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ABSTRACT 

Accurate determination of constitutive 
modeling constants used in high value 
components, especially in electric power 
generation equipment, is vital for related design 
activities. Parts under creep are replaced after 
extensive deformation is reached, so models, 
such as the Norton-Bailey power law, support 
service life prediction and repair/replacement 
decisions. For high fidelity calculations, 
experimentally acquired creep data must be 
accurately regressed over a variety of 
temperature, stress, and time combinations. If 
these constants are not precise, then engineers 
could be potentially replacing components with 
lives that have been fractionally exhausted, or 
conversely, allowing components to operate that 
have already been exhausted. By manipulating 
the Norton-Bailey law and utilizing bivariate 
power-law statistical regression, a novel method 
is introduced to precisely calculate creep 
constants over a variety of sets of data. The 
limits of the approach are explored numerically 
and analytically. 
 
INTRODUCTION 

Material selection is a critical stage in 
mechanical design engineering of structural 
components. Perhaps the most important 
consideration for parts subjected to long term 
use are expected service life, acceptable  
deformation rate, and the environment in which 
the material will be used. In order to accurately 
determine creep rupture life, engineers use 
analytical approaches to simulate the primary 
and secondary creep response. An example of 
such a model is the Norton-Bailey model, which 
contains three temperature dependent 
regression   constants.  The   methods   used  to 
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optimize these constants typically involve  
manual curve-fitting to creep data in order to 
acquire best fits across several creep curves. If 
the constants found were their true values, then 
plotting the Norton-Bailey values versus time 
would result in a near-perfect match of the data. 
In some situations, the constant determination is 
hampered by sparse data sets at intervals of 
strain (e.g. 0.1%, 0.5%) or at constants times (1 
hr, 10 hr). 

Research was conducted to develop a 
formulation to identify power law creep 
constants that would result in an optimal fit with 
creep data across test variables of both stress 
and temperature. The purpose of this 
investigation is to develop a reliable approach to 
regressing multivariate power law type data. A 
background look at creep deformation, other 
creep models, and general approaches to 
constant determination are discussed next. 
Following that, the methods being investigated 
are derived and tested on both physical and 
simulated data and its limitations are discussed. 

 
CREEP DEFORMATION 

Constitutive models have been developed to 
interpolate and predict the deformation behavior 
of materials exhibiting time-dependent, inelastic 
deformation. A model commonly applied for the 
primary and secondary creep regimes was 
developed by Bailey and Norton [1], i.e.,  

 
                    (1) 

 
where A, n, and m are temperature dependent 
material constants that are generally 
independent of stress. While n and m are 
unitless, the creep strain hardening coefficient, 
A, has units that are consistent with those of 

n m

cr A t 
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time, t, and stress, . The time-differentiated 
version of this expression is often referred to as 
the time-hardening formulation of power law 
creep. Solving the equation above for t and 
incorporating that into the time-differentiated 
formulation yields the following:  
 
 

                                                 (2) 
 
 

This is called the strain hardening formulation of 
power law creep. In practice, the time and strain 
hardening formulations are used to predict the 
creep strain histories at fixed stress and 
temperature levels. Experience indicates that 
the strain hardening formulation often produces 
better agreement with the results of actual tests 
under variable stress. 

In literature, the Norton-Bailey law has been 
expressed in another form [1]. The rate 
formulation of the rule is given a modification of 
Eq. (1), i.e. 
 

n m

cr A t   
     

(3) 

 
where A′, n′, and m′ remain as temperature-
dependent constants as in Eq. (1), but A′ has 
units of MPa

-n′
hr

-m′-1
% or MPa

-n′
hr

-m′-1
. The Eq. (3) 

form of the Norton-Bailey law has been used 
with m′ equal to zero [2]. This form also has the 
restrictions that A’ must be greater than zero. 
These models are suitable when primary and 
secondary creep dominate the history, as seen 
in Fig. 1. 

