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ABSTRACT 

 Woven structures are steadily emerging as excellent reinforcing components in dual-

phase composite materials subjected to multiaxial loads, thermal shock, and aggressive reactants 

in the environment. Metallic woven wire mesh materials display good ductility and relatively 

high specific strength and specific resilience. While use of this class of materials is rapidly 

expanding, significant gaps in mechanical behavior classification remain. This thesis works to 

address the mechanics of material knowledge gap that exists for characterizing the behavior of a 

metallic woven structure, composed of stainless steel wires on the order of 25 microns in 

diameter, and subjected to various loading conditions and stress risers. Uniaxial and biaxial 

tensile experiments, employing Digital Image Correlation (DIC) as a strain measurement tool, 

are conducted on woven wire mesh specimens incised in various material orientations, and with 

various notch geometries. Experimental results, supported by an ample analytic modeling effort, 

indicate that an orthotropic elastic constitutive model is reasonably capable of governing the 

macro-scale elasticity of the subject material. Also, the Stress Concentration Factor (SCF) 

associated with various notch geometries is documented experimentally and analytically, and it 

is shown that the degree of stress concentration is dependent on both notch and material 

orientation. The Finite Element Method (FEM) is employed on the macro-scale to expand the 

experimental test matrix, and to judge the effects of a homogenization assumption when 

modeling metallic woven structures. Additionally, plasticity of the stainless steel woven wire 

mesh is considered through experimental determination of the yield surface, and a thorough 

analytic modeling effort resulting in a modified form of the Hill yield criterion. Finally, meso-

scale plasticity of the woven structure is considered, and the form of a multi-scale failure 

criterion is proposed and exercised numerically.    
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CHAPTER 1: INTRODUCTION 
 

 As composite materials continue to become more prominent in taxing engineering 

applications, woven fiber geometries are emerging as ideal reinforcement materials. While 

woven materials show great potential in composites and other applications, a thorough 

understanding of their governing mechanics is still evolving. In recent years, industry has 

expressed a need for high performance woven structures for applications such as hydrogen fuel 

cells and high temperature petroleum refinement [Zhang et al., 2010; Juan et al., 2009]. This 

need has led to renewed interest in a class of woven materials referred to as micronic woven wire 

mesh, which in general can refer to a wide range of products manufactured from various base 

wire materials and taking on numerous different weave structures. For applications involving 

filtration of fine particles from high pressure fluids, particularly those were corrosion or thermal 

shock may impact material integrity, industry often turns to the stainless steel 316L (SS316L) 

twill dutch woven wire mesh. This mesh material allows for extremely fine particle retention 

rates while maintaining high mass flow, and displaying excellent specific resilience and specific 

strength. While use of this class of material is widespread in the filtration industry, expanded use 

of stainless steel woven wire mesh products into other engineering applications where it may be 

ideally suited has been hampered by a lack of scientific material characterization. Ultimately, 

identification of new applications for woven wire mesh materials will rely upon the acquisition 

of material property data, the identification of viable constitutive models, and an understanding 

of material failure characteristics under torturous boundary conditions. The purpose of this thesis 

is to provide a foundation for the development of mechanical behavior characterization in this 



2 
 

class of materials, particularly when they are subjected to adverse stress concentrations in both 

uniaxial and multiaxial loading. The subject material is a finely woven 325x2300 SS316L 

micronic wire mesh, often used in air, water, and oil filtration applications. The relevance of 

continuum theory to model the notched mechanical behavior of this class of materials is 

investigated via a rigorous experimental and numerical test sequence, in which loading mode, 

material orientation, notch geometry, and notch orientation are considered as variables. The final 

result is a collection of stress concentration factor (SCF) curves documenting the effects of notch 

parameters and material orientation on stress amplification in the notched region, as well as a 

complete fractographic analysis documenting the various fracture mechanisms. Full field Digital 

Image Correlation (DIC) is used as a means for experimental strain measurement, allowing for 

the comparison of experimental, analytical, and numerical results to assess the ability of classical 

continuum approaches to model the subject material.  

1.1 Literature Review 
 

1.1.1 Previous Efforts in Woven Material Modeling 

  Pierce first addressed the modeling of woven textiles in 1936 [Pierce, 1936] by proposing 

a simple geometric model for a plain weave fabric that formed the basis of several mechanical 

models in future works. The geometry consisted of round weft wires, orthogonal to the round 

warp wires and tangential at the interface. The weft wires were assumed to always be in plane, 

and were linear between the warps. These assumptions prove somewhat simplistic, not allowing 

for any crimping of the weft wires out of plane. The geometry of Pierce has been used in several 

cases to develop numerical models for the study of fabric behavior, most notably in the case of 

Tarfaoui and co-authors [Tarfaoui et al., 2001]. Their work employed the Pierce geometric 
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model in a 'fundamental cell' Finite Element Model (FEM). This model was used to facilitate 

damage prediction in the form of yarn breakage. Similar to the Pierce model, Kawabata 

[Kawabata, et al., 1964] proposed a meso-scale model in 1964 that made use of a simplified 

geometry to study the biaxial deformation of plain weave fabrics. He treated the fabric yarns as 

simple beam like structures, imparting loads on each other at a single cross over point in the 

plane of the weave. This work was extended as King and co-workers [King et al., 2005] made 

use of the Kawabata geometric model to formulate a continuum constitutive model for woven 

fabrics which considerably simplified the load paths in the meso-structure. The continuum 

approach, while an idealization, still proved very accurate for modeling in-plane loading. King 

and co-authors utilized a modified Kawabata geometry, adding axial and rotational springs at the 

contact points to simulate wire interaction. This model presents a means to predict macro-scale 

behavior based on the weave geometry and yarn (or wire) materials through a simplification that 

treats the weave as a homogenized anisotropic body.  Such simplification of fabric geometry is 

common throughout the literature [Kraft and Gordon, 2011; Chen et al., 2007; King et al., 2005], 

but is typically made after significant numerical modeling or mechanical testing has been 

performed to formulate the material response. Recent work by the author [Kraft and Gordon, 

2011] has shown that a plane stress orthotropic assumption models the behavior of the subject 

material very accurately, and this conclusion will be drawn upon extensively in this thesis as the 

foundation for analytical and numerical modeling of notched geometries.  

1.1.2 Experimental Methods Common to Woven Materials 

  Several mechanical testing methods for fabrics are present in the literature. The ASTM 

standard D4964 (2008) gives guidelines for the tension testing of elastic fabrics, and forms the 
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basis for the uniaxial testing regimen performed in this study. These tests are performed in the 

main weave directions and at intermediate orientations using a Constant Rate of Extension 

(CRE) type control. Off-axis tensile testing subjects the woven material to bi-axial plus shear 

type conditions, enabling the characterization of the yield surface [Chen et al., 2007, Kraft and 

Gordon, 2011], and estimation of shear properties [Chen et al., 2007, Saliklis and Falk, 2000]. 

While off-axis tensile testing is not a standard test method, several researchers have leveraged 

the off-axis uniaxial tensile test to estimate yield and shear properties. Chen and co-workers 

[Chen et al., 2007] used this test method to successfully characterize the anisotropic tensile 

behavior of a flexible polyvinyl chloride coated fabric. By using tensile tests in the principle 

material axes, and at intermediate orientations in intervals of 15º, Chen was able to develop an 

exceptional estimation for the Tsai-Hill yield surface, and demonstrated that the shear modulus 

could be related to the elastic properties of the material in the bias (45º) orientation. Saliklis and 

co-author [Saliklis and Falk, 2000] performed extensive research on the subject of relating the 

off-axis tensile properties of thin orthotropic plates to their shear properties. In their work on 

wood-based panels, Saliklis and Falk were able to identify a relationship for the shear modulus 

of orthotropic plates that is independent of the difficult to measure Poisson’s ratio. The proposed 

relationship is based on a curve fit of the elastic modulus as a function of material orientation, 

and proved quite accurate in estimation of the shear modulus. As an extension of the research 

conducted by Chen and Saliklis, the author and co-workers [Kraft et al., Pending] have shown 

that uniaxial tensile tests performed only in the principle material orientations can produce in full 

the independent material properties associated with a plane-stress orthotropic constitutive model 

of the subject material.   
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  Another common form of mechanical testing found in the literature is the biaxial tension 

test. In a thorough review of mechanical testing methods for woven fabrics, Bassett and co-

workers [Bassett et al., 1999] list the cruciform biaxial test as the most common and accepted 

biaxial method for woven geometries. Indeed, the use of cruciform (e.g. t-shaped) test specimens 

for biaxial testing of fabrics is fairly common in the literature, being utilized by noted researchers 

in the field such as Kawabata [ Kawabata et al., 1964], among others. This method of testing is 

ideal in that the results are not adversely affected by shear coupling [Gibson, 2007], and it 

reduces clamping difficulties associated with large transverse strains encountered in bias (45º) 

uniaxial tensile tests [Basset et al., 1999]; however, difficulties arise in the form of cruciform 

specimen limitations stemming from adverse stress concentrations [Smits et al., 2006], non-

uniform biaxial stress fields [Basset et al., 1999], and the need for more sophisticated testing 

devices [Makinde et al., 1992, Cavallaro et al., 2007]. Much work has been done in the 

development and optimization of cruciform tensile specimens and biaxial load frames. Hannon 

and Tiernan [Hannon and Tiernan, 2008] present a review of in-plane biaxial tensile test 

methods, in which they identify two basic types of biaxial frames: standalone biaxial machines, 

and link mechanism biaxial machines. Representative standalone devices have been developed 

by several researchers, most notably Makinde and co-workers [Makinde et al., 1992 ]. Makinde 

makes use of four independent linear hydraulic actuators; two per axis, with each axis 

independently controlled using two closed-loop channels, as illustrated in Fig. 1.1. The 

displacement of each actuator is measured using a Linear Variable Displacement Transformer 

(LVDT), and load is monitored on each axis using independent load cells. Benefits of such a 

device include virtually unlimited possible strain paths, dynamic test capabilities, and a high 

level of control of biaxial stress ratios. Makinde notes, however, that the high loads generated by 
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the hydraulic actuators create the need for a very robust load frame, which ultimately reduces 

flexibility and portability of such a device.  

 

Figure 1.1: Servo-hydraulic biaxial load frame proposed by Makinde [Makinde et al., 1992]. 

  Several researches have proposed designs for linkage-based biaxial test machines, 

including Cavallaro and co-workers [Cavallaro et al., 2007], and Bhatnagar and co-authors 

[Bhatnagar et al, 2007]. These devices overcome the need for complicated control systems 

required by standalone hydraulic actuator frames, and are generally very portable. Linkage based 

devices are typically designed to integrate into the very common uniaxial load frame, giving 

them tremendous flexibility and cost effectiveness. Linkage based biaxial load frames make use 

of pivoting joints and two-force members to transfer the uniaxial motion of a universal load 

frame into biaxial motion, and can be either vertically or horizontally aligned. These machines 

tend to have limited available stress ratios, defined as the ratio of the magnitudes of the 

orthogonally applied stresses, and rely heavily on precise machining to achieve an equibiaxial 

loading. Bhatnagar designed a vertically aligned load frame, shown in Figure 1.2(a) which is 



7 
 

adjustable to many different biaxial stress ratios, and relies on only a single load cell for force 

measurement. Such a vertical design is advantageous to optical strain measurement techniques, 

as the plane of the specimen is held constant throughout the test. While the design proposed by 

Bhatnagar is sufficient for pure biaxial tension, it may be desirable to achieve a more generalized 

state of stress in a biaxial cruciform specimen. The design proposed by Cavallaro and co-

workers, as shown in Fig. 1.2(b), is perhaps the most sophisticated linkage based biaxial load 

frame present in the literature, possessing the ability to provide stiffness results both in shear and 

in multi-axial tension tests. The design of Cavallaro has been adopted, and improved upon, in 

this work to facilitate the biaxial testing of the subject material. 

 

Figure 1.2: Linkage based biaxial load frame as proposed by (a) Bhatnagar, and (b) Cavallaro [Bhatnagar et al., 2007; 
Cavallaro et al., 2007]. 

  In addition to the development of biaxial testing devices, much work is present in the 

literature concerning the design of an optimal biaxial specimen. While much of this previous 
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work has been focused on the development of specimens for polymer and composite testing, and 

so is not directly applicable to testing of un-impregnated woven structures, there is still much to 

be gained from the results of these studies. Perhaps the most in-depth study of biaxial specimen 

optimization is presented by Smits and co-workers [Smits et al., 2006], in which they employ a 

combination of Finite Element Modeling (FEM), and  Digital Image Correlation (DIC) driven 

experiments to investigate local strain fields in a number of candidate biaxial geometries. In their 

work, Smits and co-authors identify several criterions by which to optimize a cruciform 

specimen, all of which have been adopted in this thesis. These criteria include (i) maximization 

of the region of uniform biaxial strain, (ii) minimization of shear strains in the gage section, (iii) 

reduction of stress concentration at the fillets, (iv) specimen failure in the gage section, and (v) 

repeatability of the experiments. Smits evaluated parameters such as relative thickness of the 

gage section, radius of the corner fillets, and gage section shape for four different cruciform 

specimens of an epoxy-glass fiber composite. Ultimately, Smits and co-authors recommend a 

biaxial geometry with small-radius circular corner fillets and a milled biaxial gage section, as 

shown in Fig. 1.3.  
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Figure 1.3: Finite Element Model of optimal cruciform specimen geometry as proposed by Smits. The contours show the 
predicted distribution of the first principle strain upon unequal-biaxial loading [ Smits et al, 2006]. 

Smits notes the inability to achieve initial failure away from the corner fillets in any of the 

proposed geometries, and states that a reduced cross-section in the gage region is ultimately 

necessary to consistently propagate the crack into the biaxial region upon fracture. While this 

research provides valuable experimental and numerical results for various cruciform specimens, 

it does not provide any parametric data showing trends in fillet SCFs, nor does it provide any 

means of addressing problematic failure at the fillets. This thesis intends to address this by 

providing numerically derived SCF curves for various cruciform geometries that will provide 

future researchers with a systematic path towards optimized cruciform specimen design.      

1.2 The Woven Wire Mesh 

1.2.1 Wire Material and Weave Geometry 

 The material of interest in this study is a 325x2300 micronic twill-dutch woven wire 

mesh. This material is frequently used in fine filtration applications where it is exposed to biaxial 
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loads in the form of hydrodynamic pressure, as well as temperature gradients and particle 

deposition. Recently, this material has been employed in explosive trace detection (ETD) 

applications in which it is simultaneously exposed to extreme temperature gradients and 

hydrodynamic forces. The mesh is woven from austenitic Cr-Ni-Mo stainless steel 316L 

(SS316L) wires, conferring superior tolerance to thermal shock and repeated loading cycles. The 

material properties of AISI for bulk SS316L are provided in Table 1.1 [Blandford et al., 2007]. It 

is noted, however, that material strength in stainless steel wires tends to increase with decreasing 

diameter, i.e., 

 m
utS Ad −=   (1.2.1) 

 

where A and m are material properties, and d is the wire diameter. Figure 1.4 shows experimental 

results documenting the trend in strength with wire diameter [ASM, 2000], along with a 

regression fit of Eq. (1.2.1). In the case of room temperature SS316 wires, A is given as 145.43 

ksi-inm (1623.7MPa-mmm), while m is 0.149. Austenitic stainless steel wires on the order of 

0.010 inches (0.254mm) in diameter have tensile strengths as high as 275ksi (1896MPa). The 

wires making up the woven mesh in question are of the order of one thousandth of an inch (25.4 

microns) in diameter, resulting in wire strengths significantly higher than listed in Table 1.1. An 

exhaustive literature review yielded no similar models for yield strength of wires drawn from 

ferrous metals, and it is not customary for wire manufacturers to specify yield strength explicitly. 

Harvesting a single wire from the mesh material is possible, and mechanical characterization of 

single wires could be valuable for future work. Investigation of the wire grain structure is also 

possible, and could provide insight into the strengthening mechanisms predicted by Eq. (1.2.1).  
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Table 1.1: Material properties of bulk stainless steel 316L at room temperature [Blandford et al., 2007] 

Units 
Elastic 

Modulus, 
E 

Yield 
Strength, 

 ࢟࣌

Ultimate 
Tensile 

Strength, 
Sut

Density, ρ Elongation, 
εf (%) 

Poisson's 
Ratio, ν 

Shear 
Modulus, 

G 

SI 193 GPa 205 MPa 520 MPa 0.008 
݃ ݉݉ଷ⁄  40 0.28 75.4 GPa 

English 28.0 Msi 29.7 ksi 75.4 ksi 0.289 
݈ܾ݂ ݅݊ଷ⁄  40 0.28 10.94 Msi 

 

 

Figure 1.4: Experimental and modeled tensile strength of SS316 based on wire size, and a regression fit by means of Eq. 1 
used to produce the supplied constants A and m [modified from ASM, 2000]. 

 The SS316L wires are woven into the mesh in a twill-dutch pattern. This weave pattern 

produces an extremely dense mesh, with nominal and absolute pore sizes of 2 and 7 microns, 

respectively. It is assumed that the warp (toe) wires are initially un-crimped, and that all wires 

are in a damage free state prior to loading. The warp wire weave direction is referenced as the 0° 

material direction in this study, while the weft (shute) wire weave direction is referred to as the 

90° orientation. Figure 1.5 illustrates the woven wire mesh in both micro [Fig. 1.5(c)], and 

macroscopic perspectives [Fig. 1.5(d)], and all key dimensions are summarized in detail in Table 

R2 = 0.70

Eq. (1.2.1) 
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1.2. The ASTM standard E2016 [ASTM, 2006] provides the equations used to arrive at the 

reported weight values for the mesh, and the reported thickness is based on manufacturer 

specifications of the material. 

 

Figure 1.5: Images and rendering of the 325x2300 SS316L twill dutch woven wire mesh specimen and weave geometry 
outlining key dimensions, and the principle material orientations referred to as the warp (w) and weft (s) directions.  

 

Table 1.2: 325x2300 316L SS Woven Wire Mesh Specifications 

Units Warp Wire 
Count, Ns 

Weft Wire 
Count, Nw 

Warp Wire 
Diameter, 

Ds 

Weft Wire 
Diameter, 

Dw

Mesh 
Thickness, 

T 

Mesh 
Weight, W 

SI 127 
wires/cm 

905 
wires/cm 0.0381 mm 0.0254 mm 0.0889 

mm 483.4 g/m2 

English 
325 

wires/in. 
2300 

wires/in. 0.0015 in. 0.0010 in. 0.0035 in. 0.099 lb/ft2 

 

(a)

(b)

(d) 
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1.2.2 The Orthotropic Thin Sheet Assumption 

 The mechanical response of a woven wire mesh at the meso-scale is multifaceted and 

complex, with factors such as crimp interchange, wire sliding, wire binding, and wire tensioning 

all occurring simultaneously and dependently. Comprehensive mechanical analysis at the wire 

level quickly becomes unwieldy, and so an assumption that allows for the analysis of the 

material at the macro level is ideal. The assumption of homogeneity enables these materials to be 

modeled with a simplified orthotropic constitutive model. An orthotropic material may be 

defined as any material that possesses three mutually orthogonal planes of symmetry, which in 

general allows for the number of independent elastic coefficients to be reduced to nine. Most in-

plane woven wire mesh materials possess two distinct and perpendicular weaving directions, 

referred to as the warp and the weft. The respective wire directions often possess their own 

distinct material properties due to differences in wire arrangement, size, density, processing, etc. 

Taking advantage of this wire configuration allows for the assumption that in-plane woven 

geometries behave as thin orthotropic sheets under plane stress. The assumption of plane stress 

allows for further reduction of the independent elastic constants from nine to four, resulting in 

the simple in-plane orthotropic compliance relationship given as,  

   

 

1 0

1 0

10 0

w wsw
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 (1.2.2) 
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where, Ew and Es are the elastic moduli in the warp and weft (shute) directions respectively, and 

Gws is the in-plane shear modulus. Of the two Poisson's ratios, νsw and νws, only one is 

independent due to symmetry. Poisson’s ratio is a fundamental elastic material property that 

describes the ratio of transverse contraction to axial dilatation as given by,  

 

s
ws

w

w
sw

s

εν
ε
εν
ε

= −

= −
 (1.2.3) 

Here, the first subscript is understood to indicate the loading axis, so for the case of wsν , wε is the 

axial strain in the warp (0º) orientation, while sε  is the transverse strain exhibited by the material 

in the weft (90º) direction upon uniaxial loading in the warp (0º) direction. Any out-of-plane 

deformation in the thickness (T) direction is ignored in this work. 

1.3 The Stress Concentration Factor 

1.3.1 Definition and Background Theory 

 In the design and analysis of structural components, the engineer is often forced to deal 

with discontinuous geometries associated with bearing races, keyways, pin-joints, and even 

potential in-service damage from corrosion, erosion, or fatigue cracking. Such geometrical 

discontinuities alter the local stress fields in loaded components, and can result in very high 

stresses in the vicinity of the discontinuity. To reduce the impact of stress risers on potential 

component safety and cost, it is incumbent upon the engineer to accurately predict maximum 

stresses in notched geometries, and to exercise a systematic approach in minimization of stress 

concentrations. A failure to understand the degree of stress amplification present in a notched 

component under a given loading mode could result in localized yielding, and even catastrophic 
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failure of a component in service. As such, geometrical discontinuities in engineering 

components, referred to formally as stress concentrations, are often the critical point in a design, 

and it is vital that the engineer possess effective tools for dealing with such design problems. The 

classical design approach to handling stress concentrations is to linearly scale the elastic stresses 

by some stress concentration factor (SCF), typically represented as Kt, as shown in Eq. (1.3.1). 

 

 max t nomKσ σ=  (1.3.1) 
 

For isotropic materials, the SCF is a dimensionless parameter dependent only on geometry and 

loading conditions, and completely independent of material properties. Such a definition allows 

for convenient graphical representations of the SCF, such as those presented by Pilkey in the 

classical reference Peterson’s Stress Concentration Factors [Pilkey, 1997]. Even in the modern 

design environment, which is largely dominated by numerical methods, stress concentration 

factor curves allow for quick first-level approximations of the maximum component stress based 

solely on the specified geometry and loading condition, and are widely employed by design 

engineers. The key assumption when applying this metric to a component is that elastic 

conditions dominate, even if small scale yielding accompanies the mechanical loading. 

 The independence of the SCF on material properties stems from the theory of elasticity of 

a continuous isotropic body. In general, the strain-displacement compatibility equations can be 

written in tensor and index form, respectively, as the following, 

 ( )T

,

0
0ikr jls ij kle e

ε
ε

∇ × ∇ × =

=
 (1.3.2) 
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Where ∇ is the gradient operator, ε  is the engineering strain tensor, and eijk is the standard 

permutation symbol. For a state of three dimensional stress Eq. (1.3.2) results in six equations 

which specify the necessary and sufficient conditions to assure that a given strain field will 

produce a continuous displacement field in a simply connected domain. While this relationship is 

powerful, it is not immediately useful in determining the stress field of an elastic body, and so  a 

constitutive equation must be introduced to relate the strain state in a body to the corresponding 

stress state.  For an isotropic elastic body, the six equations that form the generalized Hooke’s 

Law in three dimensions can be written compactly in index notation as, 

 ( )1 1ij ij kk ijE
ε ν σ νσ δ⎡ ⎤= + −⎣ ⎦  (1.3.3) 

 

Here ν is the Poisson’s ratio, E is the elastic modulus, and δij is the Kronecker delta operator. 

Substitution of Eq. (1.3.3) into the strain compatibility relationship results in expressions for the 

condition of stress compatibility, known commonly as the Beltrami Equations, which can be 

written in index notation as [Reddy, 2008], 

 , ,
1 0

1ij kk kk ijσ σ
ν

+ =
+

 (1.3.4) 

Thus, it is seen that the stress compatibility condition is independent of the elastic modulus, and 

only dependent on the Poisson’s ratio, which remains fairly constant in most engineering 

materials. Furthermore, if the assumption of plane stress is invoked, it can be shown that the 

stress compatibility equations reduce to the form of the Laplacian, i.e.,  

 2 0σ∇ =  (1.3.5) 
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which is completely independent of material properties. The consequence of Eq. (1.3.5) is quite 

useful, as it lays the foundation for experimental techniques such as photoelasticity, numerical 

techniques such as the Finite Element Method (FEM), and more pertinently, makes the 

application of geometrical SCFs practical for most common engineering materials. 

 While a stress field independent of material properties is certainly convenient for solving 

engineering problems, it must be noted that this assumption is only valid for the case of isotropic 

materials. To demonstrate this, we can consider the case of an orthotropic thin plate under the 

condition of plane stress, where the generalized Hooke’s law has been previously given in matrix 

form as Eq. (1.2.2). In the case of plane stress, the condition for compatibility of deformation can 

be expressed as, 

 
2 22

2 2 0y xyx

y x x y
ε γε ∂ ∂∂

+ − =
∂ ∂ ∂ ∂

 (1.3.6) 

where γxy is defined as the engineering shear strain, which equates to double that of the tensorial 

shear strain. In solving elasticity problems, it is often convenient to define a stress function, 

ϕ(x,y) under the assumption that, 
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 (1.3.7) 

 

Then, by substituting Eq. (1.3.7) and Eq. (1.2.2) into Eq. (1.3.6), we can obtain the following 

expression of the stress field in a thin orthotropic body as, 
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νφ φ φ⎛ ⎞∂ ∂ ∂

+ − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (1.3.8) 

Clearly Eq. (1.3.8) includes the orthotropic material properties, and so it can be concluded that 

the stress state of an anisotropic body must depend on material properties. As such, there is no 

purely geometric SCF available for anisotropic materials, and factors such as material orientation 

become important in documenting the effects of geometrical discontinuities on the stress field of 

a loaded body.  

1.3.2 Application to Notched Thin Sheets 
 

 Several researchers in the past [Whitney and Nuismer, 1974; Probedrya and Gorbachev, 

1983; Amer and Schadler, 1997; Chiang, 1999] have investigated stress distributions and SCFs 

in notched thin plates under a variety of loading modes. Generally, these solutions are derived 

using potential functions that are identified to satisfy the governing differential equation, i.e., Eq. 

