlation to physical data per the cumulative strain energy approximation. The TLC model 

captures the near-rupture portion of tertiary creep more accurately than the Kachanov-Rabotnov 

model as well. The TLC model does not solve as fast as the Norton secondary creep model, but it 

characterizes the creep at a level that exceeds the increase in CPU time. 
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CHAPTER 7: FUTURE WORK 

 The TLC model is governed by Kachanov-Rabotnov material constants that portray both 

stress and temperature-dependence. To further increase the robustness of the reduced-order 

constitutive model, it would be necessary to incorporate stress and temperature mathematical 

relationships into a UPF that would be linked to the ANSYS environment. This would allow 

more complex geometries that experience stress and temperature gradients to be simulated. In 

more complex geometries, the applied stress evolves as the strain increases and this would affect 

the stress-dependent constants. In its current state, the TLC model is only applicable to single 

element simulations. If a complex geometry could be simulated with the TLC model, it would 

reveal the true value of the TLC model. It is hypothesized that the margin of required CPU time 

between the TLC model and tertiary creep models will grow as component complexity increases, 

so future testing to prove or disprove this is necessary. 

 Redesigning the method for determining the appropriate values of n that result in the TLC 

generated lines is also necessary so that stepped isostress and stepped isotemperature simulations 

can be carried out. In its current state, it is not possible to simulate such experiments because the 

TLC generated lines are based on tangent and chord points that satisfy the numerical conditions 

without regards to stress or temperature. The entire numerical routine will have to be redesigned 

to accomplish this.  
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APPENDIX 1: MATLAB TLC MODEL MAIN ROUTINE 

clc; 
closeall; 
clearall; 
%define stress (MPa) 
temp = input('Enter Stress (ksi): '); 
stressksi = temp; 
stress=stressksi/.1450377; 
%define temperature (F) 
temp = input('Enter Temperature (F): '); 
temperature = temp; 
%define the end time (hrs) 
temp = input('Enter Final Time (hr): '); 
tfinal = temp; 
%tfinal=1300; 
tfinali=int32(tfinal); 
%Define TimeShift (hrs) 
temp = input('Enter TimeShift: '); 
timeshift = temp; 
%Define data type 
t1=0:1:tfinal; 
%Define the four constants that define the Kachanov-Rabotnov Strain Equation: 
%       strain = (A*stress^-chi)/(M*(-1+n-phi))*(-1*stress^n+(1-
M*stress^chi*time*(1+phi))*(stress*(1-M*stress^chi*time*(1+phi))^(-
1/(1+phi)))^n) 
%temp = input('Enter "A": '); 
%A = temp; 
%temp = input('Enter "n": '); 
%n = temp; 
%temp = input('Enter "M": '); 
%M = temp; 
%temp = input('Enter "chi": '); 
%chi = temp; 
%temp = input('Enter "phi": '); 
%phi = temp; 
fori=2:tfinal+1 
y1(i)=0; 
%y1(i)=(A*stress^-chi)/(M*(-1+n-phi))*(-1*stress^n+(1-
M*stress^chi*t1(i)*(1+phi))*(stress*(1-M*stress^chi*t1(i)*(1+phi))^(-
1/(1+phi)))^n); 
y1rate(i)=A*(stress/(1-(phi+1)*M*stress^chi*t1(i))^(1/(phi+1)))^n; 
y1(i)=y1(i-1)+y1rate(i); 
t2(i)=t1(i)+timeshift; 
y2(i)=y1(i); 
end 
figure; 
plot(t1,y1,t2,y2); 
holdon 
%setting up slope and determining average slope for first section 
%the idivide will change depending on the number of points 
p=idivide(tfinali,8); 
%m is the nth data point where primary creep ends, done manually 