Another notable constitutive model that has 
been applied for the prediction of creep is the 
theta-project approach [3]. In this approach, the 
complete creep curve is simulated by 
 

   2 4

1 31 1
t t

cr e e
 

  
      

          (4) 

 

Here the   terms are regression constants that 

allow the formulation to interpolate the primary 
and tertiary regimes of creep. This is a plausible 

model for primary dominant creep if 
3 is set to 

zero. Secondary creep is not explicitly 
accounted for, but is generally predicted well if 
the initial and final responses are closely curve 
fit. In separate studies, Parker (1985) and 
Ghosh and Chaudhuri (1994) developed 
modeling constants for 2.25Cr-1Mo, a low alloy 

steel, at 538C at stresses ranging from 100MPa 

(14.5ksi) to 300MPa (43.5ksi). This model also 
represents a case in which constants are 
determined for fixed levels of stress and 
temperature. 
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Figure 1: Examples of primary and secondary dominant 

creep. 

 
 
CONSTANT DETERMINATION 

Creep constants embedded in the 
frameworks of Eq. (1) or (3) are equivalently 
determined by a number of approaches; creep 
deformation history or creep deformation rate 
data from experiments are needed for each of 
the respective history and rate forms. Constants 
are typically developed by regression curve 
fitting against time first or with respect to stress. 
There are no techniques that have been 
established that help to analytically identify 
creep constants across various stress levels 
when data is sparse. 

For the history formulation of Norton-Bailey 
Eq. (1), ideally the constants of the formation 
can be determined with a minimum of three 
creep points (termed 1, 2, and 3). The points, 
which take the form of ordered triples [i.e., (time, 
stress, strain)] could be derived from one curve 
at a given creep stress or points could be taken 
from separate experiments, such as the time to 
a given level of strain for creep curves at 
different stress level. The latter collection is 
preferred. Identical temperature is assumed. For 
either case, Eq. (1) is manipulated to develop a 
series of linear equations, i.e.,  
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      (5) 

 
Without loss of generality, point pairs 1-2 and 2-
3 are used; however, other combinations can be 
used equivalently. One restriction placed on Eq. 
(5) is that at least one strain level in the 
collection of points must be unique. Similarly, at 
least one stress level and one time coordinate in 
the collection must be unique. Otherwise, the 
coefficient matrix of the system becomes 
singular or the lines become non-intersecting. 
Constants m and n are derived from this linear 
system and used to develop an approximation of 
the creep strain coefficient, e.g. 
 

   
,cr i

n m

i i

A
t




    (6) 

 
where i corresponds to either point 1, 2, or 3. 
This approach is repeated for each temperature 
level for which data exists. A tacit assumption for 
this two-step approach to lead to valid material 
properties is that candidate points must be 
derived from the primary or secondary regime of 
the creep curves.   

 
 
REGRESSION ANALYSIS 

Experiments generally require measuring a 
dependent and independent variable. To 
simulate similar data, the relationship between 
the two variables needs to be precisely 
calculated. Regression analysis provides a 
method for which constants can be calculated 
that allow a given function to best-fit the data [4]. 
Experimental creep deformation and data 
extracted from standard creep experiments can 
be reduced in two ways. The first technique 
involves keeping the time increments constant 
and measuring the strain at each point across 
multiple stresses. The second technique 
involves measuring the time it takes to reach set 
increments of strain. Both of these techniques 
can be better understood in Fig. 2. 
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Figure 2: Creep data sampling methods 
 
Since the Norton-Bailey is a power law, the 
equation for general power law regression fitting 
is used:                    
                                    
                                               (7)

 

 
 
where B and c are found through the regression 
equations: 

 

                                                                       (8)                           
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(ln ) (ln )
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Where k is the number of points used. Clearly, y 
can take the form of strain and x can stand for 
time or stress; however, this is only applicable 
for time-based data. Strain-based data could 
require x as strain and y as time or stress. The 
limitation of these equations when applying them 
to the Norton-Bailey power law is that it only 
models primary and secondary creep since 
tertiary creep is of an exponential nature. Also, 
xi’s cannot be identical, as the denominator in 
Eq. (8) would become zero. Regression has also 
been applied to other curve-fitting techniques 
such as the Coffin-Manson equation [5]. 
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BIVARIATE REGRESSION: TIME-BASED 
The Norton-Bailey equation is distinct from 

Eq. (7) because of the t
m
 term. The regression 

approach of Eqs. (8) and (9) is plausible for this 
creep model since it is separable, i.e.  
 