(1.3.8), and the boundary conditions of the problem. The most classical and fundamental solution 

of this kind is the circular notch in an infinite isotropic continua under uniaxial tension. The 

solution in polar coordinates, as presented by Timoshenko and Goodier [Timoshenko and 

Goodier, 1969], is given as, 
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Where a is the radius of the circular opening, σ is the remotely applied tensile stress, r is the 

distance from the center of the circular opening to the point of interest and θ is the angular 

position of the point of interest wither respect to the axis of applied load.  This solution, 

formulated by means of an Airy stress function, is independent of material properties as 

expected, and can be shown to produce the classical maximum SCF of 3.0 when r = a and θ = 

90º. This classical solution was extended to anisotropic materials by Lekhnitskii in the classical 

text, Anisotropic Plates [Lekhnitskii, 1968]. Lekhnitskii made use of a complex stress function to 

derive the expression for the stress on the edge of a circular opening (r = a) in an infinite 

orthotropic plate under uniaxial tension at some angle, φ, to the principle direction as,  

 

2 2 21 1 1 1
1

2 2 2

2 2 21 1 1
1

1 2 2

1 1 1 1 1
1 1

2 2 2

cos 2 sin cos

1 2 cos sin sin

2 1 2 sin cos sin cos

E E E E
E E G E

E E E Ep
E E G E

E E E E E
E G E E G

θ
θ

ϕ ν ϕ θ

σ ν ϕ ϕ θ

ν ν ϕ ϕ θ θ

⎧⎡ ⎤⎛ ⎞⎛ ⎞⎪⎢ ⎥⎜ ⎟− + + − +⎜ ⎟⎜ ⎟⎪⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦⎪
⎪ ⎡ ⎤⎛ ⎞⎛ ⎞⎪ ⎢ ⎥⎜ ⎟= + + − + − −⎨ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟− + + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

⎫
⎪
⎪
⎪
⎪
⎪
⎬

⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪
⎪ ⎪⎩ ⎭

 (1.3.10) 

Where p is the applied uniaxial tensile stress. The derivation of Eq. (1.3.10) is provided in detail 

in Appendix A. Lekhnitskii goes on to derive solutions for infinite orthotropic plates with 

elliptical openings under various boundary conditions, including shear and off-axis uniaxial 

tension. These solutions are of great value to this current work, and are presented in Chapter 3.2.   

Several methods have been proposed to estimate the SCF for a finite body using 

modifications to the infinite elasticity solution, the most common of which is referred to as the 
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Finite Width Correction (FWC) Factor. Tan [Tan, 1988] developed a highly used expression for 

the FWC of an anisotropic plate containing a central opening, based on the definition, 

 ( ) ( ),0 .0T
y y

T

K x x
K

σ σ∞
∞ =  (1.3.11) 

Where the superscript ∞ represents the infinite plate solution, σy is the y-component of normal 

stress in a finite width plate, the ratio KT / TK ∞  is the FWC factor, and KT and TK ∞ denote the stress 

concentration factor at a point on the edge of the notch whose tangent line is parallel to the 

loading axis. Tan has shown that the stress field tends to follow this assumption under the 

conditions that, a/b ≥ 1, and 2a/W < 0.5. Tan goes on to provide an explicit relationship for the 

FWC, provided in Chapter 3, based on the complex form of the solution for the stress field of an 

infinite anisotropic plate with an elliptical notch derived by Lekhnitskii [Lekhnitskii, 1968].  

1.4 Research Approach 

1.4.1 Stress Concentration in Inhomogeneous Materials 

 It is clear that the topic of stress concentrations in homogenous isotropic continua has 

been thoroughly investigated by previous researches, and as a result, dealing with such a design 

challenge is largely a matter of protocol, with stress equations and scale factors readily available. 

Even in cases of complex geometry or anisotropic materials, modern numerical techniques allow 

for easy and accurate determination of the elastic and plastic stress field, and high confidence 

failure prediction. As the condition of material homogeneity and continuity is relaxed, however, 

the problem of mechanical behavior characterization becomes less straightforward, and meso-

scale geometric considerations become increasingly important. In the case of woven geometries, 

meso-scale material interactions such as wire contact, wire crimp interchange, and relative wire 
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translations and rotations affect how the material responds to the presence of stress 

concentrations. In homogenous materials, strain energy is transmitted throughout the 

microstructure by intergranular bonding forces which are relatively strong. These intergranular 

forces allow for smooth strain distributions throughout the material, and an even distribution of 

load from remote displacements. In the case of woven wire materials, load is transmitted 

throughout the structure by discrete wires, and inter-wire forces consist only of relatively weak 

frictional and contact forces.  It is postulated that the strength of the inter-wire forces, i.e., 

frictional forces, directly influences how well the information of a stress concentration is 

transmitted throughout the meso-structure, such that if the meso-scale forces are weak, only a 

very localized zone should be affected by a stress riser. The strength of the inter-wire forces can 

be treated as coupling between adjacent wires, and as such will be referred to as Meso-Scale 

Geometric Coupling (MSGC) in the remainder of this thesis. It is theorized that MSGC can have 

a range from 1.0, which would represent a behavior identical to a homogenous continuum, to 

zero, signifying no energy transference between adjacent contacting wires. The task of 

developing a quantitative analytic expression for this factor is beyond the scope of this work, 

however, and so the MSGC factor is left as a qualitative parameter in this thesis. It is noted that 

the mechanism by which strain energy is transferred between wires, i.e., wire bending and 

straitening, frictional sliding, crimp interchange, etc., is not accounted for in such an idealization, 

but these mechanisms can readily be identified post-failure, as is intended in this work. It is 

hypothesized that factors such as material orientation, notch orientation with respect to the 

loading direction, and notch aspect ratio will affect the MSCG factor, resulting in failure 

behaviors ranging from yield dominant, with large plastic zones and high ductility, to fracture 

dominant, with small process zones and brittle-type failure.  
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 In addition to fracture mechanisms, it is also of great interest to quantify the degree to 

which a stress concentration negatively impacts the macro-scale mechanical performance of a 

structure. A classical metric typically reserved for fatigue characterization, the notch sensitivity 

factor, q, can be leveraged to explore the effect a stress riser has on the ultimate tensile strength, 

Sut, of a material. To understand the notch sensitivity factor, it necessary to first define an 

effective SCF, Ke, as the ratio of nominal (un-notched) ultimate tensile load, Put, to the notched 

ultimate tensile load, Put’, i.e. [Pilkey, 1997],  
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The notch sensitivity factor can then be defined as [Pilkey, 1997],  
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Where Kt is as defined in Eq. (1.3.1). Both the effective and actual SCF, which are theorized to 

be dependent on notch aspect ratio and material orientation, determine the sensitivity of the 

ultimate tensile strength of the subject material to a given notch. As such, it is vital that SCF 

curves be developed for this material in a variety of orientations and geometrical configurations, 

and that a series of un-notched nominal cross-section tensile tests be carried out in all considered 

orientations.  

1.4.2 Experimental and Numerical Methods 

 The goal of this thesis is to characterize the effect of stress concentrations on the 

mechanical behavior of a micronic woven wire mesh by testing the hypotheses presented above. 

This characterization is facilitated by means of a thorough experimental and numerical treatment 
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of notched SS316L 325x2300 twill dutch woven wire mesh. Uniaxial tensile experiments are 

conducted on notched strip specimens varying in material orientation from the warp (0º) material 

direction to the weft (90º) material direction in intervals of 45º. In addition to the parameter of 

material orientation, notch aspect ratio and notch orientation are parametrically varied in the 

uniaxial tensile experiments. These tests are conducted using Digital Image Correlation (DIC) as 

a full field strain measurement tool, allowing for experimental determination of the various 

SCFs, while facilitating comparisons to FEM and elasticity solutions. As DIC strain 

measurements are not restricted to small strains, this tool provides the capability for detailed 

investigation of the plastic zone, and can be leveraged to produce full-field shear strain, principle 

strain, and von-misses strain results in the vicinity of a developing crack. This allows for the 

experimental characterization of dominate rupture mechanisms, which in conjunction with post-

failure analysis of the process zone, is vital in the development of failure models for notched 

micronic woven wire materials. In addition to the regimen of uniaxial tensile tests, a linkage-

based biaxial load frame, also making use of a DIC strain measurement system, is employed to 

impart a state of biaxial tension onto notched and un-notched cruciform specimens. Such testing 

extends the definition of SCF curves into the biaxial domain, while imparting a loading mode 

more true to the in-service conditions often experienced by the subject material. Tests are 

conducted in various ratios of biaxial tension, and at various notch orientations, producing data 

relevant to determining the dominant weave orientation (warp or weft wires) contributing to 

mesh failure. Additionally, biaxial experiments can be leveraged to investigate the effects of 

shear coupling on the yielding behavior of the subject material, ultimately resulting in a proposed 

modification to the classical Hill yield criterion.    
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 While experimental results provide data valuable to exploring the notched response of the 

subject material, it is advantageous to make use of the Finite Element Method (FEM) to both 

support and supplement the experimental data. Good correlations between the experimental DIC 

strain contours and the simulated macro-scale, i.e., specimen sized model, FEM strain contours 

suggest that a continuum based model is sufficient to capture the notched behavior of the subject 

material. Such findings work to both bolster the experimental results and justify the use of 

macro-scale FEM simulations to explore material orientations and notch configurations outside 

of the test regime. Parametric analysis of the test parameters can be quickly and efficiently 

carried out using FEM techniques, resulting in significantly more data than could be obtained 

from experiments alone. In addition, macro-scale FEM allows for the testing and optimization of 

failure models, which can be used to simulate failure propagation characteristics in non-

experimentally treated domains.  

 In the current study, FEM simulations are performed on both the macro-scale, and meso-

scale, where modeling is done using a Representative Volume Element (RVE) of the subject 

material which explicitly contains all of the detailed weave geometry. The meso-scale model is 

used in conjunction with the macro-scale FEM results to facilitate a multi-scale modeling effort 

aimed at discerning wire level behavior near the notch process zone. This modeling will reveal 

information such as wire level plasticity and stress distribution, such that dominant wire 

interactions and failure mechanisms can be identified. Together, the meso and macro-scale 

modeling, along with the uniaxial and biaxial experimental techniques provide ample data to 

fully characterize the effect of notches on the mechanical behavior of a woven wire mesh 

material, and will provide future researchers with a well established experimental and model 

foundation to continue application development for this class of materials.   
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CHAPTER 2: EXPERIMENTAL METHODS 
 

 A systematic characterization of the notched tensile behavior of 325x2300 SS316L twill 

dutch woven wire mesh requires the implementation of the scientific method to test proposed 

hypothesis, acquire pertinent data and results, and draw conclusions; therefore, before an 

experimental methodology can be derived, it is necessary and prudent to define the thesis of this 

work, and to outline the hypotheses to be tested. 

 As described in Section 1.4, the primary goal of this work is to characterize the effects of 

stress concentrations, i.e., notches of various aspect ratio, on the mechanical behavior of a thin, 

inhomogeneous orthotropic sheet. A metallic woven textile, such as the subject material, is an 

excellent representative of this class of materials, which posses desirable engineering properties 

for many possible applications. It has been demonstrated in previous sections that the effects of 

stress concentrations on continuous bodies are well understood, and it is well known that a host 

of analytic and numeric elasto-plastic modeling tools are available to the engineer to handle such 

cases. It is the role of the engineer in society to solve technical problems with maximal accuracy 

and minimal cost, and so it is advantageous to begin the characterization of stress concentrations 

in metallic woven structures by testing the validity of such existing models for this class of 

materials. In general, the behaviors of interest in this study are i) elastic response in the presence 

of a notch, ii) yielding in nominal geometries, and  iii) the nature of material rupture in notched 

geometries, either  being yield or brittle fracture dominant.  

 The elasticity of stress concentrations in continuous bodies has been introduced in 

Section 1.3, with the definition of the SCF and its dependence, in the case of orthotropic bodies, 

on material orientation and geometry. Section 1.4 has outlined the hypotheses pertinent to elastic 
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response of the subject material in the presence of a notch, namely the need to develop 

experimentally and numerically derived SCF curves for multiple material and notch orientations. 

In the process of developing these curves, DIC strain measurement will allow for full field 

analysis of the total strain in the region of the notch. Such data will make possible direct 

comparison to fields obtained from both analytical and numerical elasticity solutions based on 

continuum mechanics, allowing conclusions to be drawn regarding the applicability of a 

Hookean model to predict the elastic response of the subject material in the presence of a notch.    

 While the development of elastic SCF curves and the identification of appropriate elastic 

constitutive models represent useful contributions to the understanding of metallic woven 

material mechanics, the study of notched mechanical behavior in this class of materials demands 

that significant attention be paid to the elasto-plastic response. It is vital that design engineers be 

able to predict the boundary conditions that may cause yielding in the 325x2300 SS316L woven 

wire mesh, and have an understanding of how the material behaves plastically. To this end, an 

anisotropic yield criterion capable of modeling the subject material must be identified, and the 

model parameters defined. From previous work conducted by the author [Kraft and Gordon, 

2011], the Hill Criterion, given in Eq. (2.1.1) for plane stress [Hill, 1956], has been identified as 

a viable, yet imperfect, model for the yield behavior of this class of materials.  

 ( ) ( )2 2 22 2 1y x x y xyH F H G H Nσ σ σ σ τ+ + + − + =  (2.1.1) 

In previous work, the author utilized off-axis tensile test data to formulate the Hill parameters, N, 

H, F, and G, through a curve fit optimization. The Hill model was found to be highly un-

conservative in many material orientations, particularly in orientations where axial and shearing 

strains are coupled. It is postulated that the inability of the Hill model to accurately fit yield 
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strength data for the subject material is a result of shear-normal stress coupling that is not 

directly accounted for in the Hill parameters. To test this hypothesis, a series of uniaxial and 

biaxial tensile tests, varying by stress ratio, must be performed to define the first quadrant yield 

surface. In addition to plotting the yield surface, the equibiaxial yield stress, in conjunction with 

yield stress data from uniaxial tensile tests in the principle material orientations, and on the bias 

(45º) orientation, provide sufficient data to derive the plane stress Hill parameters for the subject 

material directly from their definitions, i.e.,  
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where yσ  is the yield stress determined from a uniaxial tensile test in the y-direction, xσ   is the 

yield tress determined from a uniaxial tensile test in the x-direction, BAσ  is the yield stress under 

equibiaxial tension, and xyτ is the yield strength under pure shear. It has been shown in the 

literature [Chen et al., 2007] that the parameter N can be accurately estimated by obtaining the 

tensile yield stress in the bias (45º) orientation. With the Hill parameters determined from the 

relationships in Eq. (2.1.2), comparison to the yield surface can easily be accomplished, allowing 

for modifications to Eq. (2.1.1) that will result in an improved model for the orientation 

dependence of yield strength in this class of materials.       
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 In general, failure of a component can be classified as either yield dominant or fracture 

dominant, and the identification of the failure mode can provide insight into the mechanics of the 

failure. A yielding dominant failure indicates general plasticity, and signifies that the macro-

scale notch defect is not the dominant failure driving mechanism. A fracture dominant failure, 

indicated by highly localized yielding, communicates that the macro-scale notch defect 

dominants the mechanical response of the sample. It is theorized that the degree of meso-scale 

wire level coupling is dependent on the orientation of the material reference frame with respect 

to the loading axis, and so it follows that the dominant failure behavior is likely not only 

dependent on the notch geometry, but also on the material orientation. Such information is vital 

to system engineers who are tasked with component assessment after a notch or rip has been 

discovered, as fracture type failure is often sudden, and could potentially lead to loss of hardware 

or life. As such, it is essential the uniaxial and biaxial tensile experiments not only provide 

information on elastic and elasto-plastic material response, but also that the mesh rupture occurs 

in the gage section and at the notch location. Failure mechanism data can then be inferred from 

the tensile response and local strain distribution (measured with DIC), and also documented via 

post-mortem fractography.                         

2.1 Uniaxial Tensile Testing 

2.1.1 Specimen Design and Fabrication 

Several uniaxial tensile tests are necessary to define tensile material properties and to 

characterize the mechanical behavior of uniaxially loaded twill dutch SS316L woven wire mesh 

in the presence of a stress concentration. A uniaxial test specimen must be designed that 

facilitates both tensile property and notched behavior characterization. To this end, two different 
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uniaxial specimens have been designed: a flat tensile specimen for testing nominal geometries 

and a strip uniaxial specimen for testing notched geometries. The woven wire mesh specimens 

are incised by hand from larger material sheets [144.0in2 (0.092m2)] supplied by TWP Inc., into 

either the standard flat tensile specimen shape as per ASTM Standard E8 (2004), or a strip shape 

with identical gage dimensions. The flat tensile specimens have been iteratively designed to 

ensure optimal failure in the gauge section of the specimen, and this is the case in the majority of 

the experiments. The optimal flat tensile test specimen geometry is provided as Fig. 2.1(a), with 

a gauge width of 0.75in. (19.05mm.) and a gauge length of 1.25in. (31.75mm.). The gage section 

geometry produces an active (load bearing) wire count of 243 warp wires in the warp (0°) 

orientation, and 1725 weft wires in the weft (90°) orientation. Flat tensile (un-notched) 

specimens are incised in both the warp (0°) and weft (90°) material orientations, and at off-axis 

angles in 15° intervals, as illustrated by Fig. 2.1. This approach produces detailed information on 

the orientation dependence of the load versus deflection response of the subject material, which 

can be used to calculate material properties such as yield strength and elastic modulus, and 

allows for the application of classical mechanical models to the material through regression 

analysis or other means [Chen et al., 2007; and Gordon, 2011].  As the specimen orientation 

diverges from the main weave axes, edge effects due to wire cut-off are unavoidable. This 

problem is most pronounced in the 45° orientation, where a typical aspect-ratio flat tensile 

specimen could potentially have no wires that run the entire gauge length. The author has given 

much attention to the effects of widening the sample specimen to reduce edge effects in a 

previous work [Kraft and Gordon, 2011], with particular focus on how the elastic modulus and 

yield strength vary with orientation. From this work, it has been shown that widening the sample 

by a factor of two does not greatly improve material response. In fact, adverse boundary 
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conditions that arise in clamped off-axis specimens due to shear coupling [Gibson, 2007] are 

exasperated by reducing the aspect ratio of the specimens, causing failures near the specimen 

grips, and specimen twisting during the experiments.  

The strip specimens as shown in Fig. 2.1(b), do not have corner fillets as they contain 

notches where failure is expected to occur. The notches are imparted onto the specimens by 

means of a light duty metal punch (Roper Whitney No. 5) using custom fabricated elliptical and 

circular punches and dies. The notches are aligned and oriented with the specimens via pre-

fabricated aluminum punch stencils laid over the incised strip specimens. This process ensures 

accurate and precise generation of both circular and elliptical notches of various aspect ratios. 

Slit type notches were also cut by hand into several incised strip specimens via a sharp razor 

blade, with the slits being aligned via stencil  

 

Figure 2.1: Smooth flat tensile and notched strip specimens used in uniaxial tensile experiments conducted in the 
325x2300 SS316L twill dutch woven wire mesh. 

(a) (b) 
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Incision of the test samples by hand inherently introduces variability into the specimen 

geometry that could ultimately influence test results. To gauge the level of variability in these 

experiments arising from, amongst other possible factors, sample geometry, a series of ten tensile 

tests were initially run to fracture on un-notched flat tensile warp (0°) specimens. The results of 

this specimen variability testing are provided in Table 2.1 [Kraft and Gordon, 2011], where the 

values have been normalized such that A0 = 0.00248in2 (1.60mm2), k0 = 6.48kip/in 

(1134.8kN/m), Sy0 = 11.4ksi (78.6MPa), UTS0 = 12.7ksi (87.6MPa), Sf0 = 11.9ksi (82.0MPa), 

and εfo = 0.084in (2.13mm). Note that the cross-sectional area, A0, represents the cross section of 

the material as if it were a homogenous body. The highest degree of standard deviation observed 

in the normalized data was in the elongation to failure, with an acceptable value of 0.12. Yield 

strength and stiffness also show notable normalized standard deviations, with values of 0.04, and 

0.10 respectively. These values are considered within statistical error limits for mechanical 

testing of this class of materials, and so it was justified to proceed with further testing of the 

material without multiple test duplications 

Table 2.1: Normalized Mechanical properties of 316L SS Woven Wire Mesh  in Warp (0°) direction [Kraft and Gordon, 
2011] 

Specimen 
ID 

Cross-
Sectional 

Area, ܣ/ܣ 
Stiffness, 
݇ ݇⁄  

Yield 
Strength, 
ܵ௬ ܵ௬⁄  

Ultimate 
Strength, 
ܷܶܵ ܷܶܵ⁄  

Fracture 
Stress, 
ܵ ܵ⁄


 

Elongation, 
߳ ߳⁄   

AR-001 1.00 1.00 0.95 1.00 1.00 1.00 
AR-002 1.01 0.96 0.89 0.97 1.00 0.92 
AR-003 1.01 1.08 0.98 0.98 1.00 1.04 
AR-004 0.99 1.17 1.00 1.03 1.00 1.13 
AR-005 0.99 1.25 0.96 1.01 1.01 0.83 
AR-006 0.99 1.05 0.96 1.03 0.98 1.13 
AR-007 0.99 1.24 0.97 1.01 0.98 1.04 
AR-008 1.00 0.99 1.01 1.01 0.99 1.11 
AR-009 0.99 1.17 0.98 1.04 1.00 1.08 
AR-010 1.00 1.05 1.02 1.03 0.98 1.25 
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2.1.2 The Uniaxial Test Setup - Load Frame and Specimen Grips 

Tensile experiments were conducted on smooth flat tensile and notched strip specimens 

of the 325x2300 SS316L woven wire mesh in the main wire orientations, hereby referred to as 

the warp (0°) and the weft (90°) directions, and at several orientations in between. These tests 

were carried out using an MTS Insight 5 electromechanical uniaxial testing machine, as shown in 

Fig. 2.2(b). A constant rate of extension (CRE) test method was employed at a rate of 0.10 

in/min (2.54 mm/min), as specified by ASTM Standard D4964 (2008). The device allowed for 

the acquisition of the load versus cross-head displacement response of each specimen, which 

could then be used to ascertain numerous material properties such as stiffness, yield strength, 

ultimate strength, toughness, elongation to failure, etc. Specimens were held by wave-shaped 

grips (Test Resources Model No.G86G) suitable for gripping the very thin material samples, as 

shown in Fig. 2.2(a).  

 

Figure 2.2: (a) Wave grips used for uniaxial tensile testing on the 325x2300 SS316L twill dutch woven wire mesh, (b) MTS 
Insight 5kN load frame fitted with the screw action wave grips. 

(a) (b) 
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2.1.3 Digital Image Correlation for Strain Measurement 

As is often the case with composite materials, fabrics pose a challenge in the definition of 

mechanical properties due to their inhomogeneous structure. Optical strain measurement 

techniques, including DIC, have emerged as the optimal solution to the problem of strain 

measurement in reinforced composites, and recent research by the author has formally validated 

the DIC method for un-impregnated fabrics [Kraft et al., Pending]. Digital Image Correlation 

(DIC) is a variant of the classical laser speckle approaches, which allows for the substitution of a 

painted speckle pattern and Charge-Coupled Device (CCD) camera in place of the more complex 

optical setup required for speckle interferometry. A series of images is captured in succession, 

starting with the un-deformed image and proceeding until the test is completed. As the specimen 

is deformed, the painted speckle pattern deforms with it, and this information is captured on the 

CCD in the form of pixel position and respective light intensity. In raw form, this generates a 

matrix of gray-scale values corresponding to the random speckle pattern on the specimen. As the 

target feature (speckle) moves in the frame onto new pixels, gray-scale values shift with it in the 

matrix, and this information is recorded. Digital Image Correlation has been shown to be an 

effective method for obtaining full-field strain measurements in woven composite materials 

[Lomov et al., 2006], and was used successfully by Hursa and co-workers to identify the 

Poisson's ratio of plane and twill woven cotton fabrics of significantly less mesh density than the 

subject material of the current study [Hursa et al., 2009].  

Digital Image Correlation (DIC) is a widely used optical strain measurement technique 

first developed by Peters and Ranson in the early 1980's [Peters and Ranson, 1982]. The method 

is far less optically demanding than other experimental techniques such as laser speckle 
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photography, and does not require an isolation table. White light is sufficient to illuminate the 

specimen, and there is little restriction to specimen size or total specimen deformation. A sketch 

of the DIC setup used in the uniaxial portion of this investigation is illustrated in Fig. 2.3. In 

general, DIC requires the generation of a random speckle pattern directly on the surface of the 

test sample. The speckle pattern must be of sufficient contrast to the surface of the specimen to 

generate detectable gray scale value gradients across the specimen, and the speckle size must be 

sufficiently small as to obtain a reasonable resolution. 

 

Figure 2.3: Diagram of experimental setup used for Digital Image Correlation of the woven wire mesh specimens 

A digital image of the speckle pattern is then captured on a CCD camera before and after 

deformation, such that gray scale image intensity values can be recorded with respect to pixel 

Krylon Flat 
White / Krylon 

Semi‐Flat 
Black paint 
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position in the un-deformed and deformed bodies. A correlation algorithm is then employed to 

systematically determine the most likely mapped position of a subset of pixels based on 

minimization of a correlation coefficient, which may be defined as [Shukla, 2010], 
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where g and h are bi-cubic spline interpolation functions of the reference and deformed images, 

respectively. The variable S represents a subset of points surrounding a single point in the subset, 

Sp, and P is a vector whose components are the mapping parameters used to relate the deformed 

and un-deformed geometries. The displacement mapping parameters, including the displacement 

components and the displacement gradients, can be determined via a second order Taylor series 

expansion of the mapping function about some point S, i.e., 
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where the subscripts s  and w  refer to the weft (shute) and warp directions, respectively. Chu and 

co-workers [Chu et al., 1985] have shown that further manipulation of this relation, along with 

the definition of engineering strain, can be employed to develop accurate approximations for the 
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in-plane finite strain tensor. The result is a full-field optical strain measurement capable of 

determining the displacement gradients to within 0.0002±  in/in (mm/mm) [Shukla, 2010]. 

 To capture the images for correlation, a high-resolution (2448x2048) CCD camera with a 

Tokina AT-X Pro D M100 F2.8 lens was placed on a fully leveled Velbon GEO N840 tripod 

centered in front of the uniaxial specimen. The camera recorded images at a rate of 0.5 Hz 

throughout the duration of the test. Correlation of the DIC images was accomplished via a 

commercially available algorithm, Vic - 2D version 2009, with care being taken to assure the 

system was properly calibrated. 