72 
 

%taking the average slope of the first chunk of points eliminates outliers 
%that are present in almost all physical data 
m=1; 
fori=0:p-m 
slope(i+1)=(y1(i+m+1)-y1(i+m))/(t1(i+m+1)-t1(i+m)); 
end 
meanslope=mean(slope); 
k=1; 
intercepts(k,1)=0; 
intercepts(k,2)=0; 
intercepts(k,3)=0; 
k=k+1; 
[i,XX2,YY2]=bluetogreen(tfinal,meanslope,t1,y1,t2,y2); 
if XX2==0 
disp('timeshift too large, intersection not found') 
end 
intercepts(k,1)=i; 
intercepts(k,2)=XX2; 
intercepts(k,3)=YY2; 
k=k+1; 
flag=2; 
while flag==2 
[XX1,YY1,XX2,YY2,flag,ii,j,meanslope]=greentoblue(tfinal,meanslope,t1,y1,t2,y
2,XX2,YY2,i); 
if flag==1 
intercepts(k,1)=ii; 
intercepts(k,2)=XX1; 
intercepts(k,3)=YY1; 
        k=k+1; 
end 
if flag==2 
intercepts(k,1)=ii; 
intercepts(k,2)=XX1; 
intercepts(k,3)=YY1; 
        k=k+1; 
intercepts(k,1)=j; 
intercepts(k,2)=XX2; 
intercepts(k,3)=YY2; 
        k=k+1; 
i=j; 
end 
end 
plot(intercepts(:,2),intercepts(:,3), 'black'); 
xlabel('time, t (hr)'); 
ylabel('strain (mm/mm)'); 
holdon 
%Error Calculation (%) 
SimulatedRunTime=intercepts(k-1,2); 
ActualRunTime=tfinal; 
%Here we assume a value for either A or n so that we can solve for the 
%other, this is an easy method to find these parameters without resorting 
%to complex regression routines 
%for i=2:k-1 
%    AA(i-1)=intercepts(i,3)/(intercepts(i,2)*stress^n); 
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%    nn(i-1)=log(intercepts(i,3)/(A*intercepts(i,2)))/(log(stress)); 
%    SStrain1(i)=AA(i-1)*stress^n*intercepts(i,2); 
%    SStrain2(i)=A*stress^nn(i-1)*intercepts(i,2); 
%end 
fori=1:k-2 
    Nslope(i)=(intercepts(i+1,3)-intercepts(i,3))/((intercepts(i+1,2)-
intercepts(i,2))); 
NNN(i)=(log(Nslope(i)/A))/(log(stress)); 
yintercept(i)=intercepts(i+1,3)-Nslope(i)*intercepts(i+1,2); 
end 
%Either choose the constant A and use the nn array or choose the constant n 
%and use the AA array values for simulating 
%figure 
%plot(intercepts(:,2),intercepts(:,3), 'black') 
%hold on 
%plot(intercepts(:,2),SStrain1, 'red'); 
%plot(intercepts(:,2),SStrain2, 'blue'); 
eq=numel(NNN) 
fid = fopen('C:\OPT\constants.txt','wt');   
fprintf(fid,'%f\n',NNN);   
fclose(fid); 
fid = fopen('C:\OPT\intercepts.txt','wt');  
fprintf(fid,'%f\n',yintercept);   
fclose(fid); 
fid = fopen('C:\OPT\times.txt','wt');   
fprintf(fid,'%f\n',intercepts(:,2)); 
fid = fopen('C:\OPT\parameters.txt','wt'); 
fprintf(fid,'%e\n',A,stress,temperature,tfinal,eq); 
fclose(fid); 
RunTimeErrorPercent=((ActualRunTime-SimulatedRunTime)/(ActualRunTime))*100 
StrainErrorPercent=((y1(1,tfinal+1)-intercepts(eq+1,3))/(y1(1,tfinal+1)))*100 
 
 
 
 
  



74 
 

APPENDIX 2: MATLAB TLC MODEL BLUETOGREEN FUNCTION 

This MATLAB function is called in the main program to generate the initial projected line from 
the original creep curve to the time-shifted creep curve. 