             (10) 
 
For adequate power law regression, terms in the 
Norton-Bailey equation had to be factored 
together. For constant temperature, i.e. f(T) = 1, 
by grouping the left most terms in the first 
regression equation, the following results, 
   

                                                                                                             
 

      (11) 
 
Comparing this equation to the general power 
law of Eq. (9) it is observed that      
 

                                             (12) 

                                                                                                
 

      (13)     
 
Thus, substituting the corresponding values: t for 

x and   for y, into Eq. (8), the regression 

equation to determine m becomes: 

                             

                                (14)

 

 
 
 
 
To find n, the Norton-Bailey power law was 
rearranged into the form: 

 
                                                  (15)

 

 
 
where                                                 (16) 

 
 
and                          (17) 
 
And after substituting σ for x and ε for y, into Eq. 
(8), the regression equation to determine n 
becomes: 

                                                                        

                                                                       (18) 
 
 
 
 
Determination of the creep-strain coefficient, A, 
requires rearranging the Norton-Bailey equation 
into the form: 
                                                                                                   
                                                                  (19) 
 
where A equals B and   
      
 
                                                                  (20) 

 
 
Inspecting Eq. (11) in this way requires using the 
previously found constants of n and m and then 
finding the coefficient, A, by substituting the 
corresponding values into Eq. (9). 
 
 
                              
                                                                    (21)      
 
Thus, the three coefficients in Eq. 1 can be 
calculated when time is the dependent variable. 

 

 
BIVARIATE REGRESSION: STRAIN-BASED 

This method involves solving the Norton-
Bailey equation for time and reevaluating it to 
match the regression equation. The 
transformation of the Norton-Bailey equation 
takes on the form: 

1
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m

n
t

A
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 (22) 

 
Solving for m first requires the transformation of 
Eq. (22) into the form: 

                     

(23) 

 
 
 
where                                               (24) 
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and                  (25)    
 
Thus, after equating the reciprocal of m with c 
and substituting in ε for x and t for y, the 
equation becomes: 

                                                                  

                                                                 (26) 

 
 
To find n, Eq. (22) must be rearranged to:  

  

                                             

                                                (27) 
 

 
 
 
where                                          (28) 
 
 
 
 
and                                                     (29)   
 
 
Equating Eq. (29) to Eq. (8), n is found to be: 

                                                                       

                   (30) 
 
 
 
Determination of the creep-strain coefficient, A, 
with this method, involves manipulating the 
equation into the form: 
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After relating Eq. (32) to Eq. (9) and substituting 
in the corresponding values, A is found to be: 
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Thus, the three coefficients in Eq. 1 can be 
calculated when strain is the dependent 
variable. 

 
 

SIMULATED RESPONSE 
In order to validate the time-based 

approach, simulated data was constructed. This 
was done by assigning values to A, n, and m, 
and then choosing predetermined time and 
stress intervals as seen in Fig. 2. Then, strain 
values were calculated using those times and 
stresses with the constants by using the Norton-
Bailey power law. In essence, this was an ideal 
data set for which the value of the constants can 
be reversed out using the regression method. To 
accomplish this, every factor in Eq. (14), Eq. 
(18), and Eq. (21), i.e. the natural logarithms of 
the times, stresses, and strains and the 
combinations between them, was calculated. In 
total there were 24 points, 12 for 150 MPa and 
12 for 200 MPa, so the summation range was 
from 0 to 24. Using those equations and the 
calculated values, the constants were calculated 
and tabulated in Table 1. Substituting these 
values into the Norton-Bailey power law and 
graphing the resulting values netted creep 
curves that matched the constructed data 
perfectly, that is, with a correlation coefficient of 
1.0, as expected since the data we regressed 
from was crafted from the Norton-Bailey 
equation, hence, Method 1 is proven to work. 
The results are shown in Fig. 3. 
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Material: Simulated Fe-Alloy

Data Dispersion: Evenly Spaced

Data Type: Time-based
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Figure 3: Comparison of simulated data and regression 
model for time-based conditions. 

 
Table 1: Creep constants for first set of formulated data 

found using time-based method 

A 1.05(10)
-10

 MPa
-n′

hr
-m′-1

% 

n 3.5 

m 0.3 

 
To prove a strain-based method, the 

constants were assigned different values, and 
intervals of stress and strain were chosen. The 
time values were calculated using that data and 
Eq. (23). This data can be found in Fig. 4, below.  
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Fi
gure 4: Comparison of simulated data and regression model 

for strain-based conditions. 
 