2.1.4 Uniaxial Tensile Testing Matrix of Experiments 

 A battery of uniaxial tensile tests on the subject material have been identified to address 

the hypothesis outlined in Sections 1.4 and 2.1 of this work. The uniaxial tensile experiments 

must facilitate both the experimental aspects of this work, such as development of the SCF 

curves and characterization of notch sensitivity, and the numerical simulations planned to 

validate the proposed orthotropic constitutive model and extend the experimental regime. As 

such, the uniaxial test matrix must extend beyond parametrically varied notched geometries and 

material orientations to incorporate testing aimed at elastic-plastic material property 

classification. Two experiments, labeled ARDIC-00-1 and ARDIC-90-1, conducted on smooth 

flat tensile specimens as shown in Fig. 2.1(a) in the warp (0º) and weft (90º) material 

orientations, respectively, are sufficient to characterize all four independent elastic constants in 

Eq. (1.2.2). These tests are necessary to facilitate elasto-plasitc macro scale FEM, and to allow 

analytic comparison to experimentally obtained stress fields via Eq. (1.3.9) and Eq. (1.3.10). In 

addition to these main material axis experiments, intermediate orientation tensile experiments 
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have been conducted on smooth flat tensile specimens to facilitate orientation modeling of the 

elastic properties and yield strength. These experiments were conducted in 15º intervals, and are 

again labeled as ARDIC specimens. 

 Uniaxial tensile testing of notched geometries will proceed in a parametric fashion with 

respect to material orientation, referred to by the angle θ with respect to the principle material 

orientation, notch orientation, referred to as the angle α with respect to the loading axis, and 

notch aspect ratio, λ, i.e., 

 a
b

λ =  (2.1.6) 

where a is the minor elliptical radius, and b is the major elliptical radius, as illustrated in Fig. 2.4. 

In all cases, the major radius, b, is set to 0.125 in (3.175mm), and the minor radius, a, can be 

determined based on the specified value of λ. The λ ratio will be varied from a value of 1.0, 

corresponding to a circular notch, to a value approaching zero, representing a slit. For each case 

of λ, both the material orientation, θ, and the notch orientation, α, will be varied from 0º to 90º in 

intervals of 45º, totaling nine experiments per λ ratio, as shown in Table 2.2. Note that the 0.0º 

material orientation is referred to as the warp direction, while the 90.0º material orientation is 

referred to as the weft orientation. The λ  ratios of interest have been chosen to provide for 

maximum change in SCF between the various  levels, while allowing for easy and repeatable 

notch fabrication via the punch method. Testing in the bias (45º) orientation will provide 

experimental data on the effects of notches in this class of material when subjected to shear 

loading, providing valuable information for failure model calibration. Mapping of the degree of 

dependence observed in the SCF with changes in the angle α and the ratio λ will provide future 
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researchers with data pertinent to the determination of the MSGC coefficient, with strong 

dependence expected in material orientations exhibiting high inter-wire coupling.    

 

 

Figure 2.4: Illustration  of the parameters to be varied in the sequence of uniaxial tensile experiments on the 325x2300 
SS316L twill dutch woven wire mesh 

 

 In addition to the above uniaxial tensile tests performed on specimens conforming to Fig. 

2.1, nominal width specimens have been incised to investigate the effects of the parameters λ, α, 

and θ in the reduction in fracture strength of the subject material. This investigation is meant to 

produce data relevant to determining the notch sensitivity of this material, q, as defined in Eq. 

(1.4.2), as a function of the experimental parameters. 

σo 
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Table 2.2: Matrix of Uniaxial Tensile Tests on 325x2300 SS316L Woven Wire Mesh 

The nominal width of each respective specimen is determined based on the projected width of 

the notch on the axis perpendicular to the loading axis. A total of nine nominal width tensile 

experiments have been conducted, corresponding to the three experimentally treated notch 

Test 
Number Test ID # Material 

Orientation, θ (°) λ Notch Orientation, α (°) 

1 ARDIC-00-1 0.0 N/A N/A 
2 ARDIC-90-1 90.0 N/A N/A 
3 ARDIC-15-1 15.0 N/A N/A 
4 ARDIC-30-1 30.0 N/A N/A 
5 ARDIC-45-1 45.0 N/A N/A 
6 ARDIC-60-1 60.0 N/A N/A 
7 ARDIC-75-1 75.0 N/A N/A 
8 UA-C-00-00 0.0 1.0 N/A 
9 UA-C-45-00 45.0 1.0 N/A 

10 UA-C-90-00 90.0 1.0 N/A 
11 UA-E05-00-00 0.0 0.5 0.0 
12 UA-E05-45-00 45.0 0.5 0.0 
13 UA-E05-90-00 90.0 0.5 0.0 
14 UA-E05-00-45 0.0 0.5 45.0 
15 UA-E05-45-45 45.0 0.5 45.0 
16 UA-E05-90-45 90.0 0.5 45.0 
17 UA-E05-00-90 0.0 0.5 90.0 
18 UA-E05-45-90 45.0 0.5 90.0 
19 UA-E05-90-90 90.0 0.5 90.0 
29 UA-S-00-00 0.0 0.0 0.0 
30 UA-S-45-00 45.0 0.0 0.0 
31 UA-S-90-00 90.0 0.0 0.0 
32 UA-S-00-45 0.0 0.0 45.0 
33 UA-S-45-45 45.0 0.0 45.0 
34 UA-S-90-45 90.0 0.0 45.0 
35 UA-S-00-90 0.0 0.0 90.0 
36 UA-S-45-90 45.0 0.0 90.0 
37 UA-S-90-90 90.0 0.0 90.0 
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orientations, α = 0º, 45º, 90º, in all three tested material orientations, θ = 0º (warp), 45º, 90º 

(weft). 

2.2 Biaxial Tensile Testing 

 A biaxial testing regimen has been designed to extend the study of the effects of stress 

concentrations on 325x2300 twill dutch woven wire mesh into the loading mode most common 

to this class of materials. When used in filtration and particle trace detection applications, 

hydrodynamic forces cause biaxial stresses to develop, and so it is necessary to investigate how 

such components behave, and ultimately fail, in the presence of a notch or tear. To this end, a 

linkage based biaxial load frame, inspired by the design proposed by Cavallaro and co-workers 

[Cavallaro et al., 2007], has been constructed to impart loads of varying biaxiality onto both 

notched and un-notched cruciform specimens. Digital Image Correlation will be used to provide 

full field tensorial and equivalent strain data, and a DAQ circuit has been developed to process 

and record remote load and displacement data from each axis. In addition to the remote and local 

response of notched specimens, the biaxial setup has been leveraged on smooth specimens to 

facilitate an investigation of potential modifications to the classical Hill yield criterion.     

2.2.1 Specimen Design from Finite Element Optimization 

 As outlined in Section 1.1.2, design of a viable biaxial cruciform specimen is a 

challenging prospect, with difficulties arising from inherently non-uniform stress distributions 

caused by fillet stress concentrations. Such stress concentrations can cause failure outside of the 

gage section of the specimen, possibly even in notched geometries, rendering yield and rupture 

results invalid. To minimize the negative effects of the cruciform arm fillets on the stress 

distribution in the biaxial specimens, parametric FEM simulations were carried out using 



41 
 

ANSYS Mechanical APDL on three candidate geometries, shown in Fig. 2.5 below. The 

parameters of interest for each respective geometry are the radius of the fillet region, rc, the 

length of the uniaxial cruciform arms, lc, and the width of the biaxial gage section, dc. Biaxial 

specimen A is characterized by a smooth circular arc fillet whose end points are tangent to the 

uniaxial arms. Specimen B also makes use of a smooth circular arc fillet, however the center of 

the arc fillet is defined as the point of intersection of the two axial arms, such that the defined arc 

forms three quadrants of a circle centered at the intersection point. Specimen C has a fillet radius 

described identically to specimen A, but incorporates tapered uniaxial arm sections. Note from 

Fig. 2.5 that the initial width of the uniaxial cruciform arm in specimen C is given as Dc, while 

the tapered width is assigned the parameter dc.   

 

Figure 2.5: Candidate biaxial specimen geometries parametrically investigated using ANSYS. Note that geometric 
symmetry is taken advantage of in this modeling effort, such that only one quadrant of the biaxial specimen is modeled.  

Each specimen is assigned isotropic elastic material properties, and meshed using 6-node 

isoparametric plane stress triangular elements (PLANE82), with increased mesh density in the 

region of the fillets, as shown in Fig. 2.6.  Symmetry boundary conditions were employed, and 

an equibiaxial stress applied to the cruciform arms. Appendix B contains the ANSYS APDL 

codes used to model the biaxial cruciform specimens. For each specimen geometry, the 
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parameters of interest were parametrically varied to investigate their affect on the magnitude of 

the SCF for the fillet region of the specimen. Post-processing of the finite element model is 

facilitated by exporting the Von Mises stresses in the region of the fillet, and the Von Mises 

stress at the center of the gage section. 

 

Figure 2.6: Finite element mesh of biaxial specimen A used to numerically optimize the cruciform specimen for the biaxial 
testing regimen. 

The stress concentration factor (SCF) of the fillet region for each prospective biaxial geometry 

can then be defined as, 

 ,

,

fillet vm
c

GS vm

K
σ
σ

=  (2.2.1) 

  

Where ,fillet vmσ  is the maximum Von Mises stress in the region of the fillet, ,GS vmσ  is the Von 

Mises stress in the center of the gage section, and Kc is the resulting SCF. The SCF values as 

defined by Eq. (2.2.1) were then plotted for each specimen as a function of the geometry, with 

the goal being to identify the combination of geometrical parameters which reduce the fillet SCF 
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to a minimum. These results are provided in Fig. 2.7, where the parameter definitions for each 

specimen are as described in the inset. Inspection of Fig. 2.7 reveals no clear advantage for any 

of the proposed specimen designs in terms of minimal SCF, with all geometries producing a 

minimum value of approximately 2.3 at some respective geometric parameter combination. To 

facilitate a selection, the other important aspects of cruciform specimen design; repeatability and 

ease of fabrication, relative continuity of stress in the uniaxial cruciform arms, and a biaxial 

stress state in the gage section, must be considered. With regards to specimen fabrication, both 

specimens A and C contain high tolerance circular arc fillets, and specimen C entails the 

additional difficulty of tapered cruciform arms. Precise fabrication of these specimen designs 

would demand expensive procedures such as die fabrication or water jet cutting. Conversely, 

specimen B can easily be fabricated using a drill template along with stencil-assisted straight 

razor cuts. Specimen B can be produced at a high level of precision at low cost, and so is an ideal 

choice provided the other two conditions are satisfied.  To investigate the continuity of the stress 

in the uniaxial cruciform arms of specimen B, and to assess the biaxiliaty in the gage section, 

ANSYS is again employed to generate the equivalent and directional stress contours for 

specimen B given the application of an equibiaxial tensile load. Figure 2.8 shows the stress 

contours developed in specimen B, using the same mesh parameters and boundary conditions as 

described in Appendix B for SCF determination.  Inspection of the contours provided in Fig. 2.8 

reveals that the Von Mises stress distribution (Fig. 2.8(d)) in the uniaxial cruciform arms of 

specimen B is uniform, and that the x-component (Fig. 2.8(a)) and y-component (Fig. 2.8(b)) of 

the applied stress proceeds into the specimen gage section with minimal disruption from the 

stress concentration at the fillet. The magnitudes of the axial stress components (σx and σy) in the 

gage section are nearly equal to each other, and are an order of magnitude higher the shear (τxy) 
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in the gage section. It is also noted that the magnitude of the Von Vises stress in the gage section 

of specimen B is considerably higher than the Von Mises stress present in the uniaxial cruciform 

arms, suggesting that failure in the gage section is possible with this design. 

 

Figure 2.7: SCF curves for the various proposed cruciform specimen geometries under equibiaxial loading. 
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Given the favorable stress contours shown in Fig. 2.8, along with the repeatability and low cost 

of specimen fabrication, specimen B represents the optimal geometry for the biaxial testing to be 

carried out in this thesis. 

 

 

Figure 2.8: Contour plots of the axial stress distribution in the x-direction (a), and the y-direction (b), the shear stress 
distribution (c), and the von-mises stress distribution (d) in cruciform specimen B under equibiaxial tension. 

Furthermore, Fig. 2.7 can be referenced to choose the optimal specimen geometry ratio for 

minimal stress concentration in specimen B, which corresponds to a r/dc ratio of 0.225. 

Ultimately, the driving dimensions for the cruciform specimen are the length and width of the 

cruciform specimen arms, which are limited by the available space in the biaxial test frame. The 
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final geometry of the cruciform specimens employed in the biaxial testing regimen is provided in 

Fig. 2.9. Note that the notch angle parameter, α, is measured with respect to the weft (90º) 

material orientation for the biaxial experiments.  

 

Figure 2.9: Optimized cruciform specimen used to investigate the effects of notches on biaxially loaded 325x2300 SS316L 
twill dutch woven wire mesh. 

 

2.2.2 Cruciform Specimen Fabrication 

 The design of the biaxial cruciform specimen selected for this experimental work is 

conducive to simple and inexpensive specimen fabrication. The specimens are to be incised from 

3.00in (7.62cm) square segments of 325x2300 SS316L twill dutch woven wire mesh, with the 

edges of the square aligned with the principle material orientations. All of the specimens are to 

receive the four circular fillets shown in Fig. 2.9  by means of a template-assisted milling 

α 

Weft (90º)

Warp (0º)

r/dc = 0.225 
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process. Once segmented from the main material sheet into carefully aligned squares, the 

individual specimen sheets are to be stacked and aligned in a fixture made from two 3.00in 

(7.62cm) square Lexan sheets which have been pre-milled with the fillet holes. The Lexan plates 

can then be clamped together and a precision end-mill employed to cut all of the circular fillets 

in a one step process. Once all of the holes have been drilled, the individual specimen sheets can 

be separated, and the uniaxial cruciform arm sections can be cut using a sharp razor, producing 

the final specimen shape as shown in Fig. 2.10. Measurements of the critical specimen 

dimensions show a specimen arm width of  0.80 .01in±  have been achieved using this 

fabrication method, which is considered an acceptable degree of variation.  

 

Figure 2.10: Biaxial cruciform specimen incised via the clamping and drilling process. 

0.80in (20.32mm) 

r/dc = 0.225 
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2.2.3 The Linkage Based Biaxial Load Frame 

 A linkage based biaxial load frame has been designed and fabricated to facilitate biaxial 

testing of the 325x2300 SS316L twill dutch woven wire mesh at various stretch ratios. The 

stretch ratio, γ, outlined in detail by Bhatnagar and others [Bhatnagar et al., 2007], is defined as 

the ratio of the grip displacements in each orientation. Stretch ratio is useful for linkage based 

biaxial load frames, which tend to be displacement controlled by design, in lieu of a stress ratio 

which can only be measured during the experiment. The device has been designed to interface 

with the aforementioned MTS Insight 5kN load frame, transferring the uniaxial crosshead 

displacement into biaxial tension or compression (or a combination of the two) through a series 

of two force members and pin connections. The biaxial loading axes are aligned on the 

horizontal, and their relative rate of displacement, i.e., the stretch ratio, γ, is controlled via 

positioning holes in the main load plates and grips, as shown in Fig. 2.11(b). As such, the biaxial 

axes can be displacement controlled relative to each other and relative to the displacement rate 

set at the MTS crosshead. The pin joints are outfitted with oil impregnated brass bushings (plane 

bearings), which allow for inexpensive friction reduction and high load capacity in comparison 

with instrumentation roller bearings. All of the load bearing components, including the linkage 

structure, the pin connectors, and the grips, are precision machined from low carbon tool steel 

(AISI 1020), and have been painted to reduce corrosion. The frame has been designed for testing 

of thin metallic and composite materials, and the rigidity provided by this material selection and 

geometry is more than sufficient for accurate testing of the subject material. Non-structural 

components, such as the LVDT rails and camera mounting fixture (Figs. 11(a) and 11(b)), are 

precision machined from Al-6061 for ease of machining and reasonable durability. Loads are 
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measured independently in each axis using two Fluke model LCM300 tension-compression load 

cells (Fig. 11(c)) with a maximum capacity of 250.0lb. (1112.5N). Grip displacement 

measurements for each axis are also available via two carefully aligned LVDT’s (Omega model 

number LD621-15), which are positioned onto the guide rails after the specimen has been loaded 

into the frame, much like a clip gage. 

 

 

Figure 2.11: Computer rendering of the (a) isometric view, (b) top view, and (c) side view, of the biaxial linkage based 
load frame used to test the cruciform biaxial specimens of 325X2300 twill dutch woven wire mesh. 
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The four analog data channels are processed and recorded using a custom designed amplification 

circuit and a Lego Mindstorm NXT 2.0 control module which digitizes and stores all four 

channels at a sampling rate of 10Hz. The load cell analog data acquisition circuit design for the 

linkage based biaxial test frame is illustrated in Fig. 2.12 below. The power for the amplification 

circuit is provided by two AC-DC converter supplies providing 15VDC with a maximum output 

of 12W. The supplies are connected to the circuit with their polarity reversed, facilitating the 

dual supply op-amp design seen in Fig. 2.12. As the load cell selected for the biaxial load frame 

can output compression loads, i.e., can produce a negative output voltage, it is essential that the 

data processing circuit (DPC) be designed to facilitate recording by the 0-5VDC NXT logic 

controller. To accommodate this, the load cell output must not only be amplified, but also shifted 

such that a maximum negative reading [-250lbf (-1112.5N)] produces an input of zero volts to 

the controller. This is solved by designing the DPC with two instrumentation amplifier stages, 

with the amplification being provided in the first stage by a Texas Instruments (TI) INA125, 

while a TI INA118 provides the necessary voltage addition and division operations in the second 

stage. The gain of the INA125 was chosen such that the load cell signal output would have a 

range of -5VDC to +5VDC. The INA125 instrumentation amplifier was chosen as the stage one 

amplifier because it provides a precision 5VDC reference, which can be added to the output 

signal in the INA118, hence providing the 5VDC offset required. All that remains is division of 

the voltage signal by two, which can be accomplished by again leveraging the INA118 

instrumentation amplifier in a series operation. Appendix C provides the individual Op-Amp 

circuit designs used to for the DPC, which can also be found in several Op-Amp handbooks 

[Brown and Carter, 2001]. The LVDT signal, which ranges from 0VDC – 10VDC was simply 

divided in half using a resistive voltage dividing circuit, which is picture in detail in Appendix C.  
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Figure 2.12: Schematic of the Data Processing Circuit (DPC) used to amplify and shift the load cell signal for recording 
by the NXT logic controller. 

The camera mounting fixture, shown in Fig. 2.11(c) and Fig. 2.13 below, has been added 

to the biaxial load frame to support DIC strain analysis of the cruciform specimens. The need for 

such a fixture stems from the horizontal alignment of the loading axis of the biaxial frame. It can 

be shown that the plane of the specimen moves relative to the crosshead of the actuating frame at 

a rate of 1:2, rendering it impractical to mount a camera onto the main load plates of the biaxial 

structure for 2D-DIC purposes, as out of plane motion of the specimen relative to the camera 

would be recorded as strain. A solution is to mount the camera directly to the grips as shown, 

while providing for lateral movement and alignment with a track and spring system. This design 

ensures that the camera will always be at a constant distance from the plane of the specimen, and 

will not move laterally with respect to the gage section. 
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Figure 2.13: Rendering of the camera mounting assembly in the (a) diametric view, and (b) bottom view,  for the biaxial 
load frame to facilitate DIC strain measurements in the plane of the specimen. 

As this design requires the placement of a camera in the load path of the actuating frame, it is not 

ideal to use the expensive CCD camera and telephoto lens setup employed in the uniaxial test 

sequence. As such, a relatively inexpensive high definition web camera (Logitech  920) is 

employed to collect the necessary frames. This camera provides reasonable resolution (1.4 

megapixels), does not auto focus, and provides output in uncompressed video format. The video 

data is extracted into individual frames at a known frame rate for correlation using the VLC 

Media Player software. As the sensor in this camera is color CMOS, the collected frames must 

be post-processed in a professional image processing software (Adobe Photoshop) for integration 

of the color information into grey scale pixel data for correlation by VIC-2D.  The test frame and 

the camera are started simultaneously, thus allowing for the first data containing frame to be 

easily identified from the sequence of recorded images. The video data is then synced with the 

load cell data by noting the frame collection rate (2Hz) and the data recording rate (10Hz). 
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Figure 2.14 shows the assembled biaxial load frame and camera assembly, along with a speckle 

coated cruciform biaxial test specimen. 

 

Figure 2.14: (a) The biaxial linkage based load frame installed on a uniaxial test machine, and (b) the DIC camera and 
grip system used to  collect full field strain data from the speckle coated cruciform specimens. 

2.2.4 Biaxial Tensile Testing Matrix of Experiments 

 The biaxial tensile testing matrix incorporates a series of experiments that vary 

parametrically by biaxial stretch ratio, γ, the notch aspect ratio, λ, and the notch orientation α. 

Un-notched biaxial tests are also prescribed to facilitate the modification of the Hill Criterion as 

described in Section 2.0. The notch aspect ratio and notch orientation are as defined for uniaxial 

tensile testing. Again, it is postulated that increasing notch sharpness will change the failure 

characteristic of the subject material in a manner that is dependent on both biaxial loading ratio 

and notch orientation, providing information regarding notch sensitivity, and failure 

mechanisms.  The material orientation with respect to the loading axes, θ, is not varied as a 

parameter for the biaxial tests, and loading is in the principle material axes in all experiments. 

The matrix of biaxial experiments performed in this work is provided in Table 2.3. Again, the 

value λ = 0 represents a slit or crack type stress concentration, and all slit stress risers are varied 

(a) (b) 
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by orientation in intervals of 45º measured with respect to the warp (0º) material orientation. It 

should be noted that a stretch ratio, γ, of 1.0 does not imply an equibiaxial stress ratio. 

 
Table 2.3: Matrix of Biaxial Tensile Tests on 325x2300 SS316L Woven Wire Mesh  

  

Test 
Number 

Test ID # λ Stretch Ratio, γ 
(εw/εs) 

Notch Orientation, ϕ 
(°) (WRT Warp Axis) 

1 BA-N-1.0 N/A 1.00 N/A 
2 BA-N-1.2 N/A 1.20 N/A 
3 BA-C-1.0 1.00 1.00 N/A 
4 BA-C-1.2 1.00 1.20 N/A 
5 BA-S-0-1.0 0 1.00 0 
6 BA-S-45-45 0 1.00 45 
7 BA-S-90-1.0 0 1.00 90 
8 BA-S-0-1.2 0 1.20 0 
9 BA-S-45-1.2 0 1.20 45 
10 BA-S-90-1.2 0 1.20 90 
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CHAPTER 3: UNIAXIAL TENSILE EXPERIMENTS 
  

3.1 Material Properties of the Un-Notched Wire Mesh 

3.1.1 Uniaxial Tensile Test Results 

 Uniaxial tensile tests were run on un-notched woven wire mesh specimens with the goal 

of establishing base line elasto-plastic properties to facilitate modeling efforts and comparison to 

notched geometries. Experimental specimens were incised as per Fig. 2.1 (a) in the main material 

orientations, and in off-axis orientations in intervals of 15º. All tests incorporated DIC strain 

measurements for accurate measurement of axial and transverse specimen strain. This approach 

produces detailed information on the orientation-dependence of material properties such as yield 

strength and elastic modulus, allowing for the application of classical mechanical models to the 

material via regression analysis or other means [Chen et al., 2007; Kraft and Gordon,  2011].  

 The tensile response of the 325x2300 SS316L woven wire mesh in various material 

orientations is provided in Fig. 3.1.  Several material properties for the as-received woven wire 

mesh have been established from the experimental data, and these properties are defined in Table 

3.1. Note that properties presented here are normalized as in Table 2.1. It is noted that maximum 

stiffness is observed in the warp (0º) orientation at 6.48kip/in (1134.8kN/m). Maximum yield 

strength and ultimate strength are observed in the weft (90°) direction at 23.0ksi (158.6MPa) and 

27.3ksi (188.2MPa) respectively. The weft (90°) orientation also shows the least elongation to 

fracture, and the warp (0º) orientation shows very little potential for work hardening. The elastic 

modulus of the subject material in the various material orientations can be obtained directly from 

the tensile response shown in Fig. 3.1. The values of Ew (warp) and Es (weft) are concluded to be 

3.09Msi (21.3GPa) and 2.88Msi (19.9GPa), respectively. Clearly, these values are significantly 
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less than bulk SS316L, which is reported in Table 1.1 as 28.0Msi (193.0GPa). If we define 

density of the subject material in terms of area, as provided in Table 1.2, the specific modulus is 

unitless, and takes values of 4.495x109 and 4.189x109 for the warp (0º) and weft (90º) 

orientations, respectively. This is compared to a  specific modulus value for planar SS316L of 

2.769x1010, calculated using the density provided in Table 1.1. 
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Figure 3.1: Load displacement response of the 325x2300 twill dutch woven wire mesh under uniaxial tension in various 

material orientations. 

To facilitate the DIC measurements, a speckle pattern was placed on the gage section of each 

specimen via black spray paint as shown in Fig. 3.2(a), with speckle diameter on the order of 

0.20mm. The application of the paint coating for DIC strain measurement resulted in only a 

Table 3.1: Normalized tensile properties of 316L woven wire mesh at various material orientations 
Orientation, 

θ (°) 
Stiffness, 

K/Kw 

Yield Strength, 
Sy/Sy,w

Ultimate Tensile 
Strength, Sut/Sut,w

Fracture 
Strength, Sf/Sf,w 

Elongation, 
εf/εf,w

0° (Warp) 1.000 1.000 1.000 1.000 1.000 
15° 0.37 0.53 0.59 0.40 0.63 
30° 0.07 0.33 0.67 0.44 1.06 

 45° (Bias) 0.04 0.44 1.16 1.23 2.60 
60° 0.18 0.75 1.19 1.27 1.10 
75° 0.54 1.22 1.37 1.42 0.53 

 90° (Weft) 0.92 2.00 2.15 2.3 0.41 
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minimal increase in specimen thickness, measured at 1.00x10-4in (2.54microns). It is necessary, 

however, to insure that the application of paint to the woven mesh specimens does not alter their 

mechanical stiffness. Figure 3.3 shows comparisons of the mechanical response of the coated 

and un-coated specimens in both the warp (0º) and weft (90º) orientations. It is noted that similar 

observations can be made for the bias (45º) oriented specimens.  

 

Figure 3.2: Image of the painted speckle pattern used for correlations (b) Illustration of the linear region used to correlate 
the specimen displacements and calculate the axial and transverse strains. 
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Figure 3.3: Comparison of the tensile response of SS316L 325x2300 twill dutch woven wire mesh in both as received and 

speckle coated states.  

warp (0º) weft (90º) 
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Inspection of Fig. 3.3 reveals that the application of the speckle coating has no significant effect 

on the elastic response of the woven wire mesh material, and only slightly decreases the ultimate 

tensile strength in the weft (90º) orientation. The proportional limit and elastic stiffness are 

unaffected by the paint coating, and thus it is concluded that DIC strain measurements can be 

performed on this class of materials without significant alteration of their tensile response.  