function [i,XX2,YY2] = bluetogreen (tfinal,meanslope,t1,y1,t2,y2) 
XX2=0; 
YY2=0; 
fori=2:(tfinal)-1 
ifmeanslope*t2(i)<=y2(i)-0.000000005; 
                YY2=(y2(i)+y2(i-1))/2; 
                XX2=((t2(i)+t2(i-1))/2); 
break 
end 
end 
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APPENDIX 3: MATLAB TLC MODEL GREENTOBLUE FUNCTION 

This MATLAB function is called in the main program to generate each successive projected line 
from the time-shifted creep curve to the original creep curve. 

function [XX1,YY1,XX2,YY2,flag,ii,j,meanslope] = greentoblue 
(tfinal,meanslope,t1,y1,t2,y2,XX2,YY2,i) 
flag=0; 
ii=i; 
XX1=0; 
YY1=0; 
j=0; 
while ii<=(tfinal)-1 && flag==0 
ifmeanslope*(t1(ii)-XX2)+YY2>=y1(ii)-0.000000005; 
       YY1=(y1(ii)+y1(ii-1))/2; 
       XX1=((t1(ii)+t1(ii-1))/2); 
flag=1; 
       j=ii; 
while j<=(tfinal-1) && flag==1 
ifmeanslope*(t2(j)-XX1)+YY1<=y2(j)-0.000000005; 
            YY2=(y2(j)+y2(j-1))/2; 
            XX2=((t2(j)+t2(j-1))/2); 
flag=2; 
end 
            j=j+1; 
end 
end 
ii=ii+1; 
%this resets the i and increases the slope if an intercept was not 
%found 
if ii==tfinal; 
meanslope=1.00005*meanslope; 
ii=i; 
ifmeanslope>=1 
flag=3; 
end 
end 
end 
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APPENDIX 4: ANSYS INPUT FILE (TLC Model) 

finish 
/clear 
! ANSYS command file to perform creep 
! on a differential element within a Dogbone Specimen 
/title, Creep Deformation and Rupture Using TLC Method 
/OUTPUT,C:\OPT\prep,txt,,   ! Send output to file 
/CONFIG,NRES,1000000 
! 
/PREP7                             ! Enter preprecessing phase 
! 
! Parameter Declaration 
! 
! 
! Enter in the number of linear equations that MATLAB generated below 
*DIM,parameters,,5 
*VREAD, parameters(1), C:\OPT\parameters,txt 
(E13.5) 
eq=parameters(5) 
eqtwo=eq+1 
*DIM,constants,,eq 
*VREAD, constants(1), C:\OPT\Constants,txt 
(E13.5) 
*DIM,times,,eqtwo 
*VREAD, times(1), C:\OPT\times,txt 
(E13.5) 
! Thermal/Mechanical Conditions 
! 
temp_F = parameters(3)             ! in deg F 
load_step_time=times(eqtwo)        ! in hr 
stress = parameters(2)             ! in MPa 
stress_ksi = stress*0.1450377      ! in ksi 
temp_C = 5.0/9.0*(temp_F-32.0)     ! in deg C 
temp_K = temp_C+273.15             ! in K 
temp_ref = 0.0                     ! Reference temperature in K 
! 
! Geometric: [mm] 
DIM_Neck=0.25*25.4/2 
DIM_GRIP=0.50*25.4/2 
DIM_L=4*25.4 
DIM_R=1*25.4 
DIM_A=0.5*25.4 
DIM_B=(0.5+0.484)*25.4 
! 
! History Options 
! 
!load_init_time=0.0001                ! in hr 
!load_mini_time=0.00001                ! in hr 
!load_maxi_time=100                  ! in hr 
load_ramp_time=1                ! in hr 
! 
! Material Properties 
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! 
A_nort=parameters(1) 
n_nort=constants(1)              ! Temperature independent secondary creep 
coefficent 
report=1.0 
!   
! Job Options 
! 
data_freq = 10                   ! frequency of data writing 
! 
!****************************************************************************
*** 
pi=4*atan(1) 
pressure=stress*pi*DIM_Neck**2/(pi*DIM_GRIP**2) 
!****************************************************************************
*** 
! 
! Specimen Geometry: 
! 
! Keypoints 
k,  1,   0.0,    0.0,    ,0.0 
k,  2,   0.0,    DIM_A    ,0.0 
k,  3,   0.0,    DIM_L/2    ,0.0 
k,  4,   DIM_GRIP,     DIM_L/2    ,0.0 
k,  5,   DIM_GRIP,     DIM_B    ,0.0 
k,  6,   DIM_Neck,     DIM_A    ,0.0 
k,  7,   DIM_Neck,     0.0    ,0.0 
! 
! 
! 
! Lines 
L,  1,  7  ! Line 1 
L,  1,  2  ! Line 2 
L,  2,  3  ! Line 3 
L,  3,  4  ! Line 4 
L,  4,  5  ! Line 5 
L,  6,  7  ! Line 6 
L,  2,  6  ! Line 7 
LARC,6,5,7,DIM_R, 
! 
! Area 
FLST,2,4,4   
FITEM,2,1    
FITEM,2,6    
FITEM,2,2    
FITEM,2,7    
AL,P51X  
FLST,2,5,4   
FITEM,2,8    
FITEM,2,5    
FITEM,2,3    
FITEM,2,4    
FITEM,2,7    
AL,P51X  
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AGLUE,all 
 