All factors in Eq. (26), Eq. (30), and Eq. (34), 

are then calculated. For this data set, there were 
a total of 16 data points, meaning the 
summation range was from 0 to 16. Using those 
equations and the calculated values, the 
constants were calculated and tabulated in 
Table 2. 

 
 
 

Table 2: Creep constants for second set of formulated data 
using strain-based method 

A 1.85(10)
-6

  MPa
-n′

hr
-m′-1

% 

n 2.5 

m 0.3 
 
 

Substituting those constants along with the data 
into the Norton-Bailey power law resulted in 
curves that perfectly matched the formulated 
data, again proving the validity of using 
regression with the rearranged Norton-Bailey 
equation, Eq. (22). 
 
 
ACTUAL RESPONSE 

The model is applied to experimental data to 
see how strongly the models correlate to the 
actual data. The first set of data that is to be 
looked at is experimental creep data from 
copper [6]. This data is included in Fig. 5 along 
with the calculated constants used. Modeling 
with these constants, the correlation coefficient 
was 0.996 when modeling the 40 MPa data and 
0.987 when modeling the 50 MPa data.  

The next set of data was creep data from 
SUS316 stainless steel [7]. This data is included 
in Fig. 6 along with the model comparison and 
the constants found. When used in modeling, 
these constants resulted in a correlation 
coefficient of 0.998 when modeling 245 MPa 
and 0.988 when modeling 265 MPa.  

Another material analyzed with the 
regression model was arc-cast tungsten [8]. The 
experimental data and the predicted model are 
shown in Fig. 7 with the constants found using 
the time-based regression method. The model 
had an R-squared value of 0.9983 when 
correlated against the 460 MPa data and 0.9956 
when correlated against the 560 MPa data. 
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Material: Tough Pitch Copper Tube

Data Type: Time-based

Temperature: 250 
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 Figure 5: Comparison of experimental data and modeled 
creep data for tough pitch copper at 250 

o
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Material: Stainless Steel SUS316

Data Type: Time-based
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 Figure 6: Comparison of experimental data and modeled 
creep data for SUS316 at 550 

o
C 

 

Material: Arc-Cast Tungsten

Data Type: Time-based

Temperature: 2400 
o
C
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 Figure 7: Comparison of experimental data and modeled 
creep data for arc cast tungsten at 2400 

o
C 

 
 
BIVARIATE ANALYSIS 

A notable characteristic of regression 
analysis is that it finds the best possible fit with 

as few points as possible. The ideal data set has 
near continuously recorded data which would 
confer the most accurate constants. Either of 
these approaches can be applied with much less 
data that has some restrictions. Theoretically, 
constants can be determined with these 
methods with as little as 4 points. This is 
because the denominator of the equation for n 
and m becomes zero when only one x-value, i.e. 
time and stress, are used in method one. For 
method two, n and m become zero when one 
strain or stress is used. This means that, not 
only must there must be at least two different 
times and stresses or strains, but they must be 
the same two times and stresses or strains. 

Applying this to physical data resulted in the 
following observations. Clearly, more data points 
result in a better fit. Determining the number of 
points to use depends on how accurate of a fit is 
needed and how much physical time is available 
to collect data e.g. multiple experiments over the 
course of months, or one experiment done in a 
day. The caveat of this approach is that the 
closer the time intervals used between each 
stress, the better the fit. In most cases, using 
vastly different times between the stresses 
resulted in negative constants and therefore no 
model could be constructed. Even in simulated 
data where the constants were simulated and 
the strains were formulated with the Norton-
Bailey power law, using different times across 
each stress, even by very small amounts, 
resulted in less than ideal constants. Using this 
method on data extracted from graphs will be 
less accurate than analyzing the exact data 
itself. 

 
 
CONCLUSION 

Limited experimental data on materials used 
in pressure turbines makes accurate creep 
prediction difficult. The focus of this investigation 
is to determine a method for determining 
temperature-dependent creep constants for 
modeling creep fatigue when there is limited 
data. Two methods were developed and 
validated: one for use when the data assumes 
that strain is the independent variable and the 
other when the data assumes that time is the 
independent variable. The limitations of these 
techniques were also analyzed, showing that 
while this method could be used on as little as 
four points that if accuracy was desired that as 
many points as possible should be used. Use of 
these methods on available creep data showed 
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accurate prediction and will be used on future 
experimental data. 
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