As this material is being treated as a thin orthotropic sheet, it is necessary to analyze the 

strain developed upon loading in both the warp (0°) and weft (90°) orientations. This information 

was extracted from the DIC data via line correlation of the displacement, as illustrated in Fig. 

3.2(b). The length of the lines used for these correlations are 0.380in (9.7mm) in the transverse 

direction, and 0.370in (9.4mm) in the axial direction. The results of this analysis are presented in 

Fig. 3.4, where strain is plotted with respect to the applied crosshead displacement. Analysis of 

Fig. 3.4 reveals excellent linear strain correlations in both of the axially measured directions, but 

considerable noise in the transverse strain correlations. It is postulated that this noise is due to the 

inhomogeneous structure of the material. In homogenous materials, strain energy is transmitted 

throughout the microstructure by intergranular bonding forces which are relatively strong. These  

intergranular forces allow for smooth strain distributions throughout the material, and even 

distribution of load from remote displacements. In the case of woven wire materials, load is 

transmitted throughout the structure via its wires, and inter-wire forces consist only of relatively 

weak frictional forces. As such, the transverse strain is theorized to be strongly influenced by 

Poisson's effect at the wire locations, but only weakly governed by Poisson's effect at 

intermediate locations between wires. This discretized material response is transmitted through 

the speckle coating placed on the surface of the wires, resulting in the erratic transverse strain 
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progression with time. This phenomenon is dealt with in this study through an effective 

averaging of the transverse strain, accomplished via a linear regression fit through the data. 
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Figure 3.4: Digital Image Correlation measurements of transverse and axial elastic strain in the warp (0º) and weft (90º) 
material orientations. 
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Figure 3.4 shows that the linear regression coefficients for the axial strain measurements are 

nearly 1.0, while the regression coefficients in the transverse directions are reasonable enough to 

proceed with the classification of Poisson's ratio. Also, it is noted that the weft (90º) orientation 

transverse strain measurements appear to not pass through the origin as would be expected. This 

is due to a post-processing procedure necessary to correct for the presence of a non-linear strain 

region in the early stages of elastic loading caused by wire crimp interchange and relative sliding 

[Cavallaro et al, 2007]. To account for this, the linear transverse strain values have been shifted 

to the vertical axis, and the slope of this curve is taken as the value to calculate Poisson's ratio. 

  The Poisson's ratio of the twill dutch woven wire mesh in the warp (0º) direction, νws, is 

found to be 0.398, while the value in the weft (90º) orientation, νsw, is 0.312. These values are 

within the range predicated by Hooke's law, and are consistent with values reported in the 

literature for woven materials [Hursa et al., 2009]. From these strain measurements, and the 

associated material stiffness values, the in-plane orthotropic elastic stiffness matrix can be 

populated. As a means to test the assumption that this material is orthotropic, the symmetry 

condition of in-plane orthotropic materials must be confirmed within the margin of experimental 

error. In this case, the experimentally-determined Poisson's ratio and elastic moduli values can be 

used to show that the symmetry condition is met only to within 18.0%, which draws into 

question the assumption of orthotropic behavior for this material. It is clear that further 

experiments are required to confirm the structural symmetry of this material, and to justify the 

use of an orthotropic constitutive assumption to model the SS316L woven wire mesh on a 

macro-scale. The dependence of the fifth elastic constant for the in-plane orthotropic constitutive 

model employed in this work can be established via Eq. (3.1.1)   
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 ws sw

w sE E
ν ν

=  (3.1.1) 

   
In an effort to investigate the orthotropy of the subject material, two verification DIC 

experiments were conducted. These experiments were carried out on uniaxial specimens incised 

at 45º, and at the supplementary angle, 135º, to the specifications outlined in Fig. 2.1(a). It is 

assumed that any mechanical asymmetry present in the SS316L woven wire mesh will be clearly 

distinguishable through a comparison of the stiffness and elasto-plastic hardening response of 

these two orientations. The DIC results from the two bias experiments have been leveraged to 

construct the load-displacement response of the subject material in the 45º and 135º degree 

orientations. Figure 3.5 shows these results graphically. Emphasis should be placed on the 

similarity of the stiffness and the elasto-plastic response of the two orientations, suggesting that 

the material is in fact symmetric in-plane. This ultimately leads to the conclusion that the 

325x2300 twill dutch woven wire mesh is mechanically symmetric, and thus by definition is 

orthotropic in-plane. The lack of dependence of the fifth in-plane orthotropic elastic constant is 

then deemed to be a result of error stemming from the assumption of continuity inherent to 

Hooke’s law in general.  

 In addition to the tensile response obtained from DIC testing, further correlations were 

carried out to measure the axial and transverse strains in the 45º material orientation. It is noted 

that all experimental conditions and correlation procedures used for the 45º case are identical to 

those used for the principle material orientations. Figure 3.6 shows the elastic strain 

measurements in the 45º-oriented 325x2300 twill dutch woven wire mesh as they evolved with 

respect to crosshead displacement. Analysis of Fig. 3.6 reveals that the measured transverse 

strain is nearly equal to the axial strain, resulting in a Poisson’s ratio of 1.09 for the 45º 
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orientation. While this value appears high, it is not unreasonable based on modeled and 

experimental data for woven fabrics available in literature [Sun et al., 2004; Boubaker et al., 

2010], with Poisson’s ratio values being observed well above 0.50. 
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Figure 3.5: The tensile response of 325x2300 twill dutch woven wire mesh in the supplementary bias orientations. 
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Figure 3.6:Digital Image Correlation measurements of the transverse and axial elastic strain in the bias (45º) material 
orientation. 
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 Strain measurement using the optical extensometery technique employed in this section is 

of great value to elastic property determination for the 316L twill dutch woven wire mesh; 

however, the accuracy of the reported results is dependent on the uniformity of the strain 

distribution in the gage area. To investigate the uniformity of the strain fields in the gage section, 

the full-field features of DIC can be leveraged to plot the strain distributions. Figures 3.7 and 3.8 

show the DIC measured strain fields in the x and y camera axes (not to be confused with the 

material axes), respectively, for all experimentally treated material orientations. Note that the 

strain distributions in both the x and y camera axes are relatively uniform, particularly in the 

areas of interest outlined in Fig. 3.2(b).  The anisotropy of the material becomes clear upon 

inspection of both Fig. 3.7 and Fig. 3.8, where clearly defined strain contours develop along the 

main load bearing material axis. The material clearly exhibits a Poisson’s effect, with areas of 

maximum negative transverse strain coinciding with areas of maximum axial strain. It is noted 

that the principal material orientations, warp (0º) and weft (90º), display more variability in strain 

distribution than the other orientations, but this is attributed to the fact that all of the wires are 

active in these material orientations, i.e., the gradient across the specimen width is not as severe. 

As such, the intricacies of the meso-scale material behavior dominant the variance in the DIC 

measurements, and the result is an image that appears non-uniform when scaled over the full 

range (as is the case in all images). The effects of load-bearing wire cut-off are made clear in Fig. 

3.8, where the 30º and 60º DIC y-camera axis strain contours show narrow bands of loaded 

material, corresponding to the section of wires in the specimen running the full gage length. 

Overall, the conclusion drawn from Fig. 3.7 and 3.8 is that proceeding with strain measurements 

averaged over the region outlined in Fig. 3.2(b) is reasonable for the purpose of elastic constant 

calibration. 
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Figure 3.7: Strain contours in the x-camera axis from testing on the woven wire mesh in various material orientations. 
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Figure 3.8: Strain contours in the y-camera axis from testing on the woven wire mesh in various material orientations. 
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3.1.2 Analytical Modeling Using the In-Plane Orthotropic Assumption 

 As there is currently no standard governing the use of DIC methods to characterize the 

mechanical properties of micronic metallic woven structures, particularly via off-axis uniaxial 

tensile tests, it is necessary to build confidence in the experimental results through either 

analytical or numerical modeling. In order to give credence to the experimental results, and to 

further strengthen the assumption of orthotropy, an effort has been made to model the elastic 

properties with respect to material orientation. Such modeling can be facilitated analytically by 

considering a transformation through θ of the compliance matrix of a generally orthotropic 

lamina under conditions of uniaxial stress [Gibson, 2007], i.e.,  
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Here, the subscripts w and s refer to the warp (0º) and weft (90º) principle material orientations, 

respectively, and the subscript θ is in reference to the loading direction relative to the warp (0º) 

axis. It is noted that similar equations exist for the other two independent elastic properties; the 

shear modulus and the transverse elastic modulus. It is clear from inspection of Eq. (3.1.2) that 

the bias (θ = 45º) elastic modulus, obtained from Table 3.1 as 122.9ksi (847.37MPa), along with 

the already determined elastic properties from the principle material axes, can be used to solve 

for the shear modulus, Gws, of the woven wire mesh. Manipulation of Eq. (3.1.2), and 

substitution of the necessary material property values, results in a value for Gws of 31.12ksi 
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(214.56MPa). Furthermore, the value for Gws can be used in conjunction with the other 

determined elastic properties in Eq. (3.1.3) to model the off-axis Poisson’s ratio of this material. 

Inspection of Fig 3.9 reveals that the model predicts a value of 0.975 for Poisson’s ratio in the 

45º orientation, which represents a percent difference of 11.4% from the experimentally 

measured value of 1.09. Table 3.2 provides the experimentally determined elastic modulus and 

Poisson's ratio values for the SS316L woven wire mesh material, along with the shear modulus 

derived from Eq. (3.1.2).  It is noted that the principal shear modulus is approximately 1.0% of 

the principal tensile moduli, considerably lower than the ratio in bulk SS316L of 39.0%. 
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Figure 3.9: Model of the orientation dependence of the Poisons Ratio of the subject material in conjunction with the 
experimental results 

Table 3.2: In-plane orthotropic elastic constants for SS316L 325x2300 woven wire mesh 
Material Orientation, 

θ (°) 
Elastic Modulus, E Poisson's Ratio, ν Shear Modulus, G 

Warp (0°) 3.09Msi (21.3GPa) 0.398 (νws) 0.031Msi (0.214GPa) 
Weft (90°) 2.88Msi (19.9GPa) 0.312 (νsw) 0.031Msi (0.214GPa) 
Bias (45º) 0.123Msi (0.848GPa) 1.09 (νw’s’) 1.08Msi (7.44GPa) 
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It is also of interest to utilize Eq. (3.1.2), referred to hereafter as the Elastic Modulus 

Orientation Function (EMOF), to model the off-axis elastic moduli of the woven wire mesh 

material. Figure 3.10 shows the variation in the elastic modulus with material orientation, along 

with the EMOF calibrated with the constants from Table 3.2. Note that the elastic moduli values 

reported in Fig. 3.10 are normalized by the value in the warp (0º) material orientation, Ew, 

3.09Msi (21.3GPa). Investigation of Figure 3.10 reveals that the EMOF fits the off-axis elastic 

modulus data well, with an R2 value of 0.95. Thus, it is concluded that the experimental and 

modeling efforts employed in this study have produced good results, and that use of a plane 

orthotropic constitutive model is within reason. 
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Figure 3.10: The elastic modulus of the 325x2300 twill dutch woven wire mesh as a function of material orientation, along 
with the EMOF calibrated from DIC experimental results 

R2 = 0.85 
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3.1.3 Yield Behavior of SS316L Twill Dutch Woven Wire Mesh: The Hill Criterion 

 It has been previously stated that this research has resulted in the optimized Hill criterion 

parameters [Eq. (2.1.1)] for the subject material in previous work from analysis of tensile test 

data in various material orientations [Kraft and Gordon, 2011]. It is necessary to present this 

work here, as the Hill criterion is used as a means to determine elasticity at the notch root point 

of interest, which is essential for valid SCF determination from experimental results presented in 

the subsequent sections. The Hill failure criterion is widely used for anisotropic (orthotropic, 

cubic, etc.) solids. The model is based on Distortion Energy Theory, and can be shown to 

simplify to the Von Mises criterion in the special case of isotropy. The criterion relates the 

directional yield strength of the material to the principal directions through the use of several 

curve-fitting parameters, resulting in a second order polynomial as shown in Eq. (2.1.1). The 

necessary constants may be ascertained either from Eq. (2.1.2), or from a regression analysis 

with the yield strengths of the material in the principle material orientations, and at several 

intermediate orientations. 

 The dependence of the normalized yield strength of the 316L SS woven wire mesh on 

material orientation, with σo equals 22.8ksi (157.2MPa), is presented graphically in Fig. 3.11, 

along with the Hill Analogy model calibrated with the constants presented in Table 3.3. Note that 

the values of the Hill constants presented in Table 3.3 are calibrated to normalized data, and so 

they are unitless. The Hill criterion proves serviceable for the prediction of the yield stress 

dependence on material orientation for the subject material, particularly at the principle and bias 

(45º) material orientation considered in SCF analysis. Thus, the Hill criterion may be used to 

determine the status of stress, either elastic or plastic, at the notch root to facilitate accurate 
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modeling of the SCF, which is by definition an elastic parameter. It should be noted that the Hill 

analogy, in the form presented in Eq. (2.1.1), does not account for the shear coupling exhibited 

by the subject material. It is postulated that improved fit to the orientation-dependence of the 

yield strength of this material can be achieved by modifying Eq. (2.1.1) to include interaction 

between the shear and normal stresses., and this is explored in detail in the subsequent chapter. 

Nevertheless, Fig. 3.11 shows the Hill Criterion provides very good fit at the material 

orientations considered in this work, and so can be used to establish the elasticity at the notch.  
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Figure 3.11: Orientation dependence of the yield strength of 325x2300 SS316L woven wire mesh. 

 

 

Table 3.3: Plane stress Hill parameter values calibrated to the normalized experimental yield strength of the subject 
material. 

Hill Parameter F G H N 
Normalized 

Value 0.25 3.17 0.75 38.5 

R2= 0.87
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3.2 The Notched Mechanical Behavior under Uniaxial Tension  

 The effect of stress risers on the uniaxial mechanical behavior of the 325x2300 micronic 

wire mesh material has been investigated via a tension test sequence as outlined in Section 2.1. 

The goal of this testing is to develop both elastic stress concentration factors (SCFs) for the 

various specimen geometries investigated, and to investigate notch affects on material failure 

behavior as a function of orientation and notch aspect ratio. Failure mechanisms are inferred 

using a combination of strain field analysis from DIC measurements, and post-mortem 

fractography. Ultimately, the results presented in this section include various SCF curves based 

on material orientation and specimen geometry, a comprehensive analysis of rupture behavior 

via post-mortem fractography, comparisons to well established analytic solutions based on 

continuum theory, and a subsequent discussion and analysis regarding the sensitivity of the 

ultimate strength of the subject material to the presence of a stress riser.     

3.2.1 Experimental SCF Curves for Circular Notched Strip Specimen under Uniaxial Tension 

 Experimental investigation of the effect of stress concentration on the mechanical 

responses of the subject material under uniaxial tension has been undertaken using the center 

notched uniaxial strip specimen shown in Fig. 2.1(b). In an effort to gauge the relevance of the 

solutions proposed by Lekhnitskii [Lekhnitskii, 1968] and others for the stress fields in notched 

orthotropic plates, the notches in this work have been formed as ellipses of varying aspect ratio, 

λ, ranging from a value of 1.0, i.e., a circle, to a value approaching zero, i.e., a slit or crack. A 

review of the test matrix given as Table 2.2 shows that the material orientation, θ, and the notch 

orientation, α, are varied from 0º through 90º in 45º intervals. The DIC analysis software utilized 

in this work (Vic-2D) is capable of providing the directional full-filed strain distribution at every 
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point in the gage section of the specimen. Strain distribution results are not immediately useful in 

determining the Stress Concentration Factor (SCF) of the specimen geometry, and so a 

constitutive model is required to relate the measured strains to the local stress levels. The use of 

the in-plane orthotropic stiffness matrix, i.e., the inverse of the compliance matrix presented in 

Eq. (1.2.2), along with the material properties given in Table 3.2, is proposed as an acceptable 

solutions to this problem given the relative continuity of the strain distribution on the macro-

material scale for the subject material, and the agreement of the of the orthotropic models, i.e., 

Eqs. (3.1.2) and (3.1.3), with the experimental results presented in Section 3.1.  

 Uniaxial tensile testing proceeded initially with circular notched specimens, employing a 

test setup as described in Section 2.1. Clear variations in the regions of maximum and minimum 

elastic strain are observed as the material orientation is varied from warp (0º) to weft (90º), as 

shown in Fig. 3.12 below, which shows the strain in the y-camera direction.  

 

Figure 3.12: Elastic strain contours in the y-camera axis for SS136L micronic wire mesh with a central circular notch. 
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The circular notch diameter is 0.25in (6.35mm), and all notches are central to the specimen. 

Inspection of the y-camera elastic strain contours presented in Fig. 3.12 reveals that the macro 

scale strain distribution is greatly affected by the circular notch in all material orientations, and 

the direction of the propagation of the disturbance in the strain field from the notch is dependent 

in the material orientation. The appearance of the maximum strains in the bias (45º) oriented 

specimen occurring along the principle material directions, i.e., inclined at 45º, is consistent with 

the elasticity solutions presented by Lekhnitskii [Lekhnitskii, 1968], which predict the location 

of the maximum stress to be dependent on material orientation in directional materials. In the 

principle material orientations (warp (0º) and weft (90º)), the circular notches are flanked by 

regions of high tensile strains, adjacent to regions of compression on the loading axis of the 

specimen. The bias (45º) oriented specimen shows no compressive zones, but does have regions 

at the top and bottom of the notch surface with near zero strains in the y-camera axis.  

 Development of experimental SCFs for the circular notches incised into the principally-

oriented subject material requires the quantification of the strain contours. This is facilitated by 

extracting the data along a horizontal line extending from one side of the notch to the edge of the 

specimen in the positive x-camera direction. Elastic strain data in the y-camera, and x-camera 

directions, as well as the respective tensorial shear strain, was extracted in this manner for all 

three experimentally treated material orientations, and this data is presented in Fig. 3.13. It must 

be noted that strain correlations near the edge of the circular notch in the warp (0º) and weft (90º) 

material orientations fail to converge due the high strain gradients in the region. This is made 

clear by inspection of Fig. 3.12, where the strain contours are undefined near the notch edge. 

Clearly, this has implications on the ability of the method to produce accurate SCF values at the 

notch edge, and this is dealt with subsequently. It is interesting to note that the shear strain, εxy, is 
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near zero at the notch in all of the material orientations, and that the axial strain, εxx and εyy, are 

symmetric in the 45º orientation about the transverse camera axis. This provides further support 

for the assumption of material orthotropy, i.e., the stiffness is equal in the 45º± material 

orientations. The strain distribution in the warp (0º) material orientation displays the unusual 

quality of positive transverse strain along the y-camera = 0 axis. While the magnitude of the 

strain in the x-camera axis with respect to the other components is reasonable considering the 

sharp increase in y-camera direction strain expected in the failed convergence zone, the cause for 

a negative Poisson’s effect is unclear. It is noted that this is not observed in smooth specimens, 

and that the transverse strain becomes negative, as expected, at higher load levels. Given these 

observations, it is postulated that this is a result of the inhomogeneity inherent to his structure, 

and the inability of the material to transfer strain information from the notch edge to the 

surrounding region at low gross stress levels. It is theorized that as the material is loaded, and the 

notched region elongates into an ellipse, the region near the free edge of the specimen is under 

considerably less deformation as a result of the low MSGC of the woven structure, i.e., the 

structure cannot efficiently transfer strain energy to neighboring wires due to the limited shear 

stiffness of the subject material. This behavior, dominated by frictional wire sliding and crimp 

interchange, results in the apparent expansion of the material as the mesh searches for an 

equilibrium configuration. Eventually, as the load increases and the energy reaches some critical 

value, the mesh locks and frictional sliding is replaced by direct mesh contact, resulting in 

transverse contraction of the material. The necessary condition of elasticity precludes data 

collection at higher load levels, and so it is elected to report results taken at lower load levels. 
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Figure 3.13: The tensorial elastic strain distribution along the x-camera axis at y = 0 in various material orientations for 
the 325x2300 twill dutch SS316L woven wire mesh material with a circular notch.   
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 As failure in the bias (45º) material orientation is not observed to occur along an axis 

normal to the loading axis, but rather at some other angle relative to the y-camera axis, it is 

necessary to measure the strain at all points along the notch edge to determine the value and 

location of the maximum stress. In general, the stress distribution of an orthotropic body loaded 

at an angle to the principle direction is not symmetric with respect to the line parallel or 

perpendicular to the loading axis. Lekhnitskii [Lekhnitskii, 1968], however, does show that the 

stress distribution in an orthotropic sheet is symmetric with respect to the center of the notch, i.e., 

any line passed through the center of the notch will produce equal stress values at the edges 

where it intersect the opening contour. Thus, it is sufficient to measure the strain (and calculate 

the stress) on a range of π radians (180º) along this edge. Fig. 3.14 shows the distribution of the 

tensorial strains along the edge of the circular notch in the bias (45º) material orientation between 

the positive and negative y-camera axes. 
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Figure 3.14: The tensorial elastic strain along the edge of the circular notch in the bias (45º) material orientation. 
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The angular position on the notch edge, θq is measured with respect to the positive loading axis. 

Note that the strain in the x-camera axis and the y-camera axis appear to follow opposing trends 

as a function of θq, and that the shear strain is zero near the axis aligned with the loading 

direction (θq = 0º).   

With the maximum tensorial strain at the edge of the circular notches in each specimen 

quantified as shown in Figs. 3.13 and 3.14, it is straightforward to proceed with the calculation of 

the SCFs for a circular notch of 0.25in (6.35mm) in diameter centered in a 0.75in (19.05mm) 

wide uniaxial strip specimen of SS316L woven wire mesh. The definition of the SCF taken in 

the work is that presented in Eq. (1.3.1), i.e., the ratio of the maximum stress at the edge of the 

notch to the gross applied stress, σgross, which is defined in Eq. (3.2.1) as the load cell reading, 

Pcell, divided by the gross cross-section of the specimen, Agross, i.e., 

 cell
gross

gross

P
A

σ =  (3.2.1) 

As it is not immediately clear the edge position at which the stress will be at a maximum in 

material orientations other than principle, it is convenient to adopt a polar reference frame for 

stress component definition. For example, in the bias (45º) case, it cannot be assumed that the 

maximum stress occurs at a point perpendicular to the loading direction, and so it is necessary to 

employ the polar form of the stress tensor to investigate all points along the notch edge. The 

transformation from polar to Cartesian coordinates, given for the component θσ  in Eq. (3.2.2), 

along with the observation from Fig. 3.13 that the shear strain, εxy, is near zero near the notch 

edge in the warp (0º) and weft (90º) material orientations, allows for the assumption that θσ  is 

equal to y cameraσ −  in the principle material orientations at the point of interest (θp = 0º).  
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 2 2cos sin sin 2y p x p xy pθσ σ θ σ θ τ θ= + −  (3.2.2) 

The term θp refers to the angular coordinate in a fixed polar system at the center of the open 

notch, oriented such that 0º corresponds to the positive x-camera axis. Thus, comparison of SCFs 

calculated using y cameraσ − (the loading direction) are equivalent to those calculated using θσ  in 

the principle orientations, i.e., 

 max, max,
,

0º,90º, 0ºp

y
t g

gross gross

K θ

θ θ

σ σ
σ σ

= =

= =  (3.2.3) 

 Consequently, the θσ  term is adopted as the stress component for SCF definition in the 

remainder of this work.  

As the material orientation is being rotated with respect to the camera reference frame, 

careful attention must be paid to the transformation of the material stiffness matrix to assure the 

stress components are calculated properly. In general, the Hooke’s Law relationship for a plane 

stress orthotropic material may be written in stiffness form for the principle material orientations 

as the following, 

 
1 11 12 1

2 21 22 2

12 66 12

0
0

0 0 2

Q Q
Q Q

Q

σ ε
σ ε
τ ε

⎧ ⎫ ⎡ ⎤ ⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭

 (3.2.4) 

where the terms Qij are the components of the stiffness matrix. These components can be related 

to the elastic constants presented in Eq. (1.2.2) through an inversion of the compliance matrix, 

i.e.,  
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While the form of Eq. (3.2.4) is useful for analysis of the stress state when one of the principle 

material orientations of the test specimen is aligned with the loading axis, analysis of the bias 

(45º) specimen requires a transformation of the stiffness matrix. Such a transformation can be 

accomplished via the following operation, 

 [ ] [ ][ ]1
x x

y y

xy xy

σ ε
σ ε
τ ε

−

⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪
⎩ ⎭ ⎩ ⎭

T Q T  (3.2.6) 

Where [T] is the transformation matrix, defined as follows: 

 [ ]
2 2

2 2

2 2

2
2

c s cs
s c cs
cs cs c s

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥− −⎣ ⎦

T  (3.2.7) 

and the term s is sine θ and c is cosine θ.  Use of Eq. (3.2.6) allows for the calculation of the 

stress state at the edge of the circular notch for all tested material orientations, and hence for the 

calculation of the experimental stress concentration factor via Eq. (1.3.1). These results are 

tabulated for the circular notch in Table 3.4. It must be conceded, as previously mentioned, that 

inspection of the DIC contour plots in Fig. 3.12 reveals that the correlation failed to produce 

strain values at the actual edge of the notch. Due to the high gradients expected in the region of 

the notch, it is likely that the SCF values calculated with this method do not represent the 
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maximum stresses at the notch edge, but rather are indicative of the stress levels very close to the 

notch edge. Thus, the DIC experimental stress concentration factors are given the subscript n, 

indicating that the value is valid at some distance from the notch, but not at its edge. The value of 

the DIC experiments is not diminished by this, however; as the experimental contours provide 

validation of the continuum based FEM approach outlined in Chapter 4. Note that the maximum 

stress values for the principle material orientations are calculated at the position x is equal to r, y 

is equal to 0, where r is 0.125in, and θp is 0º. The position in space is measured with respect to 

the center of the opening and relative to the camera axes. The bias (45º) specimen was found to 

have a maximum θσ  component of stress at an angle, θp equal to 67.5º on the notch edge.  

Table  3.4: Stress values near a circular notch in the SS316L woven wire mesh along with the calculated near notch SCF 
values. 