!****************************************************************************
*** 
 
!****************************************************************************
*** 
! Element Type: Sweep 2D Area 
ET,1,PLANE183,,,1               
 
! Create 2D Mesh 
type,1 
AESIZE,1,0.2 
AMESH, 1 
AESIZE,2,0.5 
AMESH, 2 
!****************************************************************************
*** 
! 
! Define Properties of Material 1 (for built-in norton secondary creep no 
UPF) 
! 
MP, EX, 1, e_mod                 ! in MPa 
MP, DENS, 1, mass_dens           ! in g/mm3 
MP,NUXY,1,0.33  
TB,CREEP,1,1,,10                ! Activate NORTON creep 
TBTEMP, temp_ref   
TBDATA,1,A_nort,n_nort           ! Material Constants 
! 
! Boundary Conditions and Loads: 
DL,       2, ,SYMM   
DL,       3, ,SYMM   
DL,1,,UY,0.0 
SFL,4,PRES,-Pressure 
 
! Temperature boundary conditions 
! 
TUNIF, temp_C 
TREF, temp_ref 
TOFFST, 0. 
! 
! Solution Option 
OUTPR,ALL   
! USRCAL,Usolfin 
! 
FINISH                         ! Finish pre-processing 
! 
/SOLU                          ! Begin Solution phase 
! 
! Step 1 - Ramp Mechanical Load 
! 
NCNV, 0, 1e60,,, 
antype,0                       ! static analysis 
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nropt,auto          ! Newton Raphson = auto 
lnsrch,auto          ! Line search on 
NLGEOM,OFF                     ! Non-linear geometry 
SOLCONTROL,ON                  ! Solution control - optimized nonlinear 
TIME, load_ramp_time           ! in hours 
DELTIM, 0.0001, 0.00001, 100 
AUTOTS,ON                      ! AUTOMATIC TIME STEPPING 
CRPLIM,10.0,1                  ! Creep ration limit of 2 applied for implicit 
creep 
OUTRES,ESOL,ALL                ! store element RESULTS 
RATE,OFF 
KBC,0 
SOLVE                          ! Solve for step 1 
! 
! Step 2 - Keep Mechanical Load Constant 
! 
NCNV, 0, 1e60,,, 
antype,0                       ! static analysis 
nropt,auto          ! Newton Raphson = auto 
lnsrch,auto          ! Line search on 
NLGEOM,OFF                     ! Non-linear geometry 
SOLCONTROL,ON                  ! Solution control - optimized nonlinear 
TIME, times(2)                 ! in hours 
DELTIM, times(2) 
AUTOTS,OFF                     ! AUTOMATIC TIME STEPPING 
OUTRES,ESOL,ALL                ! store element RESULTS 
CRPLIM,10.0,1                   
RATE,ON 
KBC,1 
SAVE 
SOLVE                          ! Solve for step 2 
! 
! Steps 3 Onwards 
! 
*DO,i,2,eq 
n_nort=constants(i) 
timerange=times(i+1) 
timechange=timerange/4 
TB,CREEP,1,1,,10 
TBTEMP, temp_ref   
TBDATA,1,A_nort,n_nort         ! Material Constants 
TIME, timerange                ! in hours 
DELTIM, timerange-times(i) 
AUTOTS,OFF 
OUTRES,ESOL,ALL                ! store element RESULTS 
RATE,ON 
KBC,1 
SAVE 
SOLVE                          ! Solve for subsequent steps 
*ENDDO 
SAVE 
FINISH 
! 
/POST26 
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/OUTPUT,C:\OPT\results,txt,, 
ESOL,4,16,2,S,y,Sy              ! Stress 
ESOL,5,16,2,EPEL,Y,EY           ! Store the elastic strain 
ESOL,6,16,2,EPCR,Y,ECRY         ! Store the creep strain 
PRVAR,4,5,6                     ! PRINT VARIABLES VS. TIME 
FINISH 
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APPENDIX 5: ANSYS INPUT FILE (NORTON MODEL) 

finish 
/clear 
! ANSYS command file to perform creep 
! on a differential element within a bone specimen. 
! written by D.L. May (1-21-14) 
! 
/title, Creep Deformation and Rupture Using TLC Method 
/OUTPUT,C:\OPT\prep,txt,,   ! Send output to file 
/CONFIG,NRES,1000000 
! 
/PREP7                             ! Enter preprecessing phase 
! 
! Parameter Declaration 
! 
! These parameters are not required; i.e. one could 
! directly enter in the coordinates into the keypoint 
! definition below. However, using parameters makes it very easy to 
! quickly make changes to this model! 
! 
! 
temp_F = 1400             ! in deg F 
load_step_time=975        ! in hr 
stress = 148          ! in MPa 
stress_ksi = stress*0.1450377      ! in ksi 
temp_C = 5.0/9.0*(temp_F-32.0)     ! in deg C 
temp_K = temp_C+273.15             ! in K 
temp_ref = 0.0                     ! Reference temperature in K 
! 
! Geometric: [mm] 
DIM_Neck=0.25*25.4/2 
DIM_GRIP=0.50*25.4/2 
DIM_L=4*25.4 
DIM_R=1*25.4 
DIM_A=0.5*25.4 
DIM_B=(0.5+0.484)*25.4 
! 
! History Options 
! 
load_init_time=0.0001                ! in hr 
load_mini_time=0.00001                ! in hr 
load_maxi_time=100                  ! in hr 
load_ramp_time=1                ! in hr 
! 
! Material Properties 
! 
A_nort=2.25E-32 
n_nort=12.4            ! Temperature independent secondary creep coefficent 
report=1.0 
!   
! Job Options 
! 
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data_freq = 10                   ! frequency of data writing 
! 
!****************************************************************************
*** 
pi=4*atan(1) 
pressure=stress*pi*DIM_Neck**2/(pi*DIM_GRIP**2) 
!****************************************************************************
*** 
! 
! Specimen Geometry: 
! 
! Keypoints 
k,  1,   0.0,    0.0,    ,0.0 
k,  2,   0.0,    DIM_A    ,0.0 
k,  3,   0.0,    DIM_L/2    ,0.0 
k,  4,   DIM_GRIP,     DIM_L/2    ,0.0 
k,  5,   DIM_GRIP,     DIM_B    ,0.0 
k,  6,   DIM_Neck,     DIM_A    ,0.0 
k,  7,   DIM_Neck,     0.0    ,0.0 
! 
! 
! 
! Lines 
L,  1,  7  ! Line 1 
L,  1,  2  ! Line 2 
L,  2,  3  ! Line 3 
L,  3,  4  ! Line 4 
L,  4,  5  ! Line 5 
L,  6,  7  ! Line 6 
L,  2,  6  ! Line 7 
LARC,6,5,7,DIM_R, 
! 
! Area 
FLST,2,4,4   
FITEM,2,1    
FITEM,2,6    
FITEM,2,2    
FITEM,2,7    
AL,P51X  
FLST,2,5,4   
FITEM,2,8    
FITEM,2,5    
FITEM,2,3    
FITEM,2,4    
FITEM,2,7    
AL,P51X  
 