Material 
Orientation, θ (º) 

Near Notch  Max 
Stress, σmax,θ-component 

(ksi) 
Gross Stress, σgross (ksi) SCFn, Kt,gn 

0 (Warp) 9.4 3.92 2.39 

45 (Bias) 6.85 0.913 6.85 

90 (Weft) 12.7 5.71 2.21 

 While the experimental elastic strain and stress values determined via full field DIC 

provide detailed insight into the deformation mechanisms of the subject material in the presence 

of a circular stress riser, and give an idea of the magnitude of the stress concentration factor in 

the vicinity of a notch, the results presented in Table 3.4 likely do not correspond to the 

maximum stress that can be expected at the edge of circular notch in 325x2300 SS316L twill 

dutch woven wire mesh material. To address this deficiency while simultaneously investigating 

the application of classical continuum mechanics theory to this class of materials, the analytic 
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solution supplied by Tan [Tan, 1988] for the y-component of stress along the  line at y equals 0 

(measured from a coordinate system position at the center of the opening) in an orthotropic body 

with an elliptical notch is employed. The solution provided by Tan,  

 ( )

( )
( )

( )
( )

2 1

2 2 2 2 2 2
1 1

1 2 1 2

2 2 2 2 2 2
2 2

1

1 11,0 Re
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∞

⎧ ⎫− −⎡ ⎤
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− − + − −⎪ ⎪⎢ ⎥⎪ ⎪⎢ ⎥= + ⎨ ⎬
− −⎢ ⎥⎪ ⎪

⎢ ⎥⎪ ⎪− − + − −⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 (3.2.8) 

which can be shown equivalent to the one provided by Lekhnitskii in Eq. (1.3.10) in the case of 

an infinite body and a circular notch, is ideal for this comparison as it provides for a finite width 

correction factor that can be used to scale the results, as shown in Eq. (1.3.11), accounting for the 

effects of the free edge boundary conditions on the stress distribution. Here, yσ ∞ is the maximum 

y-component of stress at the notch edge in an infinite orthotropic body with an elliptical hole, yσ  

is the remotely applied gross stress, λ is the ratio of the major radius, b, to the minor radius, a, of 

the notch, 1μ  and 2μ are parameters accounting for the anisotropy of the material, γ, is the notch 

distance ratio, x/a, and the term Re denotes that the real part of the complex expression is to be 

taken. The characteristic equation given for determining the factors µ1 and µ2 is, 

 ( )4 3 2
22 26 12 66 16 112 2 2a a a a a aμ μ μ μ− + + − +  (3.2.9) 

where aij are the terms of the compliance matrix as given in Eq. (1.2.2). The FWC for a circular 

notch (λ = 1 only) takes the form shown in Eq. (3.2.10), where W is the overall specimen width, 

a is the minor radius of the notch, and M is a magnification factor given as Eq. (3.2.11) 
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By solving for the stress distribution along the line at y = 0, and then applying the FWC factor 

appropriate for the specimen geometry outlined in Fig. 2.1, it is possible to compare the analytic 

solution to the experimentally determined stress distribution along the same line, as shown in 

Fig. 3.15. It is clear that the analytic solution predicts considerably higher stresses at the edge of 

the notch than the maximum values measured using DIC. Inspection of the warp (0º) and weft 

(90º) stress distributions in Fig, 3.15 supports the assumption that this discrepancy is caused by 

the inability of the DIC measurement technique to correlate the displacement fields in regions of 

large gradients, as the stress distributions appear to converge in regions away from the notch 

edge. Based on this observation, it is concluded that the DIC measurements are not indicative of 

the maximum stress at the edge of the notch, but should be considered rather as near notch 

values. Given the apparent accuracy of the DIC results away from the notch edge, it is likely that 

the correlated stress field away from the notch could be used to directly estimate the stress at the 

notch edge via a least squares fit of the DIC data to the theoretical stress distribution. A similar 

technique has been successfully employed by Mogadpalli [Mogadpalli and Parameswaran, 2008] 
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to experimentally determine stress intensity factors (SIF) for a notched orthotropic plate using 

DIC.  Such a method is beyond the scope of this thesis, however, and is left for future work.  

Given the apparent agreement between the analytic solution and the DIC experimental 

results away from the notch edge, it is reasonable to extrapolate the experimental results to the 

notch edge using the analytic solution. In the case of the warp (0º) and weft (90º) material 

orientations ( y θσ σ= ), Eqs. (3.2.8) through (3.2.11) may be used for this purpose. Considering 

Eq. (3.2.3), the relationship presented in Eq. (1.3.10) can be used to predict the maximum stress, 

in the θ-component, along the notch edge in the bias (45º) case.  
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Figure 3.15: Experimental stress distribution along the line y = 0 for principal direction specimens of 325x2300 twill dutch 

woven wire mesh containing a circular hole with respect to the analytic solution as provided by Tan [Tan, 1988}.  
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The prediction for the θ-component of stress in the bias (45º) material orientation is presented in 

Fig. 3.16, along with the experimentally determined values. The DIC data was extracted along a 

contour near the edge of the notch [approximately 0.019in (0.48mm) away], along a 180º arc, 

i.e., (r ≅  a, θp = -90º - 90º). Note that the experimental θ-component of stress has been 

determined from the DIC data by first employing Eq. (3.2.6) to calculate the Cartesian 

components, and then using Eq. (3.2.2) to covert to polar form.   
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Figure 3.16: Distribution of the Theta-Component of stress along the edge of a circular notch in the SS316L woven wire 
mesh in the bias (45º) material orientation from both the DIC measurements and the solution presented by Lekhnitskii 

[Lekhnitskii, 1986]. 

The extrapolated SCFs for a circular notch in the subject material as a function of material 

orientation are presented in tabular form in Table 3.5. These values are given the subscript a, 

indicating that they are analytic in nature, and again it is noted that the stress values reflect the 

component θσ , and the reported SCF values are calculated accordingly. Clearly these values are 
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significantly higher than the isotropic case, Kt,g = 3.0, and, as expected,  are considerably higher 

than the near notch values presented in Table 3.4. It is interesting to note, that both the DIC 

results (Table 3.4) and the analytic solution predict the value of Kt,g  in the 45º (bias) material 

orientation to be significantly higher than in principle material orientations, indicating that this 

material orientation could be considerably more sensitive to the presence of a macro-scale defect. 

Table 3.5: Analytic SCF values for a circular notch in SS316L twill dutch woven wire mesh 

Material 
Orientation, θ (º) 

Predicted Notch Edge 
Stress, σedge, θ-component 

(ksi) 

Gross Stress, σgross (ksi) SCFa, Kt,ga 

0 (Warp) 47.93 4.74 10.11 

45 (Bias) 22.5 0.913 24.6 

90 (Weft) 68.03 7.13 9.54 
 

3.2.2 Experimental SCF Curves for Elliptical and Slit Notched Strip Specimens 

 With the experimental and analytic SCFs defined for circular notched specimens, testing 

continued with notches of varying λ ratio. As described in the experimental test matrix presented 

Table 2.2, the sharpness of the notch was varied from a λ value of 1.0, or a circle, to a value of 

near 0.0, or a slit, with an intermediate value of 0.5. For the cases of non-circular notches, the 

orientation of the notch root with respect to the loading axis, α, is of interest, and was also 

considered as a parameter in the test sequence. Thus, a series of 15 experiments, in addition to 

the circular notch experiments, were carried out using the full field DIC strain measurement 

technique. Strain contours for the λ equals 0.5 notches, again in the y-camera direction, have 

been correlated from the raw DIC data, and are presented in Figs. 3.17-3.19. Frames have been 

chosen in the early stages of loading, such that the contours represent nominally elastic material 
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behavior in all cases. Clearly in the case of elliptical notches (λ=0.5), the presence of the 

discontinuity causes severe perturbation of the strain field in all material and notch orientations.  

 

Figure 3.17: Mechanical strain contours in the y-camera axis for SS316L woven wire mesh in the warp (0º) material 
orientation, containing elliptical stress risers at various orientations with respect to the loading axis. 

 Figure 3.17 shows the y-camera axis strain contours in the area of elliptical notches in 

warp (0º) oriented woven wire mesh. It is interesting to note that the maximum strain in vicinity 

of the α = 0º notch is not at the center of the opening curvature as would be expected in a 

homogenous material, but rather is slightly above the center line, and symmetric about the y-

camera axis. This is attributable to the discontinuous nature of this class of materials, and in 

particular, the relatively large gaps between load bearing wires in the warp (0º) material 

y-camera 

x-camera 

α = 0º α = 45º

α = 90º

0.0025 

-0.002 

0.0022 

-0.003 

0.0032 

-0.0005 

P = 3.2lbf 
(14.2N) 

P = 6.09lbf 
(27.1N) 

P = 7.65lbf 
(34.0N) 



87 
 

orientation. For this class of materials, it is reasonable to assume that the location of the 

maximum y-camera direction strain is determined not only by the notch geometry, but also by 

the continuity of the wires in the vicinity of the notch. For example, if the wires at the center line 

of the notch radius are cut in the process of incising the notch in the specimen, these wires 

cannot transfer traction near the notch edge, and so this load must be picked up by the next fully 

continuous wire close to the point of maximum stress. Similarly, the discontinuity of wires cut-

off by the notch edge explains the appearance of the strain contours in the α = 45º and α = 90º 

cases in Fig. 3.17, which all appear to be somewhat removed from the exact root of the notch 

perpendicular to the loading direction.  

 

Figure 3.18: Mechanical strain contours in the y-camera axis for SS316L woven wire mesh in the bias (45º) material 
orientation, containing elliptical stress risers at various orientations with respect to the loading axis. 
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  The strain distribution in the y-camera direction for elliptical notched specimens of the 

woven wire mesh material, incised in the bias (45º) material orientation, is shown Figure 3.18. 

Again, the elliptical notches are varied by orientation with respect to the loading axis. Inspection  

of Fig. 3.18 reveals that the strain distribution around the various elliptical notches in the bias 

(45º) orientated specimens is less uniform than in the warp (0º) case, with the maximum values 

not necessarily occurring at the notch roots, and with a general lack of symmetry about the 

loading axis. Close inspection, however, reveals that the strain distribution does appear nearly 

symmetric about the center point of the ellipse, particularly in the α = 45º and 90º cases, as is 

expected from analytic results. The relative size of the process zone in the region of the elliptical 

notches in the bias (45º) oriented specimens indicates that the failure mode in these specimens is 

likely yield dominant, i.e., characterized by a large plastic zone and high ductility. Conversely, 

the process zones for the elliptical notches in the warp (0º) oriented cases are more concentrated, 

indicating that the mesh rupture may show increased characteristics of brittle fracture. Such an 

observation can be easily confirmed via post-mortem inspection of the fracture surface, and 

inspection of the tensile response of the various notched specimens, and these aspects are treated 

in detail in subsequent sections.  

 The strain distribution in the y-camera direction around elliptical notches in the woven 

wire mesh subject material incised into weft (90º) oriented specimens is shown in Fig. 3.19. In 

general, the strain fields are symmetric about the center of the notch as expected, and the location 

of maximum strain is at the notch root perpendicular to the loading direction as expected. Again, 

in the α = 90º case, the area of maximum strain is somewhat more distributed. This is attributed 

to the increased load at the notch edge being redistributed and carried by the surrounding 

continuous wires in the vicinity of the maximum stress. Clear compressive zones develop in the 
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regions above and below the notch edge, suggesting some level of strain information 

transference from the notch to the surrounding structure, even in areas where the wires have been 

completely severed by the defect. The α equals 45º and  α equals 0º cases show considerably 

smaller process zones, indicating that only a few wires are actively participating with the notch 

edge in these cases. Such an observation again lends itself towards the conclusion that this 

material orientation behaves more like a brittle material in the presence of a notch, and that the 

failure in the weft (90º) material orientation tends to be fracture dominant. Again, this 

observation is investigated using post-mortem fractography and detailed analysis of the tensile 

response in later sections of this chapter.  

       

Figure 3.19: Mechanical strain contours in the y-camera axis for SS316L woven wire mesh in the weft (90º) material 
orientation, containing elliptical stress risers at various orientations with respect to the loading axis. 
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  Strain correlations in the y-camera direction have also been developed for the slit 

notches (λ = 0.0), again with the notch orientation with respect to the loading axis, α, varying 

from 0º to 90º in 45º intervals. These contours are presented in Figs. 3.20 through 3.22, and all 

cases have been selected from frames early in the loading sequences to assure nominally elastic 

behavior near the notch root. In general, it can be observed that the slit notches aligned with the 

loading direction (α = 0º) cause very little disturbance in the strain field,  which can be attributed 

to both the discontinuous structure of the subject material, and the fact that the radius of 

curvature of the notch perpendicular to the loading direction is along the order of the pore size 

between the wires. The lack of sensitivity of the strain field to the presence of the α = 0º slits  is 

also evident in the failure location of these cases, which tended to be in the grip rather than at the 

notch.  In all cases where the slit notch does appear to affect the strain distribution, the 

perturbation in the field is very local, and does not appear to favor a position on the notch edge, 

but rather creates a fairly uniform increase in strain over the entire open contour. Such an 

observation can be attributed to the fact that the root radius of the slit notch in the  α =  45º and 

90º cases is small enough to impact only a single wire, negating to a certain extent the singularity 

effects of the sharp slit notch in this class of materials.  

 The strain in the y-camera direction for a slit notch cut into material specimens oriented 

in the warp (0º) material orientation is shown in Fig. 3.20. Clearly, the slit notch oriented with 

the loading axis, α = 0º, has very little affect on the strain distribution in the structure. Even in 

the α = 90º case, the effect of the slit on the strain distribution is highly localized, and evenly 

distributed around the open contour. The uniform distribution of the strain field around the slit 

opening in the subject material is not restricted to the warp (0º) material orientation, but can also 

be observed in Fig. 3.21, bias (45º) material orientation, and Fig. 3.22, weft (90º) material 
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orientation. This presents a difficulty in the extraction of the strain data from the region of the 

contour, as it is not clear from inspection where the actual notch edge is located. To solve this 

problem, strain data was extracted from the full-field results as shown in Fig. 3.21 , with an inner 

contour and an outer contour along the basic path of the maximum strain region, and with strain 

lines that extend perpendicular to the loading region. In future work, such data could be used to 

extrapolate strain or stress fields to the notch edge by fitting analytic solutions to the 

experimental results, as proposed by Mogadpalli  [Mogadpalli and Parameswaran, 2008]. 

 

Figure 3.20: Mechanical strain contours in the y-camera axis for SS316L woven wire mesh in the warp (0º) material 
orientation, containing slit notch stress risers at various orientations with respect to the loading axis. 
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For the purpose of this current work, however, the inner contour is taken as the near notch field 

contour, and used to define the near notch SCF for this geometry.  For the cases of α = 0º, the 

notch location was identified by investigating frames at higher load value, where the presence of 

the notch in the inelastic strain field becomes more evident. For the bias (45º) material 

orientation shown in Fig. 3.21, the α = 0º notch has no visible effect on the strain field, even at 

higher load levels, and so no contour can be accurately placed, and the value of SCF prescribed 

for this geometry and material orientation is 1.0. This observation is particularly interesting, as it 

implies that this material is tolerant to slit notches aligned with the loading direction.     

 

Figure 3.21: Mechanical strain contours in the y-camera axis for SS316L woven wire mesh in the bias (45º) material 
orientation, containing slit notch stress risers at various orientations with respect to the loading axis. 
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Figure 3.22: Mechanical strain contours in the y-camera axis for SS316L woven wire mesh in the weft (90º) material 
orientation, containing slit notch stress risers at various orientations with respect to the loading axis. 
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around the elliptical notches.  Figure 3.21 illustrates the method used for extraction of the 

tensorial strain components in all elliptical and slit notch cases, with data taken along nearly 

elliptically-shaped contours, and along lines of interest from the notch root to the specimen edge 

perpendicular to the loading direction. The elastic tensorial strain values taken along the elliptical 

contours have been leveraged to formulate the state of stress along the near notch edge as was 

done in the case of circular notches using Eqs. (3.2.4 - 3.2.7). These values are then used along 

with Eqs. (3.2.2 and 3.2.3) to the calculate the SCF for each respective case from the maximum 

value of θσ  along the notch edge. The strain distributions calculated along the straight line paths 

from the notch tip to the specimen edge serve as indicators of the size of the region of the strain 

field perturbation, which ultimately can be used as an indication of mesh failure behavior in the 

presence of the various notch geometries.   

 The elastic tensorial strain distributions along the line of interest for the various notch 

orientations and λ values are shown in Figs. 3.23-2.28. For the elliptical notches in general, it is 

observed that the component of strain impacted the most severely by the stress riser is dependent 

on the notch orientation, α, with α = 0º producing significant increases in the shear strain 

component near the notch, and α = 90º degrees typically characterized by maximum strain in the 

y-camera  component. The slit notches tend to produce highly localized increase in strain 

magnitudes near the notch tip when α = 90º, but very little impact when the notch is aligned with 

the loading axis (α = 0º). Figure 3.23 shows the strain distribution along the line of interest from 

the notch tip to the specimen edge for the warp (0º) oriented elliptical notched specimens. 

Inspection of Fig, 3.23 reveals the location of the maximum strain is slightly off of the notch 
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edge in the α = 0º case, which is also observed in the weft (90º) material orientation, as shown in 

Fig. 3.25.   
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Figure 3.23: The tensorial elastic strain distribution along a line in the x-camera direction from the notch root to the 

specimen edge for various elliptical (λ= 0.5) notch inclinations in warp (0º) oriented specimens.    
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Figure 3.24: The tensorial elastic strain distribution along a line in the x-camera direction from the notch root to the 

specimen edge for various elliptical (λ= 0.5) notch inclinations in bias (45º) oriented specimens.    
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Figure 3.25: The tensorial elastic strain distribution along a line in the  x-camera direction from the notch root to the 

specimen edge for various elliptical (λ= 0.5) notch inclinations in weft (90º) oriented specimens.    
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This observation is likely attributable to the inevitable cut-off of wires near the notch edge, 

clearly demonstrating the inhibited strain redistribution capabilities amongst contacting wires in 

the subject material. Figure 3.24 shows the respective strain distribution for the bias (45º) 

oriented specimens containing an elliptical notch, and it is interesting to note that, similar to the 

distributions shown in Fig. 3.14, the x-camera and y-camera axis strain distributions are nearly 

equal but of opposite sign, while the shear strain is near zero for both the α = 0º and the α = 45º 

cases. For the case where the notch is oriented orthogonally to the loading direction (α = 90º) in 

the bias (45º) oriented specimen (Fig. 3.24), the location of the maximum strain is at the notch 

edge, and the magnitude of the strains in the  x-camera and y-camera directions at the notch tip 

are nearly equal but of opposite sign. The most atypical strain distribution found in the ellipse 

notched specimens is shown in Figure 3.25 (θ = 90º, α = 45º), where the maximum strain value 

0.05% occurs in the x-camera direction, approximately 0.15 in. (3.81mm) from the notch edge, 

while in the same location the strain in the y-camera direction, i.e., the loading axis, is near zero. 

This may be attributable to the high stresses imparted on the relatively few warp wires (aligned 

with the x-camera axis) in the region of the notch tip, causing an asymmetric extension of the 

notch into the x-camera direction. This is supported by the general asymmetric appearance of the 

notch post-fracture. 

 The distribution of the tensorial strain in the region of the slit type notches (λ = 0.0) at 

various inclinations to the loading axis and in various material orientations is shown in Figs. 3.26 

through 3.28. In all material orientations, minimum affect on the strain field occurs with the slit 

oriented with the loading axis (α = 0º). This fact is most pronounced in the bias (45º) and the 

weft (90º) material orientations, where the strain distribution is nearly constant across the 

specimen width.  
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Figure 3.26: The tensorial elastic strain distribution along a line in the x-camera direction from the notch root to the 

specimen edge for various slit  (λ= 0.0) notch inclinations in warp (0º) oriented specimens. 
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Figure 3.27: The tensorial elastic strain distribution along a line in the x-camera direction from the notch root to the 

specimen edge for various slit  (λ= 0.0) notch inclinations in bias (45º) oriented specimens. 
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camera direction occurs 0.07 in. (1.78mm) from the notch edge.  Figure 3.27, which shows the 

strain distribution along the line of interest from the notch tip to the specimen edge for bias (45º) 

oriented slit notch specimens, does not include a plot of the strain distribution for the α = 0º case, 

owing to the lack of significant strain disturbance in field around the slit.            
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Figure 3.28: The tensorial elastic strain distribution along a line in the x-camera direction from the notch root to the 

specimen edge for various slit  (λ= 0.0) notch inclinations in weft (90º) oriented specimens. 
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It is interesting to note that the difference in the maximum y-camera component of strain, 

typically found close to the notch edge, and the minimum y-camera component of strain, usually 

some distance from the notch edge, is relatively comparable between the α = 45º and α = 90º 

degree notch inclinations. For example, in Fig 3.28 (θ = 90º (weft)) the percent difference 

between the maximum and minimum y-camera direction strains when α = 45º is 91.3%, while 

the difference in the α = 90º case is 141.2%.  

 As previously described, the θ-component of the elastic stress distribution was taken 

around the open contour of the notch for all elliptical and slit notched specimens for calculation 

of the near notch SCF as defined in Eq. 3.2.3. The polar-coordinate system used to reference the 

θ-component of stress is similar to the system defined for the circular notches, but rotated 90º 

(π/2 radians) such that 0º (0 radians) indicates the loading axis. To reflect this difference, the θ-

axis for the elliptical and slit notch specimens is given the subscript q. In all cases, the Hill yield 

criterion, Eq. (2.1.1), was employed to ensure notch tip elasticity, and hence an accurate 

representation of the SCF. As was the case for the circular notch specimens, the elasticity 

solutions proposed by Lekhnitskii [Lekhnitskii, 1968] for an infinite orthotropic plate with an 

elliptical notch have been leveraged to garner comparison to the DIC results. In most cases, the 

analytic infinite plate solutions are relatively comparable to the experimental results, however, 

differences in location of peak stress, and, particularly in the bias (45º) material orientations, a 

general difference in stress distribution, is observed in some cases. These inconstancies with the 

analytic stress distribution are attributed to both the finite geometry of the test specimens, and the 

degree of material discontinuity at the edge of the sharp elliptical notches in the bias (45º) 

material orientations. For the case of the elliptical notch specimens, comparison to the analytic 
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results is emphasized, and so the plots of stress are represented individually, with each set of 

figures representing a single material orientation, θ, and containing the various notch 

inclinations, α, similarly to the presentation of the strain distributions. For the case of the slit 

notched specimens, the analytic solutions presented by Lekhnitskii were found to be adversely 

affected by the apparent singularity of the notch tip. As the DIC strain distributions in Figs. 3.20 

through 3.22 indicate, taking an analytic solution around a contour some distance from the notch 

edge, while possible, would not properly represent the behavior of this class of materials due to 

the lack of  field perturbation away from the notch. Thus, the slit notch results are presented 

without analytic solutions, and are consolidated by notch orientation into a single figure.  

 The analytic solution used for comparison to the DIC stress contour is taken from the 

solution proposed by Lekhnitskii [Lekhnitskii, 1968], where it is presented in general form as an 

infinite series solution to the problem of complex potentials which satisfy Eq. 1.3.8, as well as 

the boundary conditions of the problem. It is well known that, for the case of complex potential 

functions in anisotropic materials, the stress components can be related to the potentials by 

[Lekhnitskii, 1968], 
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and µ is defined as in Eq. 3.2.9.  As is suggested by Lekhnitskii, only the first term of the infinite 

series solution is taken, and the complex potentials are given as, 
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where the terms 1α  and 1β  are related to the boundary conditions of the problem, and for the 

case of uniaxial tensions are given as, 
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and p  is the remotely applied gross stress. The terms 1ζ  and 2ζ  are given as the following, 
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By substituting Eq. 3.2.15 and 3.2.16 into Eq. 3.2.14, the complex potential functions 

characterizing the stress distributions in an infinite orthotropic plate with an elliptical notch can 

be formulated. Finally, by taking the derivative of Eq. 3.2.14 and substituting into Eq. 3.2.12, the 

Cartesian stress components can be found for every point in the infinite body. By employing the 

proper relationships for x  and  y, the stress contour around the edge of the elliptical notch can be 

generated, i.e.,  
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=
 (3.2.17) 

All that remains is to employ the simple stress transformation from Cartesian to Polar 

coordinates, as shown in Eq. 3.2.2, such that θσ  can be calculated. Figures 3.29 through 3.31 

show the θ-component of the stress distribution  as calculated using the DIC strain data, in 

comparison to the analytic stress distribution as predicted by Eq. 3.2.12. Inspection of Figures 

3.29 through 3.31 reveal some interesting aspects of the mechanical behavior of this class of 

material in the presence of a stress riser. It is observed that in cases where the elliptical notch is 

in line with a principle material orientation, i.e., when α = 0º or 90º, the maximum stress tends to 

occur at θq = 90º (measured from the loading axis), which is as expected in an isotropic material. 

However, when the notch is oriented at an inclination to one of the principle axes, i.e., when α = 

45º, the location of the maximum stress varies with material orientation, and tends to occur 

around 115º measured from the loading axis.  Two distinct differences between the DIC stress 

results and the infinite analytic solutions are clear upon inspection of the Figs. 3.29 through 3.31. 

The most significant difference with regards to the mechanical behavior of this class of materials 

is the size of the area affected by the stress riser. For example, in the case of warp (0º) material 

orientation and α = 90º (Fig. 3.29), the analytic solution predicts the region of increased stress to 

occur over approximately 20º (0.35 radians) of the notch edge, while the experimental results 

show the area of stress perturbation caused by the elliptical notch is actually nearly 86.0º (1.50 

radians). Additionally, the analytic solutions tend to predict areas of compressive stress adjacent 

to areas of tensile stress, particularly in the bias (45º) material orientations, and when the notch is 

orientated at α = 90º. This behavior is not generally observed in the subject material, indicating 

that compressive loads are not transferred well in the woven structure. It must also be noted that 
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correlation in the weft (90º) specimen failed for the α = 90º elliptical notch case over a portion of 

the specimen, resulting in the plot ranging from θq = 90-180 (π/2 - π radians).     
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Figure 3.29: Experimental and infinite analytic distribution of  the theta component of stress along the edge of an 

elliptical notch, inclined with respect to the loading axis at various angles, in warp (0º) oriented SS316L woven wire mesh. 
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Figure 3.30: Experimental and infinite analytic distribution of  the theta component of stress along the edge of an 

elliptical notch, inclined with respect to the loading axis at various angles, in bias (45º) oriented SS316L woven wire mesh. 
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Figure 3.31: Experimental and infinite analytic distribution of  the theta component of stress along the edge of an 

elliptical notch, inclined with respect to the loading axis at various angles, in weft (90º) oriented SS316L woven wire mesh. 
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As all of the results presented here are fully elastic, i.e., P < Pyield, it is reasonable to assume the 

stress distributions are scalable in magnitude up or down, depending on the applied load. This 

fact was leveraged to facilitate the analytic modeling of the stress distribution around the notch, 

in which a unit load value was used for P in every case. The application of this unit load 

produced the distribution of stress around the notch edge, which was then scaled in magnitude to 

match the maximum value of the DIC results. As such, the analytic solution cannot be used as a 

metric to gage the validity of the magnitude of the maximum stresses found in the region of the 

notch, but instead serves the purpose to validate the general shape of the distribution, the location 

of the measured maximum stress. 