AGLUE,all 
 
!****************************************************************************
*** 
 
!****************************************************************************
*** 
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! Element Type: Sweep 2D Area 
ET,1,PLANE183,,,1               
 
! Create 2D Mesh 
type,1 
AESIZE,1,0.2 
AMESH, 1 
AESIZE,2,0.5 
AMESH, 2 
!****************************************************************************
*** 
! 
! Define Properties of Material 1 (for built-in norton secondary creep no 
UPF) 
! 
MP, EX, 1, e_mod                 ! in MPa 
MP, DENS, 1, mass_dens           ! in g/mm3 
MP,NUXY,1,0.33  
TB,CREEP,1,1,,10                 ! Activate NORTON creep 
TBTEMP, temp_ref   
TBDATA,1,A_nort,n_nort           ! Material Constants 
! 
! Boundary Conditions and Loads: 
DL,       2, ,SYMM   
DL,       3, ,SYMM   
DL,1,,UY,0.0 
SFL,4,PRES,-Pressure 
 
! Temperature boundary conditions 
! 
TUNIF, temp_C 
TREF, temp_ref 
TOFFST, 0. 
! 
! Solution Option 
OUTPR,ALL   
! USRCAL,Usolfin 
! 
FINISH                         ! Finish pre-processing 
! 
/SOLU                          ! Begin Solution phase 
! 
! Step 1 - Ramp Mechanical Load 
! 
NCNV, 0, 1e60,,, 
antype,0                       ! static analysis 
nropt,auto          ! Newton Raphson = auto 
lnsrch,auto          ! Line search on 
NLGEOM,OFF                     ! Non-linear geometry 
SOLCONTROL,ON                  ! Solution control - optimized nonlinear 
TIME, load_ramp_time           ! in hours 
DELTIM, load_init_time, load_mini_time, load_maxi_time 
AUTOTS,ON                      ! AUTOMATIC TIME STEPPING 
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CRPLIM,10.0,1                  ! Creep ration limit of 2 applied for implicit 
creep 
OUTRES,ESOL,ALL                ! store element RESULTS 
RATE,OFF 
KBC,0 
SOLVE                          ! Solve for step 1 
! 
! Step 2 - Keep Mechanical Load Constant 
! 
NCNV, 0, 1e60,,, 
antype,0                       ! static analysis 
nropt,auto          ! Newton Raphson = auto 
lnsrch,auto          ! Line search on 
NLGEOM,OFF                     ! Non-linear geometry 
SOLCONTROL,ON                  ! Solution control - optimized nonlinear 
TIME, load_step_time           ! in hours 
DELTIM, load_step_time 
AUTOTS,OFF                     ! AUTOMATIC TIME STEPPING 
OUTRES,ESOL,ALL                ! store element RESULTS 
CRPLIM,10.0,1                  ! Creep ration limit of 2 applied for implicit 
creep 
RATE,ON 
KBC,1 
SAVE 
SOLVE                          ! Solve for step 2 
FINISH 
! 
/POST26 
/OUTPUT,C:\OPT\results,txt,, 
ESOL,4,16,2,S,y,Sy              ! Stress 
ESOL,5,16,2,EPEL,Y,EY           ! Store the elastic strain 
ESOL,6,16,2,EPCR,Y,ECRY         ! Store the creep strain 
PRVAR,4,5,6                     ! PRINT VARIABLES VS. TIME 
FINISH 
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APPENDIX 6: ANSYS INPUT FILE (KACHANOV-RABOTNOV MODEL) 