 The process of extracting strain data and calculating the elastic strain distribution was 

repeated for the slit notch cases, and this data is presented in Fig. 3.32. Inspection of Figure 3.32 

reveals that, particularly in the case of the bias (45º) and weft (90º) material orientations, a slit 

notch aligned with the loading axis (α = 0º) has little effect on the stress distribution in the 

structure. It must be noted that the angular reference θp, as opposed to θq, was used in the case of 

the circular notches. Recalling that θp references the positive x-camera axis as shown in the 

figure inset, it  is concluded that me maximum stress in the slit notch cases is at the point of 

minimum notch radius of curvature, as expected, i.e., at θp  = π/2 radians. It should be noted that 

brittle type fracture is observed to occur at the slit notch tip in all cases where α = 45º or 90º, 

which serves to support the theory that  a very localized zone of high stress is present at the tip of 

the notch, while the surrounding area is under nominal loading conditions. Nevertheless, the 

maximum value of the theta component of stress, regardless of position on the edge, is taken as 

the value for the calculation of the SCF.  
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Figure 3.32: Experimentally-determined distribution of  the theta component of stress along the edge of a slit notch, 

inclined with respect to the loading axis at various angles, in various material orientations of SS316L woven wire mesh. 
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 With the stress distribution now known for the area near the edge of the notch for all 

experimentally treated geometries, development of the experimental SCF curves for this class of 

material is possible. As the SCF in this case is dependent on three experimentally treated 

variables; the material orientation, θ, the notch orientation, α, and the notch aspect ratio, λ, it is of 

great interest to characterize the SCF as a function of the various parameters using graphs. This 

allows for functional relationships to be observed, and provides clear insight into the 

combination of parameters that lead to the highest, and lowest, concentration of stress. Figures 

3.33 through 3.35 show the relationship between the near field gross SCF and the notch aspect 

ratio, λ, the notch orientation, α, and the material orientation, θ, respectively. It is immediately 

clear  upon inspection of Fig. 3.33 that the results from the bias (45º) material orientation have 

produced SCF values that appear unreasonable. While it should be noted that the maximum 

stress values for these cases have been calculated from DIC frames corresponding to very low 

gross loads, and that the  Hill criterion for yielding has not been exceeded at the measurement 

contour close to the notch edge, i.e., the use of an elastic constitutive relationship is justified, 

such a high SCF value dictates that the wires at the notch edge are yielding almost immediately 

upon loading. As the first few DIC frames from which these results have been calculated are 

dominated by non-linear wire interactions, it is not ideal to extract data from these frames. 

Furthermore, it is conceded that the fixed grip conditions in the bias (45º) material orientation 

experiments inherently introduce a high level of specimen buckling as a result of the shear 

coupling exhibited by this material [Basset et al., 1999]. This specimen buckling produces out of 

plane displacement in the vicinity of the notch during tensile testing, even at low gross loads. 

Thus, it is possible that the results indicating SCF values near sixty may be erroneous.  
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Figure 3.33: The near notch gross SCF present in the SS316L woven wire mesh plotted as a function of the notch aspect 

ratio at various material and notch orientations. 
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Figure 3.34: The near notch gross SCF present in the SS316L woven wire mesh plotted as a function of the notch 

orientation at various material orientations and notch aspect ratios.  

λ = 1.0

λ = 0.5

λ = 0.0



114 
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Figure 3.35: The near notch gross SCF present in the SS316L woven wire mesh plotted as a function of the material 

orientation at various notch orientations and notch aspect ratios.  
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Future work must be pursued to investigate this problem further, perhaps by employing an 

alternative test setup, a modified set of wave gripes, or by conducting experiments at material 

orientations intermediate to the ones treated herein, i.e., at θ = 15º intervals. This study is left to 

future research, and possible remedies are expounded on in the future work section of this thesis.  

 The set of SCF plots which most resemble the classical relationships between notch 

geometry and the concentration factor in isotropic homogenous materials is Fig. 3.34, which 

shows the SCF plotted as a function of notch orientation at various material orientations. It can 

be observed that the most damaging notch case, if the outliers of the bias (45º) material 

orientation are not considered, is the case of the slit notch (λ = 0.0) oriented at 90º to the loading 

axis (α = 90º) in the warp (0º) material orientation, which produces a near notch SCF value of 

18.02. In contrast, the lowest SCF value is found to be 1.45, which corresponds to a weft (90º) 

material orientation, a notch aspect ratio of λ = 0.0, and a notch orientation of α = 0º. It is 

interesting to note that there is very little difference in the SCF value for the various notch and 

material orientations (again excluding the outlier values) in the case of the elliptical (λ= 0.5) 

notch. The maximum SCF value in the case is 11.85, which occurs in the bias (45º) material 

orientation, and in the 45º notch orientation. If the results from the bias (45º) are discounted 

completely, then the maximum value for the elliptical notch case is again found at a notch angle 

of 45º, but in the warp (0º) material orientation at 8.60. In general, the lack of variation of the 

SCF with notch orientation is indicative of the fact that this material is not highly sensitive to the 

radius of curvature of a defect, which  is attributable to the lack of mechanical coupling between 

the adjacent warp wires (low inter-wire coupling). Inspection of Figure 3.35, which plots the 

SCF as a function of the material orientation, θ, at various degrees of notch aspect ratio, λ, and 

notch orientation, α, reveals a transition in the value of the notch aspect ratio that produces the 



116 
 

highest SCF in a given material orientation. For example, in the case where α = 0º, all of the 

material orientations have a minimum SCF for the slit notch case (λ = 0), and a maximum SCF 

for the case of an elliptical notch case (λ=0.5), whereas in the case where the notch orientation is 

90º, the maximum SCF values are seen to occur in the slit notch cases. A clear transition is 

observable in this behavior upon inspection of the intermediate α = 45º notch orientation. The 

near notch gross SCF data for all of the various cases is arranged in tabular form in Tables 3.6 

through 3.8, which comprise data from the warp (0º), bias (45º), and weft (90º) cases, 

respectively. Inspection of Table 3.7 clearly shows that the bias (45º) material orientation 

produces SCF values that are outliers to the rest of the data, and so these values have been 

asterisked to indicate that further testing is needed for confirmation.        

             

Table 3.6: Near notch gross Stress Concentration Factors for SS316L woven wire mesh in the warp (0º) material 
orientation. 

Material 
Orientation, θ 

(Degrees) 

Notch Orientation, α, 
(Degrees) 

Notch Aspect Ratio, λ, 
(in/in or mm/mm) 

Near Notch Gross 
SCF, Kt,gn 

0 

0 

1.0 2.39 

0.5 8.07 

0.0 1.67 

45 

1.0 2.39 

0.5 8.58 

0.0 8.86 

90 

1.0 2.39 

0.5 6.02 

0.0 18.02 
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Table 3.7: Near notch gross Stress Concentration Factors for SS316L woven wire mesh in the bias (45º) material 
orientation. 

Material 
Orientation, θ 

(Degrees) 

Notch Orientation, α, 
(Degrees) 

Notch Aspect Ratio, λ, 
(in/in or mm/mm) 

Near Notch Gross 
SCF, Kt,gn 

45 

0 

1.0 6.85 

0.5 59.7 

0.0 1.0 

45 

1.0 6.85 

0.5 11.85 

0.0 11.49 

90 

1.0 6.85 

0.5 5.96 

0.0 53.39 

 
Table 3.8: Near notch gross Stress Concentration Factors for SS316L woven wire mesh in the weft (0º) material 
orientation. 

Material 
Orientation, θ 

(Degrees) 

Notch Orientation, α, 
(Degrees) 

Notch Aspect Ratio, λ, 
(in/in or mm/mm) 

Near Notch Gross 
SCF, Kt,gn 

90 

0 

1.0 2.21 

0.5 6.77 

0.0 1.45 

45 

1.0 2.21 

0.5 5.47 

0.0 6.81 

90 

1.0 2.21 

0.5 7.94 

0.0 11.69 
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3.3 Fractography of Notched Uniaxial Specimens 

 In an effort to understand the mechanisms behind the failure of the various notched 

woven wire mesh specimens, considerable attention has been paid to the post-mortem fracture 

characteristics. Fractography has been performed on the failed woven wire mesh specimens, 

using a DinoLite Model AM7015MT at 70 times magnification. These images are presented 

below in Figs. 3.36 through 3.42, differentiated by notch orientations and aspect ratio.  

 

Figure 3.36: Fracture surface images for circle notched SS316L woven wire mesh specimens in various material 
orientations. 

This investigation revealed a strong dependence of fracture orientation and appearance on 

material orientation. Observations were made from detailed inspection of the failure surfaces 
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post fracture for each specimen tested, with focus on the degree of wire pull-out (fraying), 

waviness of the fracture surfaces, orientation of the fracture with respect to loading, and the 

direction of fracture propagation.  

 Inspection of Fig. 3.36 shows clear differences in appearance of the fracture surface of 

each material orientation for the case of a circular notch. The warp (0º) material orientation 

fractures with no discernable wire fray or pull out, and the fracture surface displays little 

waviness is terms of its propagation. Failure occurs in the warp wires only, with very little if any 

load being transferred to the weft. The initially observed fracture began at the edge of the notch, 

at the line of symmetry running perpendicular to the line of load, and progressed outward as 

adjacent warp wires failed and unloaded, forcing neighboring wires to accept more load. It is 

interesting to note that the wavy fray-type fracture typically associated with this material 

orientation [Kraft and Gordon, 2011] is not observed in the notched material case, indicating that 

the stress concentration has reduced the process zone, resulting in only localized yielding and 

fracture.  Failure in the weft (90°) orientation is very concentrated around the stress riser. No 

wire fraying is observed, and fracture propagates through the material quickly and in a straight 

path. Again, the failure surface is orthogonal to the loading direction, and the fracture initiates at 

the edge of the notch along the line of symmetry of the circular notch. Failure in the bias (45º) 

orientation is characterized by combinations of the failure characteristics associated with the 

warp (0°) and the weft (90°).  Shear coupling of the off-axis specimens leads to the formation of 

shear stresses in the uniaxially loaded samples [Kraft Gordon, 2011], and indication of this can 

be observed from the high degree of weft wire fray. Fracture propagates along a direction 

perpendicular to the weaker warp (0º) material direction, and initiates at some angle to x-camera 
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axis centered at the notch center point. This indicates that maximum stress in the bias (45º) 

material orientation cases is not necessarily at a point of minimal radius of curvature. 

 In general, the observations made in the case of  the circular notch are consistent for the 

case of elliptical notches oriented in line with the principle material orientations, as can be 

observed in Figs. 3.37 and 3.38. Inspection of the weft (90º) material orientation case in Fig. 3.37 

reveals a small amount of weft wire fray present at the rupture location away from the notch root 

(left fracture surface), indicating that fracture of the wires occurred away from the notch edge, a 

result of wire cut-off at the notch, and indicative of the structural nature of the woven material.       

 

Figure 3.37: Fracture surface images for elliptical notched SS316L woven wire mesh specimens in various material 
orientation with α = 0º. 
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 Also, slight variation in the symmetry of the fracture initiation zone on opposite sides of 

the notch is observed, and is most likely attributable to inconsistencies in the weave stricture, 

either naturally occurring or introduced during the notch punching process, in the vicinity of the 

notch. It is noted that the fracture occurring at the notch root in the weft (90º) case (right most 

fracture surface) shows no weft wire pull-out, indicating that a wire at the notch edge failed first.   

 

Figure 3.38: Fracture surface images for elliptical notched SS316L woven wire mesh specimens in various material 
orientation with α = 90º. 
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from the minimum radius of curvature. Fracture at the notch edge in the warp (0º) and weft (90º) 

cases indicates that the amount of shear stiffness, i.e., the MSGC, in the material is sufficient to 

cause failure at the notch edge, otherwise, failure could be expected to initiate at any wire. 

Inspection of the process zone for the 45º inclined elliptical notch reveals that the location of the 

rupture is correlated with the location of the first continuous wire, and not necessarily on the 

edge of the notch, providing support for the previous observations regarding the asymmetry of 

the strain distributions provided in Figs 3.17 - 3.19 as being related to the distance from the 

notch edge to the first continuous wire.  

 

Figure 3.39: Fracture surface images for elliptical notched SS316L woven wire mesh specimens in various material 
orientation with α = 45º. 
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 Fracture zones for the slit notched uniaxial specimens are shown in Figs. 3.40 though 

3.42. In general, when mesh rupture was observed to occur at the location of the notch, the 

fracture is observed to initiate at the notch root, and to propagate in a similar fashion to the 

elliptical and circular notches. Inspection of the Fig. 3.40 shows that the α = 0º oriented notch 

failed to produce a stress concentration significant enough to cause mesh failure during the 

tensile tests in the warp (0º) and the weft (90º) material orientations, and rupture occurred in the 

grips. This observation supports the conclusion that slit notches oriented with the loading axis 

are not damaging to this class of material. Conversely, the failure location in the bias (45º) 

material orientation was at 0º oriented notch root.  

 

Figure 3.40: Fracture surface images for slit notched SS316L woven wire mesh specimens in various material orientation 
with α = 0º. 
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As stated in Section 3.2, the location of the rupture zone observed in the fractography of the slit 

notch specimens is not in agreement with the stress distributions taken from the DIC 

measurements for the weft (90º) case in both the inclined notch (α = 45º) and the perpendicular 

oriented notch (α = 90º) cases. This can be explained, by the inability of the DIC method to 

capture the strains directly at the notch tip, coupled with the extremely local stress concentration. 

Evidence to the fact of a highly localized process zone is seen in the degree of fracture surface 

sharpness in these cases, which indicates a brittle type fracture of the material, and in the 

consistency of the fracture initiation zone, in all material, θ, and notch, α, orientations, which is 

not observed in the circular or elliptical notch cases.        

 

Figure 3.41: Fracture surface images for slit notched SS316L woven wire mesh specimens in various material orientation 
with α = 45º. 
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Figure 3.42: Fracture surface images for slit notched SS316L woven wire mesh specimens in various material orientation 
with α = 90º. 

Further support for this hypothesis is provided by Fig. 3.43, which shows a close up view of the 

wires at the fracture location in an elliptical and slit α = 90º notches, in weft  (90º) oriented 

specimen. The process zone in the case of the elliptical notch (Fig. 3.43(a)) clearly involves more 

wires, shows evidence of weft wire pull-out from the mesh, and is more evenly distributed 

around the areas of minimum curvature. The process zone in the case of the slit notch (Fig. 

3.43(b)), distinguishable by the point of warp wire pull out from the mesh, is far more 

concentrated, and the surrounding wires exhibit very little sign of ductile deformation. From 
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is confined to a small group of contacting wires, making it very difficult to discern using a near 

field approach as was employed to generate Figs. 3.17 - 3.19. 

 

Figure 3.43: Fractographic image of the region of the notch root in the weft (90º) material orientation with (a) elliptical 
and (b) slit notches in the α = 90º direction. 
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3.4 Effective Stress Concentration Factors and Notch Sensitivity 

 An important metric in analyzing the effect that a stress concentration has on the 

mechanical behavior of a material is the change in the ultimate tensile strength between an un-

notched nominal geometry and a notched geometry. This metric, which allows for the calculation 

of the effective SCF as per Eq. (1.4.1), can then be used to calculate the sensitivity of the 

material to the stress concentration by a ratio of the effective SCF to the measured SCF, as per 

Eq. (1.4.2). To facilitate this, a series of nine nominal cross section tests, given the specimen 

numbers N-θ-α, corresponding to the various material orientations, and to the notch orientation 

that produces the corresponding nominal cross section, have been run, and the results are 

presented in Figs. 3.44.   

 

Figure 3.44: Uniaxial tensile response, in terms of load and crosshead displacement, of the SS316L woven wire mesh for 
various notched and nominal cross section geometries at various material orientations. 
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 From Fig. 3.44, the ultimate tensile load, Put, of each specimen geometry can be extracted  

and used to calculate the effective SCF, and the sensitivity of the material to the respective notch 

geometry. These values are reported in Tables 3.9 through 3.11 with respect to material 

orientation. It is noted that some specimens display a notch sensitivity less than zero, which falls 

outside of the range of possible values, and these specimens are assigned  a notch sensitivity of 

zero. In general, inspection of Tables 3.9 through 3.11 reveals that the ultimate load, Put, of 

SS316L woven wire mesh is not sensitive to the presence of a notch, particularly in the warp (0º) 

material orientation.     

Table 3.9: The effective Stress Concentration Factors (SCF) and the resultant notch sensitivities of the subject material 
oriented in the warp (0º) direction. 

material 
orientation, 

θ 

specimen 
number 

Notch 
Aspect 
Ratio, 
λ 

notch 
orientation

, α (º) 
Put 

Effectiv
e SCF, 

Keff 

Measured 
SCF, Kt,gn 

Notch 
Sensitivity, 

q 

Warp (0°) 

UA-E05-00-00 0.5 0 33.79 1.13 8.07 0.018 
UA-E05-00-45 0.5 45 27.24 1.14 8.58 0.019 
UA-E05-00-90 0.5 90 23.73 1.05 6.02 0.009 

UA-S-00-00 0.0 0 43.95 0.87 1.67 0 
UA-S-00-45 0.0 45 25.65 1.21 8.86 0.027 
UA-S-00-90 0.0 90 19.82 1.2 18.02 0.015 
UA-C-00-00 1.0 - 28.35 0.88 2.39 0 

 
Table 3.10: The effective Stress Concentration Factors (SCF) and the resultant notch sensitivities of the subject material 
oriented in the bias (45º) direction. 

       
material 

orientation, 
θ 

specimen 
number 

Notch 
Aspect 
Ratio, 
λ 

notch 
orientation

, α (º) 
Put 

Effectiv
e SCF, 

Keff 

Measured 
SCF, Kt,gn 

Notch 
Sensitivity, 

q 

Bias (45°) 

UA-E05-45-00 0.5 0 33.63 1.21 59.7 0.004 
UA-E05-45-45 0.5 45 20.8 1.59 11.85 0.054 
UA-E05-45-90 0.5 90 15.56 1.65 5.96 0.131 

UA-S-45-00 0.0 0 55.62 0.73 1.00 0 
UA-S-45-45 0.0 45 17.53 1.88 11.49 0.084 
UA-S-45-90 0.0 90 15.04 1.71 53.39 0.013 
UA-C-45-00 1.0 - 22.24 1.15 6.85 0.026 
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Table 3.11: The effective Stress Concentration Factors (SCF) and the resultant notch sensitivities of the subject material 
oriented in the weft (90º) direction. 

       material 
orientation, 

θ 

specimen 
number 

Notch 
Aspect 
Ratio, 
λ 

notch 
orientation

, α (º) 
Put 

Effectiv
e SCF, 

Keff 

Measured 
SCF, Kt,gn 

Notch 
Sensitivity

, q 

Weft (90º) 

UA-E05-90-00 0.5 0 60.7 1.24 8.07 0.034 
UA-E05-90-45 0.5 45 59.32 1.09 8.58 0.012 
UA-E05-90-90 0.5 90 32.77 1.58 6.02 0.115 

UA-S-90-00 0.0 0 83.47 0.90 1.67 0.000 
UA-S-90-45 0.0 45 47.5 1.36 8.86 0.046 
UA-S-90-90 0.0 90 36.74 1.41 18.02 0.024 
UA-C-90-00 1.0 - 53.67 0.96 2.39 0 

 

The highest notch sensitivity is found in the bias (45º) material orientation for the case of an 

elliptical notch oriented at 90º to the loading axis, with a value of 0.131. This particular notch 

geometry and orientation also produces a relatively high notch sensitivity in the weft (90º) 

oriented specimen,  with a value of 0.115. Interestingly, this notch geometry and orientation 

produces a very small notch sensitivity, 0.009, in the warp (0º) material orientation. It is also 

observed that the slit notches, which were expected to produce a more pronounced affect on the 

ultimate load than the elliptical notches, tend to produce smaller notch sensitivities than the 

elliptical notches. Again, this seems to be related to the MSGC factor, which suggests that the 

notch sensitivity factor, q, may play a role in the eventual functional form of this coefficient.     

  Insight into the mesh failure mechanisms can also be gained by inspecting the tensile 

curves presented in Fig. 3.44. In general, a mesh failure dominated by wire yielding mechanisms, 

characterized by individual wire necking, a large process zone, and a high level of overall macro 

ductility, can be identified by a tensile curve with a significant plastic strain region, i.e., a high 

elongation. Conversely, a brittle fracture type failure, characterized by a high level of structural 

interaction with the notch, can be identified by a tensile curve with a limited plastic strain region, 
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i.e., low elongation. To characterize the effect of the notch on the failure mode of the woven wire 

mesh material, the reduction in macro-scale elongation is considered. 

 In the warp (0º) material orientation, the largest reduction in elongation with respect to 

the AR specimen is observed to occur in the α = 90º slit notch, with a reduction of 76.9%. The 

minimum reduction is observed to occur in the case for the circular notch, while the α = 0º slit 

notch is seen to produce more plastic strain than the nominal cases. The bias (45º) material 

orientation also experiences the largest loss in ductility when notched with a slit oriented at α = 

90º, with a loss in elongation of 66.6%. Large losses in ductility are also observed in the bias 

(45º) material orientation for the case of a slit notch in the 45º orientation, and for an elliptical 

notch oriented at 90º to the loading axis. Again, the minimum ductility loss is observed for the 

circular notch. The weft (90º) material orientation experiences the maximum loss in macro-scale 

ductility for the case of an elliptical notch oriented at α = 90º, with an elongation reduction of 

62.5%. Again, the circular notch leads to the minimal reduction in elongation to failure in the 

weft (90º) material orientation.              
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CHAPTER 4: BIAXIAL TENSILE EXPERIMENTS 
 

 A regimen of biaxial testing has been performed on the SS316L woven wire mesh 

material, as per the test matrix outlined in Table 2.3, using the linkage based biaxial frame shown 

in Fig. 2.11. The biaxial testing performed provides data  regarding the effects of both circular 

and slit type stress risers on the mechanical behavior of the subject material when incised into the 

cruciform geometry supplied in Fig. 2.9, and subjected to both equibiaxial and unequal-biaxial 

loads. Additionally, biaxial testing has been carried out on un-notched cruciform geometries such 

that the yield surface in tension-tension space could be experimentally ascertained, and 

compared to the Hill criterion.  Ultimately, this testing sequence has shown that the Hill model 

provides a conservative estimate for the yield strength of the subject material under equibiaxial 

tension conditions, leading to a proposed modification to the Hill orientation model which 

improves the yield strength prediction capabilities of the Hill Analogy for the subject material. 

Also, the DIC results for notched cases have allowed for the production of near-notch SCF 

curves for SS316L woven wire mesh when incised into the given cruciform specimen geometry, 

and subjected to biaxial loads. 

4.1 Woven Wire Mesh Yielding 
 Biaxial tensile testing (both unequal and equal) has been performed on un-notched 

specimens of the SS316L micronic woven wire mesh material to ascertain the tension-tension 

yield surface for the material. Two biaxial tests, one of equibiaxial tension and  the other of 

unequal-biaxial tension, have been leveraged in conjunction with the uniaxial tensile tests in the 

principal material orientations (warp (0º) and weft (90º)) to characterize the yield behavior of 

SS316L woven wire mesh under  tension. The results of the un-notched biaxial tension tests, 
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presented as stress-strain curves for each respective axis of loading, are provided in Fig. 4.1. It is 

noted that the stress-state imparted to the specimen is not controlled in the linkage-based biaxial 

testing performed in this work, but rather the crosshead displacement rate (stretch) is controlled, 

thus accounting for the unequal stresses observed in the equibiaxial case. The stretch rate, as 

defined in Sec. 2.2, is γ = 1.2 in all unequal-biaxial cases. It is also of interest to observe the 

differences between the equibiaxial loading case, and the case of uniaxial loading in the 

respective principle material orientations, which are plotted alongside the equibiaxial results in 

Fig. 4.1(a).  
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Figure 4.1: Tensile response of the SS316L twill dutch woven wire mesh subjected to (a) equibiaxial tension, and (b) 

unequal-biaxial tension 

(a) 

(b) 
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It is observed that the warp (0º) stiffness is slightly reduced when loaded equibiaxially, which 

can possibly be attributed to slight misalignment of the warp wires in the weave as they are bent 

and compressed by the de-crimping weft wires. The reduction in strength observed in the weft 

(90º) material orientation is attributed to the additional tensile load imparted to  the warp wires, 

thus reducing their ability to carry the compressive loads imparted on them by the decrimping 

weft wires. The stiffness reduction observed in the weft (90º) case is also attributed to the 

tensioning of the warp wires, which effectively reduced the contact area of the overlapping 

wires, reducing the associated frictional forces. In general, the observations made from Fig. 4.1 

work to underscore the fact that the SS316L woven wire mesh should ideally be treated as a 

structure composed of two independent materials, whose interactions determine global 

mechanical behavior, rather than as single orthotropic material.     

 Generation of an accurate yield surface from biaxial tensile test data requires that 

yielding of the gage section occurs prior to material rupture. It is clear from inspection of Figs. 

4.1(a) and 4.1(b), showing the equibiaxial and the unequal-biaxial cases respectively, that 

yielding occurs prior to mesh rupture in both axes,  thus allowing for the determination of the 

yield strengths, defined using a 0.2% strain offset technique. Figure 4.2 shows the 

experimentally determined yield strength results for the SS316L woven wire mesh material in 

tension-tension space, along with the first quadrant of the Hill yield surface, given in Eq. (2.1.1), 

generated using the constants provided in Table 3. 3. The axes of Fig. 4.2 have been normalized 

by the weft (90º) orientation yield strength of 22.8ksi (157.2MPa). The Hill criterion is found to 

be a conservative predictor of yielding for SS316L woven wire mesh material for the stretch 

ratios considered, suggesting its use as a first-order design criterion is reasonable and safe. While 

the current design of the biaxial load frame limits the values of γ to 1.0 and 1.2, additional stretch 
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ratios closer to 0.0 (weft (90º) uniaxial) and to ∞ (warp (0º) uniaxial) must be tested in future 

work such that the curvature of the yield envelope can be better established.  
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Figure 4.2: The normalized experimental yield stress of the SS316L woven wire mesh material in tension-tension space, 
along with the conservative Hill criterion yield surface. 

 The generally poor fit of the Hill criterion to the off-axis experimental results as 

evidenced by Fig. 3.11, along with the observation that the yield criterion is overly conservative 

in the case of biaxial tension, highlights the need for a modified form of the classical Hill yield 

criterion for accurate prediction of woven wire mesh yielding. While there are certainly many 

anisotropic yield criterions available in the literature, i.e., Tsai-Hill, Generalized Hill, Logan-

Hosford, etc., a theory designed to account for various degrees of shear coupling, which is 

thought to be the prime contributor to the deviation from the Hill theory, is not known to exist 

[Meuwissen, 1995]. Evidence that the deviation from the Hill yield theory is based in coupling of 

the shear and normal stress terms is gained from the non-symmetrical nature of the material 

stiffness matrix as shown in Section 3.1, the general asymmetry of the structure as shown in Fig. 

uniaxial γ = 1.2 

γ = 1.0 
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1.5, and from the fact that the Hill criterion fails to capture the yield behavior for this material in 

material orientations where coupling is known to occur, i.e., in off-axis orientations, as 

demonstrated in Fig 3.11. Asymmetry of the plastic material behavior suggests that terms should 

be added to the coupling positions in the plastic potential function. The matrix representation of 

the Hill criterion is given as Eq. (4.1.1) below, where M is the Hill coefficient tensor as given in 

Eq. (4.1.2). It is seen that the terms coupling the shear and normal stresses are zero, indicative of 

the fact that the Hill criterion as presented in Eq. (4.1.1) is formulated via an assumption of 

material orthotropy. As the Hill tensor relates some given stress state to the yield condition, it is 

postulated that adding terms to the shear stress coupling positions in the tensor, i.e., deviating 

from this orthotropic continuum assumption, will improve the ability of the Hill criterion to 

model the yield behavior of the woven wire mesh material.  

 { } [ ]{ } 1Tσ σ =M  (4.1.1) 

 
0
0

0 0 2

G H H
H F H

N

+ −⎡ ⎤
⎢ ⎥= − +⎢ ⎥
⎢ ⎥⎣ ⎦

M  (4.1.2) 

 The effects of the stress coupling on the yield behavior of the SS316L woven wire mesh 

are theorized to be orientation-dependent, i.e., the degree to which the stresses are coupled is 

thought to be a function of the applied stress state. For example, when the material is loaded 

uniaxially, or in pure shear, the coupling terms must reduce to zero such that the case of special 

orthotropy is maintained. This is both consistent with the experimental and analytic modeling 

results presented in previous sections, and necessary to assure the  model predicts either a 

maximum or a minimum yield strength in the principle material orientations, i.e., the derivative 
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of the yield strength orientation model must go to zero at both warp (0º) and weft (90º) material 

orientations. As such, the additional coupling terms must be functions of the applied stress state, 

and may not affect the definition of the classical Hill parameters, F, G, H, or N.  To meet these 

requirements while allowing for easy comparison to the Hill orientation model derived using the 

assumption of uniaxial tensile loading, the coupling terms used to modify the Hill criterion have 

been assigned as functions of the material orientation, θ, as shown in (Eq. 4.1.3). It must be 

noted that the material orientation and the state of stress are related, and so development of a 

yield surface for the modified criterion  similar to the one shown in Fig. 4.2 is possible. It can be 

shown that a yield surface generated via Eq. (4.1.3) will reduce to the Hill surface in a case of 

zero applied shear stress  ( 2nθ π= , n = 0, 1, 2, etc.)  and that the yield strength predicted by 

the modified model in pure shear is identical to the Hill criterion. Figure 4.3 shows the prediction 

of the yield strength with respect to material orientation for both the modified Hill criterion 

presented in Eq. (4.1.3), and the classical Hill criterion, in conjunction with the experimental 

data. The Hill constants used to generate the modified Hill yield strength prediction curve in Fig. 

4.3 are identical to those supplied in Table 3.3, while the coupling terms I and K are given 

optimized values (based on regression analysis) of 22.9 and 5.98, respectively.  Inspection of  

Fig. 4.3 shows that the fit to the experimental data is significantly improved by adding the 

coupling terms to the Hill criterion, and the ability of the modified model to predict the minimum 

yield strength at an orientation other than 45º is highly desirable. Further work is needed to 

investigate the mathematical stability of the proposed modifications to the Hill criterion, and to 

provide physical significance, i.e., a means to experimentally determine, the proposed constants  

I and K, as detailed in the future work section of this thesis.                 
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Figure 4.3: The prediction of yield strength as a function of material orientation for the SS316L woven wire mesh 
material using both the classical Hill criterion and the modified Hill Criterion in conjunction with the uniaxial 

experimental data.   

4.2 The Notched Mechanical Behavior Under Biaxial Tension 

 The effect of notches on the mechanical behavior of the SS316L woven wire mesh 

material when loaded biaxially is of interest for practical application of the material in industry. 

The impact on the local (near notch) stresses of various notch geometries and orientations with 

respect to the weave axes is investigated using notched cruciform specimens, as illustrated in 

Fig. 2.9. In a similar manner to the uniaxial experiments, the notch aspect ratio, λ, is varied from 

a value of 1.0, or a circle, to a value of near 0.0, or a slit. Elliptical experiments are omitted in the 

biaxial testing regimen due to the lack of significant difference in circular and elliptical SCFs 

observed in uniaxial experiments. In all cases, the major diameter of the incised notched 

R2 = 0.87 R2 = 0.98 
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measures 0.25in (6.35mm). Additionally, the slit notch orientation, α, is varied from warp 

aligned (0º) to weft aligned (90º) in 45º intervals as described in the biaxial test matrix provided 

in Table 2.3. Rather than varying the material orientation associated with the cruciform 

specimens, the stretch ratio, γ, was varied from equibiaxial (γ = 1.0) to unequal-biaxial (γ = 1.2) 

as described in Section 2.2. Similarly to the uniaxial tensile tests, DIC was employed using a 

camera mounted above the specimen, as shown in Fig. 2.14 (b), to allow for investigation of the 

full strain field in the gage section of the cruciform specimen. The recorded data was then 

leveraged to calculate the near-notch experimental SCFs for each case in a manner identical to 

that employed in Chapter 3. What follows is a detailed discussion of the effect of notches on the 

mechanical behavior of biaxially loaded SS316L twill dutch woven wire mesh, including 

experimental SCF curves for the given specimen geometry, as well as fractographic analysis of 

the process zones associated with mesh rupture in the gage section.    

4.2.1 Near Notch Elastic Strain and Stress Distributions 

 The full field DIC strain measurement technique has been used to measure the strain 

distribution in the gage section of notched biaxial cruciform specimens subjected to equibiaxial 

and unequal-biaxial stretch ratios. Unlike the experimental setup previously outlined for the 

uniaxial test cases, the position of the camera in the biaxial linkage load frame with respect to the 

test specimen, as shown in Fig. 2.14, makes alignment of the camera axes with the specimen 

challenging. It is vital that the camera and the specimen be aligned, as even slight misalignment 

of the camera and specimen axes can lead to erroneous strain measurement, particularly in the 

form of artificial shear strains. Rather than defining a painstaking camera alignment and 

calibration process, it was elected to use the correlation software (VIC-2D, 2009) to calculate the 
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principle strains. In this way the DIC strain measurement tool behaves much like a rosette strain 

gage, making the alignment of the camera to the specimen inconsequential. In all cases, the 

misalignment was found to be slight, with very little difference observed between the principle 

and camera axis strains (within 5% in all cases). Thus, the principal axial strains are reported 

herein, along with the shear strain in the x-camera - y-camera plane.  

 The full field elastic principle strain distributions for the various notched cruciform 

specimen geometries and stretch ratios are provided in Figs. 4.4 through 4.12. In all cases, the 

weft (90º) material orientation is aligned with the 1-direction, while the warp (0º) material 

orientation is aligned with the 2-direction. Similarly to the uniaxial cases, the frames included in 

the subsequent figures have been selected based on an analysis of the near notch stress field 

indicating elasticity of the notch root, and the load level applied to the specimen at the time of 

the image capture, taken as the maximum of either the warp or the weft axes, is reported. 

Inspection of Fig. 4.4, which shows the case of the circular notched cruciform specimen 

subjected to equibiaxial stretch ratio (γ = 1.0) reveals distinct zones of strain concentration nearly 

aligned with the principle material axes, along with significant perturbation in the strain field 

caused by the presence of the circular uniaxial arm fillets. The locations of maximum strain 

appear to be slightly off of the main material axes for both the 1-direction and the 2-direction 

strains. This is attributed the effects of the fillet, which appear to be influencing the strain field 

near the circular notch. This observation indicates that the size of the notch selected for this 

series of experiments is likely too large with respect to the size of the specimen, and that it is not 

possible to ignore the boundary conditions in analysis of these results. Nonetheless, the major 

diameter of 0.25in (6.35mm) is maintained throughout this work for the sake of consistency and 

synergy with the uniaxial tensile tests.  It is clear from inspection of Fig. 4.4 that the near notch 
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strain distribution is more affected in the 1-drection than in the 2-direction, with the maximum 

strain at the edge of the notch being nearly four times greater, despite the equivalency of the 

applied strains.  

 

Figure 4.4: Principal elastic strain distribution in the gage section of a cruciform specimen loaded under equibiaxial 
stretch with a centrally located circular notch. 

As the 1-drection corresponds to strain developing in the weft wire material orientation, this 

result indicates that the weft direction is more severely impacted by the presence of a circular 
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notch than the warp direction, which is likely owed to the significantly higher density of the 

weave in the weft (90º) material orientation. Figure 4.5 shows the principal strain contours 

around the region of a circular notch in the biaxial cruciform specimen subject to unequal-biaxial 

stretch (γ = 1.2).   

 

Figure 4.5: Principal elastic strain distribution in the gage section of a cruciform specimen loaded under unequal-biaxial 
stretch with a centrally located circular notch. 
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Several commonalities can be observed between the equibiaxial stretch case shown in Fig. 4.4, 

and the unequal-biaxial stretch case in Fig. 4.5, particularly in the strain distribution in the 2-

diretion (warp direction). In general, the warp direction strain is characterized by larger and more 

evenly distributed areas of higher strain, with zones of field perturbation extending farther away 

from the notch edge than in the 1-direction (weft direction). Again, it is observed that the 

maximum strain in the 1-direction is approximately four times higher than the maximum strain in 

the 2-direction for the γ = 1.2 case. The effect of the increased stretch ratio appears to be a slight 

clock-wise shift the locations of the peak strains in both principal directions. This observation is 

consistent with the increased rate of strain in the warp direction, which has caused asymmetry to 

develop in the strain distributions with respect to the principal axes.     

 The presence of a crack or tear in the SS316L woven wire mesh is likely to present as a 

slit (λ = 0) type notch in service conditions, and so it is of particular interest to study this notch 

geometry in the biaxial experiments. Figures 4.6 through 4.11 show the DIC principal elastic 

strain results for the various slit notch orientations and stretch ratios. Inspection of Fig. 4.6, 

which shows the principal elastic strain distributions around a slit notch aligned with the 2-

direction (warp), again demonstrates that the 1-direction (weft) strains are more locally affected 

by the presence of the stress riser. The 2-direction (warp) strains are relatively evenly distributed 

throughout the gage section, appearing nearly unaffected by the presence of the slit aligned with 

the warp wires. Again, the circular fillets appear to have significant strain concentration, 

particularly in the 1-direction (weft), where they account for the maximum strain in the gage 

region. Failure is observed to occur in the gage section of the specimen at the notch root, 

however; thus allowing for the subsequent analysis of the rupture zone using microscopy. It is 

noted that the peak strains in the gage section of the specimen are higher in the 1 -direction 
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(weft) than in the 2-direction (warp) for the α = 0º equibiaxial slit notch case, with values of 

0.0035 and 0.0021 respectively.  

 

Figure 4.6: Principal elastic strain distribution in the gage section of a cruciform specimen loaded under equibiaxial 
stretch with a centrally located slit notch aligned with the warp direction (2-direction). 
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expected, as the edge shear traction terms cancel [Sih et al., 1962]; for non-homogenous 

material, however, it has been shown that mixed-mode loading conditions develop at the edge of 

a bias oriented crack under equibiaxial tension [Choi, 2001]. Mixed-mode conditions at the 45º 

oriented crack in the biaxially loaded SS316L woven wire mesh material are evidenced by the 

zone of transition between positive and negative 1-direction (weft) strains as shown in Fig. 4.7,  

which likely indicates mode-II type crack opening.  

 

Figure 4.7:  Principal elastic strain distribution in the gage section of a cruciform specimen loaded under equibiaxial 
stretch with a centrally located slit notch aligned at 45º to the warp direction (2-direction). 
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The 2-direction (warp) strain does not show similar visual evidence of mixed-mode behavior, but 

rather displays a uniform distribution of strain as seen in previous cases. Fractographic analysis, 

particularly regarding the direction of rupture propagation in the α = 45º, cases is necessary to 

confirm the mixed mode conditions, and this is discussed in detail in the subsequent section. The 

final equibiaxial case experimentally treated is the slit notch oriented at 90º to the warp axis (2-

direction). The elastic principal strain contours for the α = 90º equibiaxial slit notch case is 

provided in Fig. 4.8. 

 

Figure 4.8: Principal elastic strain distribution in the gage section of a cruciform specimen loaded under equibiaxial 
stretch with a centrally located slit notch aligned at 90º to the warp direction (2-direction). 
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Inspection of Fig. 4.8 reveals no severe perturbation of the strain fields in the 1-direction (weft), 

which is as expected given the alignment of this direction with the notch roots. The lower mesh 

density in the warp orientation (2-direction) leads to the observed large distribution zone of 

higher strain near the notch root, as was similarly observed in uniaxial test cases.  

 The case of unequal stretch ratio, γ = 1.2, was also treated experimentally for the notch 

orientations of α = 0º, 45º, and 90º, and the DIC principal elastic strain contour plots associated 

with these experiments are provided as Figs. 4.9 through 4.11.  

 

Figure 4.9: Principal elastic strain distribution in the gage section of a cruciform specimen loaded under unequal-biaxial 
stretch with a centrally located slit notch aligned at 0º to the warp direction (2-direction). 
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The case of a slit aligned with the warp direction (α = 0º) is shown in Fig. 4.9, and it is clearly 

observed that the effect of the notch on the material response in the 1-direction (weft) is 

generally not strong in the elastic regime. This attributed to the increased stretch ratio in the 2-

rection (warp), which is working to close the crack by Poisson's affect. Indeed, not until rupture 

was imminent was the slit observed to begin opening,  and the affect on the 1-direction (weft) 

strain distribution observed to become significant.  Figure 4.10 shows the principal elastic strain 

distribution for the unequal-biaxial case of a notch oriented at 45º to the warp axis (2-direction).  

 

Figure 4.10: Principal elastic strain distribution in the gage section of a cruciform specimen loaded under unequal-biaxial 
stretch with a centrally located slit notch aligned at 45º to the warp direction (2-direction). 
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The notch strain contours are observed to interact with the fillet stress risers, making 

observations of the strain asymmetry associated with the equibiaxial 45º case difficult. It is noted 

that a general gradient of negative to positive strain exists in the gage section of the specimen 

starting in the upper left corner fillet, however, it is likely that such a strong gradient is a result of 

specimen misalignment in the grips.  Future redesign of the biaxial test frame, outlined in detail 

in the future work section if this thesis,  is necessary to aid in specimen alignment such that these 

anomalous measurements can be reduced.  

 

Figure 4.11: Principal elastic strain distribution in the gage section of a cruciform specimen loaded under unequal-biaxial 
stretch with a centrally located slit notch aligned at 90º to the warp direction (2-direction). 
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The principal elastic strain distribution for the case of a slit oriented at 90º to the warp axis (2-

direction), and loaded by unequal-biaxial stretch, is shown in Fig. 4.11. Again, the effect of the 

unequal stretch rate is clear upon inspection of the DIC frames taken at low load levels, as the 

Poisson's affect form the higher warp direction (2-direction) stretch rate serves to reduce the weft 

direction (1-direction) strains. This is evidenced by the zone of near zero strain above the slit 

notch in the 1-direction (weft). It is noted that this zone of low strain is only observed at lower 

load levels, however the need to assure elasticity of the notch root in SCF calculations requires 

that low load levels be considered. In the warp direction (2-direction), the α = 90º slit produces 

large bean-shaped zones of increased strain in the region of the notch roots. While the shape of 

the strain distribution is consistent with homogenous isotropic theory, the size of the perturbed 

zone is very large with respect to the root radius, and is attributed to the inhomogeneous 

structure and low weave density in the warp direction, which has been shown to produce large 

process zones in uniaxial experiments [Kraft and Gordon, 2011].    

 In an effort to develop a more thorough understanding of the effects of stress risers in 

biaxially loaded SS316L woven wire mesh material, strain data has been extracted from the full-

field DIC results along the various notch edges, allowing for the subsequent calculation of the 

respective stress distributions via Eq. (3.2.6), as was done in the uniaxial cases. As the slit 

notches are of particular interest, owing to the increased possibility of a tear or rip tip stress riser 

presenting itself in industry, particular attention is paid to these geometries, and the notch edge 

correlations are supplemented with correlations running through the notch roots. The various 

correlation paths are detailed in figure insets to provide clarity and reference to the reader. In all 

cases, the extracted strains and resulting stress states correspond to the loading condition detailed 

in the respective strain contour plot shown in Figs. 4.4 through 4.11.  The angular position on the 
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notch edge is given in all biaxial cases as θw, which is defined as the angle with respect to warp 

axis (also the 1-axis or the y-axis). Figure 4.12 shows the distribution of tensorial elastic strain 

along the edge of a circular notch incised into both equibiaxially and unequal-biaxially loaded  

SS316L woven wire mesh material. 
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Figure 4.12: The distribution of the tensorial elastic strain along the edge of a circular incised into (a) equibiaxially 

loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material.  
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not negligible with respect to the axial strain values, and that the axial strain distributions are 

nearly out of phase with each other for both equibiaxial and unequal-biaxial cases. Also, a bigger 

range of strain magnitude is observed in the x and y directions for the case of equibiaxial tension 

than for unequal-biaxial tension, with values of 0.013 and 0.007, respectively. Figure 4.13 shows 

the strain distributions around the notch edge for the case of a slit notch oriented at α = 0º to the 

warp direction for both the equibiaxial and unequal-biaxial cases, as described in the inset of 

each figure.  
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Figure 4.13: The distribution of the tensorial elastic strain along the edge of an α = 0º oriented slit notch incised into (a) 
equibiaxially loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material. 
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Inspection of Fig. 4.13, reveals that the strain is relatively constant over a large portion of the 

notch edge. The y-direction axial strains are observed to increase slightly as the notch root is 

approached at θw = 0 for both the γ = 1.0 and γ = 1.2 cases, but the increase is minimal 

considering the sharp radius of the slit notch. In general, the equibiaxial and the unequal-biaxial 

case produce very similar trends in elastic strain near the notch edge, with the only measurable 

difference being the slope of the strain distribution as the angle approaches -π/2 radians, where 

the γ = 1.0 case has a negative slope, and the γ = 1.2 case slope is positive. Again, this drop in 

strain at the notch face positions (+/- π/2 radians) in the γ = 1.2 case can be attribute to the 

increased strain the warp direction (y-direction) with respect to the weft direction (x-direction), 

causing a  near traction free surface to develop along the face of the slit. The lack of symmetry 

observed in the strain distribution is attributed to misalignment of the specimen in the grips, and 

the effects of the circular fillets on the overall gage section strain distribution. The shear strain 

near the edge of the α = 0º slit notch is near zero for both the equibiaxial and unequal-biaxial 

cases, which is consistent with the trend observed in the uniaxial loaded case.  Figure 4.14 shows 

the distribution of strain along lines passed through the roots of the slit (α = 0º) notch along the 

axis of the slit, and through the central axis normal to the axis of the slit, as illustrated in the 

figure inset. The position along the line has been normalized by the length of the slit, 0.25in 

(6.35mm), such that the point xn = 0 corresponds to the center of the notch. Figures 4.14 (a), 

which show the distribution of strain perpendicular to the major notch axis for the equibiaxial 

case, shows a maximum value occurring close to the notch edge, and is symmetric about the 

center of the notch. Minimums in the equibiaxial case occur just off of the notch edge for both 

axial strain components. This trend is reversed for the unequal-biaxial case shown in Fig. 

4.14(b), where the maximum axial strains are shifted from the notch face edge, and the minimum 
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value occurs at the center of the open contour. For the case of the strains extracted along a line 

passing through the notch roots, as shown in Fig. 4.14 (c) and (d), peak strains are observed to 

occur over the entire range of the notch, rather than just at the notch roots. This observation 

communicates that the DIC setup used in the biaxial testing regimen is not of sufficient 

resolution to capture the small traction free zone at the center of the opening contour. Indeed, the 

peak strains in cases (c) and (d) are observed to correlate well with the peak values associated 

with the notch face strains extracted from cases (a) and (b).  It is also noted that in the cases of 

strain distribution along the slit notch axis, the shear strain is not negligible, and is on the order 

of magnitude of the y-direction (warp direction) strains. This suggests mixed mode I-II type 

conditions at the slit for the case of biaxial loading, even in cases where the notch is oriented in 

one of  the loading directions.    
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Figure 4.14: The strain distribution along lines passed through the notch roots (c, d), and perpendicular to the notch roots 
(a, b), for an α = 0º oriented slit notch incised into (a, c) equibiaxial loaded, and (c, d) unequal-biaxally loaded specimens. 
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The strain distribution around  the edge of the α = 45º notch for both the equibiaxial and unequal-

biaxial cases are shown in Fig. 4.15. Assessment of the strain distribution for the equibiaxial case 

shows a clear minimum of axial strain at an angular position of θw = -π/4 radians, with the 

maximum strains occurring near +/- π/2 radians. These results suggest that the area of maximum 

stress concentration is not at the notch root in the α = 45º notch cases.  
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Figure 4.15: The distribution of the tensorial elastic strain along the edge of an α = 45º oriented slit notch incised into (a) 

equibiaxial loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material. 

γ = 1.0 

γ = 1.2 

(b)

(a)

R/r = 1.15 

R/r = 1.15 

Notch 
Edge 

R 
r 

DIC 
Contour 

Pmax = 1.6lbf

Pmax = 3.6lbf



155 
 

It is interesting to note that the in-plane shear strains along the edge of the notch appear to be 

nearly exactly out of phase with the axial strains for the equibiaxial case, such that the maximum 

shear strain occurs near an angular position of θw = -π/4 radians. The unequal-biaxial case 

initially appears dissimilar in appearance to the equibiaxial case, however, it must be noted that 

the specimen was flipped when input into the load frame, and thus the notch is oriented 

orthogonally to the equibiaxial case. Taking this into consideration, and shifting the unequal-

biaxial trend accordingly,  the strain distributions are actually quite similar in terms of the 

location of the peak axial strain magnitude. Comparison to the equibiaxial and unequal-biaxial 

strain contours, shown in Figs. 4.7 and 4.10 respectively, along with the understanding that the 

strain is taken in quadrants I and IV of the notch, justifies the differences in the sign of the axial 

strains in these locations. The exception to this observation is the location of the peak shear 

strain, which has shifted to be in phase with the axial strains. Again, to obtain a better 

understanding of the affect of an α = 45º oriented notch on the mechanical behavior of biaxially 

loaded SS316L woven wire mesh material, strains have been extracted from lines both along and 

perpendicular to the major notch axis. The strain distributions for each respective path, and for 

both equibiaxial and unequal-biaxial stretch ratios, are provided in Fig. 4.16. The appearance of 

the strain plots in Fig. 4.16 are indicative of the fact that the γ = 1.0 and γ = 1.2 specimens are 

inverted, such that the trends for cases (c) and (d) are nearly exactly reversed. The asymmetry of 

strain distribution, particularly for cases (c) and (d), is pronounced, as the strain on opposite sides 

of  the notch root are not equal. This may be attributed to slight misalignment of the specimen in 

the load frame grips, but may also be a product of structural asymmetry of the material, as was 

discussed in Chapter 3. Another possibility to consider is that this asymmetric behavior observed 

for cases (c) and (d) in Fig. 4.16 is a result of interaction of the strain field with the circular fillets 
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of the specimen. This conclusion is supported by noting the distribution for equibiaxial and the 

unequal-biaxial cases in Figs. 4.16 (c) and (d), in that one root appears to have negative y-

direction (warp) strains, while the opposite root is in tension in the y-direction (warp direction). 

This suggests that further work is required to study the effects of specimen size and shape on the 

ability of this testing to produce valid results.     
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Figure 4.16: The strain distribution along lines passed through the notch roots (c, d), and perpendicular to the notch roots 
(a, b), for an α = 45º oriented slit notch incised into (a, c) equibiaxial loaded, and (c, d) unequal-biaxally loaded specimens. 
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 This final experimentally treated case is the α = 90º slit type notch, for which the strains along 

the notch edge have been extracted as in the previous cases, and are plotted in Fig. 4.17. The 

equibiaxial case (γ = 1.0) shows peak axial strain values at the notch root (θw = 0 radians) as 

expected. The unequal-biaxial case, however, shows that the location of peak strain has been 

shifted from the notch edge slightly. In both cases, the x-direction (weft or 1-direction) axial 

strain is higher than the warp direction, which speaks to the increased inter-wire coupling of this 

orientation. It is also noted that dips in strain occur near the notch root in the γ = 1.2 case that are 

not present in the equibiaxial case. To explain this measurement, reference must be made to the 

respective contour plots shown in Fig. 4.11. Inspection of Fig. 4.11 shows that areas of low strain 

are directly neighboring the notch root locations. Thus, even slight misalignment of the elliptical 

path used to extract the strain data is sufficient to cause the valley in strain observed in Fig. 

4.17(b). It must be noted, however, that the location of the peak strains shown in Fig. 4.17(b) are 

reasonably close to the expected notch root locations, and are consistent with the peak values 

reported in the respective contour plot. Again, strains have been extracted from lines both along 

and normal to the major axis of the slit notch, and these plots are provided in Fig. 4.18 below.  