finish 
/clear 
! ANSYS command file to perform creep 
! on a differential element within a dog bone specimen. 
! written by D.L. May (1-21-14) 
! 
/title, Creep Deformation and Rupture Using TLC Method 
/OUTPUT,C:\OPT\prep,txt,,   ! Send output to file 
/CONFIG,NRES,1000000 
! 
/PREP7                             ! Enter preprecessing phase 
! 
! Parameter Declaration 
! Thermal/Mechanical Conditions 
! 
stress_ksi = 24          ! in ksi 
stress = stress_ksi/0.1450377      ! in MPa 
temp_C = 760     ! in deg C 
temp_K = temp_C+273.15             ! in K 
temp_ref = 0.0                     ! Reference temperature in K 
! 
! Geometric: [mm] 
DIM_Neck=0.25*25.4/2 
DIM_GRIP=0.50*25.4/2 
DIM_L=4*25.4 
DIM_R=1*25.4 
DIM_A=0.5*25.4 
DIM_B=(0.5+0.484)*25.4 
! 
! History Options 
! 
load_step_time=1000       ! in hr 
load_init_time=0.0001                ! in hr 
load_mini_time=0.00001                ! in hr 
load_maxi_time=100                  ! in hr 
load_ramp_time=1                ! in hr 
! 
! Material Properties 
! 
A_nort=2.25E-32 
n_nort=12.4 
M_kr=5.5E-11 
chi_kr=3 
phi_kr=3 
report=1.0 
!   
! Job Options 
! 
data_freq = 10                   ! frequency of data writing 
omeg_init=0.                       ! initial damage state 
omeg_dot_init=0.                   ! initial damage rate 
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crepeqv=0.                         ! initial equivalent creep strain 
! 
!****************************************************************************
*** 
pi=4*atan(1) 
pressure=stress*pi*DIM_Neck**2/(pi*DIM_GRIP**2) 
!****************************************************************************
*** 
! 
! Specimen Geometry: 
! 
! Keypoints 
k,  1,   0.0,    0.0,    ,0.0 
k,  2,   0.0,    DIM_A    ,0.0 
k,  3,   0.0,    DIM_L/2    ,0.0 
k,  4,   DIM_GRIP,     DIM_L/2    ,0.0 
k,  5,   DIM_GRIP,     DIM_B    ,0.0 
k,  6,   DIM_Neck,     DIM_A    ,0.0 
k,  7,   DIM_Neck,     0.0    ,0.0 
! 
! 
! 
! Lines 
L,  1,  7  ! Line 1 
L,  1,  2  ! Line 2 
L,  2,  3  ! Line 3 
L,  3,  4  ! Line 4 
L,  4,  5  ! Line 5 
L,  6,  7  ! Line 6 
L,  2,  6  ! Line 7 
LARC,6,5,7,DIM_R, 
! 
! Area 
FLST,2,4,4   
FITEM,2,1    
FITEM,2,6    
FITEM,2,2    
FITEM,2,7    
AL,P51X  
FLST,2,5,4   
FITEM,2,8    
FITEM,2,5    
FITEM,2,3    
FITEM,2,4    
FITEM,2,7    
AL,P51X  
 
AGLUE,all 
 
!****************************************************************************
*** 
 
!****************************************************************************
*** 
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! Element Type: Sweep 2D Area 
ET,1,PLANE183,,,1               
 
! Create 2D Mesh 
type,1 
AESIZE,1,0.2 
AMESH, 1 
AESIZE,2,0.5 
AMESH, 2 
!****************************************************************************
*** 
! 
! Define Properties of Material 1 
! 
MP, EX, 1, e_mod                 ! in MPa 
MP, DENS, 1, mass_dens           ! in g/mm3 
MP,NUXY,1,0.33  
TB,CREEP,1,1,,100                ! Activate USERCREEP 
TBTEMP, temp_ref   
TBDATA,1,A_nort,n_nort,M_kr,chi_kr,phi_kr           ! Material Constants 
TB,STATE,1,,3 
TBDATA,1,omeg_init,omeg_dot_init,crepeqv  ! Initialize the 3 state variables. 
! 
! Temperature boundary conditions 
! 
TUNIF, temp_C 
TREF, temp_ref 
TOFFST, 0. 
! 
! Boundary Conditions and Loads: 
DL,       2, ,SYMM   
DL,       3, ,SYMM   
DL,1,,UY,0.0 
SFL,4,PRES,-Pressure 
! 
! Solution Option 
OUTPR,ALL,LAST    
! USRCAL,Usolfin 
! 
FINISH                         ! Finish pre-processing 
! 
/SOLU                          ! Begin Solution phase 
! Step 1 - Ramp Mechanical Load 
NCNV, 0, 1e60,,, 
antype,0                       ! static analysis 
nropt,auto   ! Newton Raphson = auto 
lnsrch,auto   ! Line search on 
NLGEOM,OFF                     ! Non-linear geometry 
SOLCONTROL,ON                  ! Solution control - optimized nonlinear 
TIME, load_ramp_time           ! in seconds 
DELTIME, load_init_time, load_mini_time, load_maxi_time 
AUTOTS,ON                      ! AUTOMATIC TIME STEPPING 
CRPLIM,0,1                     ! Creep ration limit of 2 applied for implicit 
creep 
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OUTRES,ESOL,ALL                ! store element RESULTS 
OUTRES,SVAR,ALL 
RATE,OFF 
KBC,1 
SOLVE                          ! Solve for step 1 
! 
! 
! Step 2 and so on - Keep Mechanical Load Constant 
! 
antype,0                     ! static analysis 
nropt,auto                 ! Newton Raphson = auto 
lnsrch,auto                    ! Line search on 
NLGEOM,OFF                     ! Non-linear geometry 
SOLCONTROL,ON                  ! Solution control - optimized nonlinear 
TIME, load_step_time           ! in hrs 
DELTIME, load_init_time, load_mini_time, load_maxi_time 
AUTOTS,ON                      ! AUTOMATIC TIME STEPPING 
OUTRES,ESOL,ALL         ! store element RESULTS 
OUTRES,SVAR,ALL         ! store element RESULTS 
CRPLIM,10.0,1                  ! Creep ration limit of 2 applied for implicit 
creep 
RATE,ON 
KBC,1 
SOLVE                          ! Solve for step 2 and so on 
FINISH 
! 
/POST26 
 NUMVAR,200 
/OUTPUT,C:\OPT\results,txt,, 
ESOL,4,16,2,S,y,Sy              ! Stress 
ESOL,5,16,2,EPEL,Y,EY           ! Store the elastic strain 
ESOL,6,16,2,EPCR,Y,ECRY         ! Store the creep strain 
ESOL,7,16,2,SVAR,1,Damage       ! Stores Damage in X for node 6 
ESOL,8,16,2,SVAR,2,Rate         ! Stores Damage in X for node 6 
PRVAR,4,5,6,7,8                 ! PRINT VARIABLES VS. TIME 
FINISH 
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