The lack of apparent strain concentration at the notch root as shown in Fig. 4.18(a) and (b) is 

attributed to the orientation of the notch in the weft direction, such that notch roots are composed 

of the less densely woven warp wires. This provides further evidence that the warp wire 

orientation possesses less inter-wire coupling than the weft wire orientation, and is consistent 

with the findings from Chapter 3. Inspection of Fig. 4.18(a) shows a severe compressive zone in 

the x-direction (weft) strain directly adjacent to the left notch edge. The fact that this behavior is 

not observed at the opposite notch edge, which shows elevated levels of x-direction (weft) strain 

as expected, leads to the conclusion that this observation is related to boundary condition 
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interference. Figure 4.18(b) shows clear regions of elevated strain corresponding to the notch 

locations, with nearly equal increases in magnitude at the notch roots. Figure 4.18(c) and (d) 

shows zones of higher x-direction (weft or 1-direction) strain at the notch faces, corresponding 

with regions of reduced shear strain. Inspection of Fig. 4.18(d) reveals clear evidence of the 

increased strain at the notch face, with an increase of 0.2% strain over the neighboring regions.   
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Figure 4.17: The distribution of the tensorial elastic strain along the edge of an α = 90º oriented slit notch incised into (a) 

equibiaxial loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material. 
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Figure 4.18: The strain distribution along lines passed through the notch roots (c, d), and perpendicular to the notch roots 
(a, b), for an α = 90º oriented slit notch incised into (a, c) equibiaxial loaded, and (c, d) unequal-biaxally loaded specimens. 

 With the tensorial strains along the notch edge extracted and examined, Hook's Law, 

introduced previously as Eq. (3.2.6), can be employed to formulate the Cartesian strain 

components. As the state of stress in the biaxial specimen is somewhat complex, it is desirable to 

compare stress states amongst specimens using an equivalent measure of stress. Due to the 

assumed orthotropy of the subject material, and the previously displayed ability of the Hill 

Criterion to capture the yield behavior of the SS316L material reasonably well, the Hill 

equivalent stress, σhill, is chosen as the stress measure for comparison in this work. The 

equivalent Hill stress is formulated using the tensorial strain components taken near the notch 
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edge around the circumference of the notch, allowing for conclusions to be drawn regarding the 

effects of the circle and slit type notches in the stress state in the SS316L woven wire mesh 

material when loaded biaxially. Figures 4.19 through 4.21 show the distribution of the Hill 

equivalent stress as a function of angular position for the various notch geometries for both 

equibiaxial and unequal-biaxial cases.  Figure 4.19, which shows the distribution of stress near 

the edge of the circular notched biaxial cruciform specimens, show zones of peak stress 

coinciding with the angular locations of the uniaxial tensile arms. The distribution of peak stress 

resembles the results obtained from the uniaxial tensile testing regimen, and the distribution can 

be thought of as a combination of two separate uniaxial tensile tests. This is thought to be a result 

of the size of the notch with respect to the size of the gage section of the biaxial cruciform 

specimens, and future work is necessary to investigate the relationship between circular notch 

size and stress distribution under biaxial tensile conditions.  As was observed in the DIC contour 

plots, the location peak equivalent stress is rotated slightly for the unequal-biaxial case, which is 

thought to a product of both the unequal strain state, and the fillet regions interacting with the 

stress distribution around the notch edge. Figure 4.20 shows the distribution of the Hill 

equivalent stress near the notch edge for the case of various oriented slit notches in equibiaxially 

loaded SS316L woven wire mesh material. The location of peak stress is observed to shift as the 

notch orientation is varied, with the angular position of peak stress coinciding with the angular 

position of the notch edge in all cases. It is noted that the α = 0º notch (aligned with the warp 

direction) produces a far less pronounced perturbation of the stress field near the notch tip, which 

is consistent with the observation made in uniaxial testing, and can be attributed to the reduced 

inter-wire coupling of the warp wires. In all cases except the α = 90º case (notch aligned with the 

weft axis) the distribution of stress is asymmetric. 
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Figure 4.19: The Hill equivalent stress distribution near the edge of a circular notch in (a) equibiaxially loaded, and (b) 
unequal-biaxially loaded SS316L woven wire mesh material. 

This result is unexpected, and again may be due to the relative size of the notch with respect to 

the gage section of the cruciform specimen. Numerical analysis of the notched cruciform 
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geometry is required to investigate this asymmetry further, and the results of this analysis are 

detailed in the subsequent chapter. 
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Figure 4.20: The Hill equivalent stress distribution near the edge of a slit type notch at various orientation with respect to 

the warp material direction in equibiaxially loaded SS316L woven wire mesh material.  

The Hill equivalent stress distribution for the case of a slit notch at various orientations in 

unequal-biaxially loaded SS316L woven wire mesh material is provided in Fig. 4.21. 

Comparison of Fig. 4.21 with Fig. 4.20, which shows the equibiaxial case, reveal distinct 

differences in the location of peak and minimum stress values. The α = 0º case shows a 

minimum stress at the bottom notch root, and a near constant distribution of maximum stress that 

originates immediately off of the notch root. The maximum stress is observed to occur at the 

opposite notch root. The α = 45º case is quite similar to the equibiaxial case in trend, but the peak 

stress appears to occur on the opposite side of the notch.  This is again attributed to the specimen 

α = 0º α = 45º

α = 90º 
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being input into the load frame with the opposite surface facing the camera with respect to the 

equibiaxial case, thus causing the inverted stress distribution.   
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Figure 4.21: The Hill equivalent stress distribution near the edge of a slit type notch at various orientation with respect to 
the warp material direction in unequal-biaxially loaded SS316L woven wire mesh material. 

Similar to the α = 0º case, the α = 90º case appears to have a minimum stress near the notch root. 

This observation was also made in investigation of the strain state in Fig. 4.17(b), where it was 

attributed to slight misalignment if the elliptical path used to extract the raw strain data. It is 

noted the location of peak stress is near to the notch root, but on the opposing notch edge. This 

shift in the location of the peak stress with respect to the equibiaxial case may be a result of the 

unequal-biaxial loading, as was observed in the case of the circular notches. It is also possible 

that the region of reduced stress near the notch root may be caused by constraint in the weft 

α = 0º α = 45º

α = 90º
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direction due to the unequal stretch conditions and improper loading of the specimen in the grips. 

Clearly, this observation requires further investigation using numerical techniques, and this is 

provided in detail in the subsequent chapter.   

4.2.2 Near Notch Experimental Stress Concentration Factors 

 As the SS316L woven wire mesh material is chiefly loaded in states of biaxial tension in 

industry, it is of great interest to develop an idea of the magnitude of the effects of a given stress 

riser has on the local stress field of this material when loaded biaxially. As previously defined, 

the near notch Stress Concentrations Factor (SCF) is a classical measure of the effect of a stress 

riser on the magnitude of the stress near a notch in a component, and this metric is utilized in the 

biaxial test cases to compare the stress states between un-notched and notched geometries at 

equivalent loading conditions. For the case of biaxial loading, the SCF is not clearly defined in 

literature, particularly in the case of anisotropic materials. A consistent definition of the SCF is 

necessary for accurate documentation of the effects of stress risers on the biaxially loaded woven 

wire mesh material, as the definition undoubtedly will affect the values predicted. Thus, the SCF 

is defined herein as the ratio of the maximum Hill equivalent stress near the edge of the notch to 

the Hill stress in the center of an un-notched biaxial specimen at the same load level, i.e., 

 ,max
,

,

hill
g n

hill gross

K
σ
σ

=  (4.2.1) 

The trend of the SCF, Kg,n, with varying notch orientation, α, is plotted in Fig. 4.22 for the of 

equibiaxial stretch. The 1-direction (weft) principle strain contours, all equally scaled, are also 

included marking the location for SCF determination, and its proximity to and interaction with 

the stress perturbations caused by the neighboring circular fillets. Inspection of Fig. 4.22 reveals 
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that the maximum SCF, as defined in Eq. 4.2.1, is found in the case of circular notch. These 

results are, in general, not in agreement with uniaxial tensile testing results presented in Fig. 

3.34, which shows the slit type notches as having higher SCF values, as would be expected. 

 
Figure 4.22: The near notch equibiaxial gross SCFs for circular and slit type notches in the biaxial cruciform specimen 

with respect to the notch orientation, and the corresponding 1-direction (weft direction) principle strain contours. 

Inspection of the strain contour plot for the circular case provides a possible explanation for this 

observation, as the size of the notch is nearly equal in size of the measureable gage section, and 

clearly influenced by the high strain fields along the boundary. Further work is needed to explore 

the effects of reducing the size of the notch before definitive conclusions can be drawn regarding 

the SCF of this case.  Figure 4.23 shows the trend of the SCF for the notched biaxial specimens 

with respect to the notch orientation for the unequal-biaxial stretch case. The trends of the SCF 

for the unequal biaxial case are observed to match those for the equibiaxial case, but with values 

1 

2 
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on the order of 50% lower for the slit notches. The reduction in the SCF for the γ = 1.2 case may 

be attributed to the fact that the amount of stretch applied in the weft direction, which has shown 

to posses higher inter-wire coupling and is known to be of higher weave density, has been 

reduced. 

 

Figure 4.23: The near notch gross unequal-biaxial SCFs for circular and slit type notches in the biaxial cruciform 
specimen with respect to the notch orientation, and the corresponding 1-direction (weft direction) principle strain 

contours. 

This assumption could easily be tested in future work via a simple rotation of the test specimen, 

such that the weft direction receives 20% more stretch than the warp direction, and then 

observing the trends in SCF with respect to the changing stretch ratio. In general, the maximum 

SCF for the slit notch cases are found to be at α = 0º, while the minimum SCF is found at α = 
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45º. The SCF results presented in Figs. 4.22 and 4.23 are summarized in Table 4.1 for all 

experimentally treated conditions.  

Table 4.1: Near Notch Gross Stress Concentration Factor for various notch geometries and orientations in both 
equibiaxially and unequal-biaxially loaded cruciform specimens incised from SS316L woven wire mesh material 

Biaxial Stretch Ratio, γ Notch Aspect Ratio, λ 
Notch Orientation, α 

(º) 
Near Notch Gross 

SCF, Kg,n 

1 

1 - 11.70 

0 
0 10.90 
45 7.52 
90 9.52 

1.2 

1 - 7.62 

0 
0 4.50 
45 3.22 
90 4.36 

 

 

4.3 Fractography of Notched Biaxial Cruciform Specimens   
 

 Much knowledge regarding the effect of a stress concentration on the mechanical 

behavior of SS316L woven wire mesh material can be gained by inspection of the rupture zone. 

In particular, observations regarding the size of the process zone, the degree of wire pullout and 

fraying, and the waviness of the fracture surface are indicative of the mechanisms leading to 

mesh failure. To facilitate an investigation of the mechanisms leading to fracture in the notched 

biaxial cruciform specimens, post-mortem fractography has been performed using a DinoLite 

digital microscope, model number AM7015MT. The fracture surface images, shown in Figs. 

4.24 through 4.31, are supplemented with the experimental DIC frames  taken in situ at the onset 

of specimen rupture, showing the distribution of first principal stain around the notch location. 

The relative size of the area of the strain field perturbation is thought to be indicative of the 

sensitivity of the biaxially loaded woven wire mesh to the given notch geometry, and is also 
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correlated to the dominant material direction, for example, the warp (0º) material orientation is 

consistently observed to produce larger zones of strain field perturbation.  

 

 

Figure 4.24: Post-mortem fracture surface images of equibiaxially loaded SS316L woven wire mesh incised with circle 
type notch, along with DIC contours of first principal strain at rupture. 

 In homogenous and continuous materials, the sharpness of the notch radius tends to 

correlate well with the observed failure mechanisms, with larger root radii leading to yield 

dominant failure, and lower root radii typically leading to fracture dominant failure modes. 

Inspection and comparison of the circular and slit notch rupture zones in the SS316L woven wire 

mesh material allows for conclusions to be drawn regarding the failure behavior of this class of 
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materials, and how this behavior is related to material orientation and boundary loading 

conditions. Figures 4.24 and 4.25 show the rupture zones for the λ = 1.0 circular notches in both 

equibiaxial and unequal-biaxial cases, respectively. Inspection of both Figs. 4.24 and 4.25 shows 

that the failure at the circular notch root is accompanied by simultaneous failure at the circular 

fillets, indicating that the severity of the stress concentration at the circular notch root is not 

sufficient to cause fracture type rupture at the notch.  

 

Figure 4.25: Post-mortem fracture surface images of unequal-biaxially loaded SS316L woven wire mesh incised with 
circle type notch, along with DIC contours of first principal strain at rupture. 

 Nonetheless, the zone of increased strain in the region of gage section failure is pronounced, 

being more than an order of magnitude larger then neighboring zones of minimum strain. 
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Inspection of the fracture surfaces shows that the orientation of the crack propagation changes 

with load ratio. In the equibiaxial case, the failure is observed to occur in the warp wires, and is 

characterized by a high degree of weft wire fray. Failure in the unequal-biaxial case shown in 

Fig. 4.25, occurs at a location nearly 90º to the equibiaxial case, and is characterized by the sharp 

and concise failure of the weft wires. Further inspection of the first principal strain contour plot 

provided in Fig. 4.25, however, indicates that the dominant fracture direction is likely in a state 

of transition at the stretch ratio of 1.2, as an additional zone of increased strain is observed to be 

developing at an angle of 90º to the fracture zone. In both cases, the fracture prorogation is 

observed to be normal to either the warp (0º) or weft (90º) principal directions, and is indicative 

of fracture occurring due to tensile dominant conditions.  

 

Figure 4.26: Post-mortem fracture surface images of equibiaxially loaded SS316L woven wire mesh incised with an α = 0º 
slit type notch, along with DIC contours of first principal strain at rupture. 
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 To investigate the difference in rupture zone appearance associated with the extreme 

cases of the λ = 1.0 circle notch and the λ = 0.0 slit notch, fractography was also performed on 

the various slit notch cases. Figures 4.26 and 4.27 show the failure zones associated with the 

equibiaxial and unequal-biaxial α = 0º slit notch cases, respectively.   

 

Figure 4.27: Post-mortem fracture surface images of unequal-biaxially loaded SS316L woven wire mesh incised with an α 
= 0º slit type notch, along with DIC contours of first principal strain at rupture 

In both cases, the notch is observed to initiate fracture in the gage section of the specimen, which 

propagates normal to the weft wire direction. In both Fig. 4.26 and 4.27, the fracture initiation 

site is marked by an extremely tortured warp wire, which has been pulled out of the weave by 

failing weft wires at the notch root. This seems to indicate a zone of high inter-wire coupling at 

3.02mm 1.00mm 

0.34 

0.028 

warp (0º) 

weft (90º) 

warp (0º) 

weft (90º) 

warp (0º)

weft (90º) 



172 
 

the notch root, which is believed to be indicative of higher energy transference, and a higher 

degree of notch root yielding. Support for this conclusion, especially in the γ = 1.2 case shown in 

Fig. 4.27, is gained from the contour plots of first principal strain taken at the time of mesh 

rupture, which show zones of increased strain propagating away from the notch root. The 

increased area of strain distribution at the time of rupture observed in the uneqaul-biaxial case 

with respect to the equibiaxial case shown in Fig. 4.26 is attributed to the higher stretch imparted 

onto the warp wires, which invariably are characterized by lower inter-wire coupling, and a 

larger process zone. 

  

Figure 4.28: Post-mortem fracture surface images of equibiaxially loaded SS316L woven wire mesh incised with an α = 
45º slit type notch, along with DIC contours of first principal strain at rupture. 
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Figures 4.28 and 4.29 show the failure regions associated with the α  = 45º oriented slit type 

notch in equibiaxial loaded and unequal-biaxially loaded SS316L woven wire mesh material, 

respectively. In both cases, the fracture is observed to propagate normal to the weft wire 

direction, and is characterized by bending of the wires along the crack face. The observation of 

bending wires on the crack face is consistent with mode II type loading conditions, indicating 

that shearing of the notch face contributes to the failure of the material. As this material exhibits 

a much higher elongation to failure in shear than in tension, as evidenced by Fig. 3.1, it is likely 

that the rupture associated with the α = 45º slit is more ductile in nature.  

 

Figure 4.29: Post-mortem fracture surface images of unequal-biaxially loaded SS316L woven wire mesh incised with an α 
= 45º slit type notch, along with DIC contours of first principal strain at rupture. 
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 As the fracture of the α = 45º slit notch cases are observed to propagate via weft wire failure, 

observation of the sharp and concise fracture surface is consistent with previous observations 

made from uniaxial tests. Again, a larger zone of increased strain is observed in the contours of 

first principal strain for the unequal-biaxial case shown in Fig. 4. 29 than is observed for the 

equibiaxial case in Fig. 4.28, which  is attributed to the increased stretch imparted onto the warp 

wires. Figures 4. 30 and 4.31 show the rupture zones associated with the α = 90º slit type notch 

in the biaxial cruciform specimen of SS316L woven wire mesh under equibiaxial and unequal-

biaxial tension, respectively. 

 

Figure 4.30: Post-mortem fracture surface images of equibiaxially loaded SS316L woven wire mesh incised with an α = 
90º slit type notch, along with DIC contours of first principal strain at rupture. 
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In both cases, fracture is observed to propagate normal to the warp wire direction, and is 

characterized accordingly by a wavy fracture surface with areas of weft wire pull-out. The warp 

wire failure for the case of α = 90º notch cases in general presents as a more yield dominant 

failure condition, with a larger process zone evidenced by both inspection of the fracture surface 

images, and by the large zones of increased strain the respective DIC contour plots.  Figure 4.31, 

in particular shows the ductile failure of the warp wires at  the notch root, characterized by 

significant warp wire necking.        

 

Figure 4.31: Post-mortem fracture surface images of unequal-biaxially loaded SS316L woven wire mesh incised with an α 
= 90º slit type notch, along with DIC contours of first principal strain at rupture. 
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 In general, it is observed that the crack propagation orientation is not affected by the 

biaxial stretch ratios tested in the current experimental regimen. Fracture always is observed to 

occur along a principal material direction for the notch orientations treated here, with a transition 

in the dominant failure mode from weft wire dominant to warp wire dominant occurring between 

α = 45º and α = 90º. The precise transition orientation is of great interest, and must be addressed 

by future experimental work incorporating intermediate notch orientations.   
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CHAPTER 5: MACRO-SCALE FINITE ELEMENT ANALYSIS 
 

The finite element method has been leveraged as a platform for macro-scale simulation of 

the mechanical behavior of SS316L twill dutch woven wire mesh material in the presence of 

stress concentrations. While the mechanisms leading to ultimate mesh rupture are of great 

interest to this work, it is prudent for a number of reasons to begin this study in the elastic 

domain. Primary among the motivations for elastic simulation is the need to supplement the 

experimental regimen with intermediate material orientations, θ, and ellipse ratios, λ. Also, the 

elastic material constants have been experimentally-defined, as demonstrated in Ch. 3, making 

such a simulation technique relatively straightforward to implement. Furthermore, as the finite 

element method is built upon assumptions inherit to continuum theory, comparison of the Finite 

Element Model (FEM) results to the experimental contour plots provided in Ch. 3 allows for 

objective conclusions to be drawn regarding the practical use of such an idealization. To this end, 

a FEM code has been established in ANSYS to batch calculate the SCF based in the maximum 

θσ  component of stress at the notch edge in relation to the gross applied stress, as was done in 

Ch. 3. Also, macro-scale strain contour plots are provided for comparison to the experimental 

DIC data. This analysis was performed parametrically, and data has been collected in material 

orientations varying from warp (0º) to weft (90º) in intervals of 15º, and at λ ratios of 1.0, 0.5, 

and 0.05 (approximating 0.0). In general, the results of this modeling effort show reasonable 

agreement between the FEM and the experimental results, justifying extension of the numerical  

modeling into the plastic domain in the subsequent chapter, such that mesh yielding and rupture 

can be studied.          
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5.1 Finite Element Model and Parameter Definition 

5.1.1 The Uniaxial Model 

 A macro scale FE model has been generated to match the geometric specifications 

outlined in Fig. 2.1(b). An orthotropic linear elastic constitutive model has been employed, with 

elastic constants corresponding to those defined in Table 3.2. The FE mesh consists of 8-node 

isoparametric plane elements using the assumption of plane stress (PLANE82), and the mesh 

density is increased at the notch edge to capture the higher gradients in that region. For principal 

material orientation cases, the symmetry of the problem has been leveraged, and only one quarter 

of the geometry has been modeled. For cases off of the principle material orientations, the 

orthotropic material properties are not symmetric, and so the entire specimen geometry must be 

modeled. Figure 5.1 shows the FE models used for both the symmetric and asymmetric cases, 

along with the boundary conditions employed for the respective models.  

 

Figure 5.1: Macro scale Finite Element mesh used to simulate the linear elastic behavior of the woven wire mesh in the 
presence of a circular notch for the (a) off-axis cases, and (b) principle material orientations.  

 (a) Asymmetric (b) Symmetric
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As seen in Fig, 5.1, loads were applied to the uniaxial model along the top edge, with 

careful attention being paid to assure the proper distribution of the load amongst the nodes on 

that edge. The applied load was ramped over a series of sub-steps to the desired level, which was 

set to match the load cell reading corresponding to the experimental DIC frame used for 

comparison. The asymmetric model, Fig. 5.1 (a), contains a total of 956 elements, while the 

symmetric model, Fig. 5.1(b) contains 653 elements. Comparison of the results from simulations 

run in the principal material orientations for the symmetric case and unsymmetrical case show 

that the fixed boundary condition in Fig. 5.1 (a) is far enough away from the notch to not have an 

effect on the simulation results. To facilitate parametric transformation of the material model for 

off-axis simulations, the element coordinate system was simply rotated with respect to the global 

Cartesian coordinate system. As the material properties in ANSYS are by default aligned to the 

element coordinate system, a transformation of the material model results. The model results 

were then rotated back into the global system for post-processing. The ANSYS APDL code used 

to develop this model is supplied in Appendix B.      

5.1.2 The Biaxial Model 

In a similar fashion to the uniaxial macro scale model, the biaxial cruciform geometry 

was also modeled elastically using the finite element method. Again, 8-node isoparametric 

(PLANE82) elements were employed, with the assumption of plane stress. Symmetry was 

employed for this modeling effort, as in all cases the principle material orientations, warp (0°) 

and weft (90º) are aligned with the uniaxial specimen arms. The material model is linear elastic 

orthotropic, with the material constants equal to those supplied in Table 3.2. The complete model 

contains 868 elements, and the applied boundary conditions are as shown in Fig. 5.2. For the 
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biaxial specimens, the stretch ratio, γ , is controlled as a parameter. The applied γ  for each 

simulation is determined from the test matrix in Table 2.3 as either equal to 1.0 or 1.3, such that 

the results are directly comparable to the experiments. Again, the range of the stretch ratio,  has 

been expended from the biaxial test matrix for the elastic simulations to supplement the 

experimental SCF values. 

 

Figure 5.2: Macro scale finite element mesh used to simulate the linear elastic response of the biaxial cruciform specimen 
with a central circular notch and the applied boundary conditions. 

5.2 Comparison of FEM Contour Plots to Experimental Data 

5.2.1 Uniaxial Simulations 

 Prior to the use of the FEM model to interpolate or extrapolate SCF values outside of the 

test regime, it is prudent to compare the simulated strain fields to those measured using DIC. 

Agreement of the strain fields justifies progression to SCF determination from the finite element 

model, and gives credence to the use of the continuum assumption in macro-scale mechanical 

δx = CRE 

δy = γ CRE 
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modeling of this class of materials. For this comparison, one numerical simulation was run for 

each respective notched uniaxial tensile test, i.e., 21 simulations. The model was loaded and 

constrained as shown in Fig. 5.1, with the symmetric model (Fig. 5.1(b)), used only in circular 

notched cases where a principal material orientation is aligned with the loading axis. The 

magnitude of the uniaxial tensile load applied to the model was matched to the load cell output 

values corresponding to the DIC frame number chosen for data extraction in Ch. 3, such that the 

results are directly comparable. Care was taken to adjust the contour scales in the FEM post-

processing module to match the contours from the DIC plots, so that the FEM results correspond 

directly to the DIC contours. This scaling facilitates comparison, making any differences in the 

simulated and experimental fields visually apparent. Figures 5.3 - 5.9 show the simulated and 

experimental elastic strain contours in the y-camera orientation for the various notch aspect 

ratios, λ, and notch orientations, α, and for all experimentally treated material orientations, θ.  

 The comparison between FEM and DIC for the circular notched cases reveals a clear 

agreement, both in magnitude and in distribution, between the predicted and measured elastic 

strain contours, as shown in Fig. 5.3. The gray zones of the FEM contours indicate regions 

subjected to higher strains than the DIC scale. The location of the gray zones in both the weft 

(90º) an bias (45º) material orientations is consistent with regions of high gradient that fail to 

correlate using DIC. The asymmetry of the strain distribution in the off-axis material orientation, 

evidenced by inspection of the bias (45º) material orientation case, where the strain distribution 

below the circular notch is not equal to the distribution above the notch, is likely owed  to 

boundary condition effects. The consistency of the FEM contours, which are based on 

continuous and homogonous elements, with the DIC measured strain gives credence to the use of 

the analytical models presented in Chapters 1 and 3 to predict the stress distribution in this class 
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of materials in the presence of a circular notch. It must be noted that the FEM contour plot 

deformations presented herein have been automatically scaled by ANSYS, and are not 

representative of actual deformations in the material. 

 

 

Figure 5.3: Comparison of the simulated elastic strain in the y-camera direction to the DIC y-camera direction strains for 
circular notched SS316L woven wire mesh in various material orientations 

y-camera 

x-camera 

warp (0º) weft (90º)

bias (45º) 

P= 10.3lbf   
(45.8N) 

P=2.4lbf   
(10.7N) 

P= 15.0lbf 
(66.7N) 
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 For the case of elliptical notches (λ = 0.5) in the SS316L woven wire mesh, it is observed 

that the homogenous FEM simulations, in general, are capable of predicting the location of 

maximum y-direction  elastic strain, as shown in Figs. 5.4 through 5.6. Comparison of the FEM 

and DIC contours shows that the FE model captures the general shape and trend of the strain 

distribution, but tends to show more concentration and uniformity near the notch edge. The y-

camera elastic strain contours tend to be in excellent agreement away from the notch edge, both 

in magnitude an in distribution. The difference in uniformity and concentration of the FEM 

contours with respect to the DIC contours at the edge of the elliptical notches can likely be 

attributed to the discontinuity of the cut-off wires near the notch edge, and their tendency to shift 

in the weave upon loading, producing parasitic strain information. These discontinuous 

deformation mechanisms are not accounted for in the continuous and homogonous FE model, as 

the effect of these discontinuities on the local stain distributions would require consideration of 

the meso-structure of the material. The bias (45º) material orientation is observed to have the 

most deviation from the simulated behavior near the notch edge, where the DIC fails to produce 

a clear location of maximum strain concentration. This is likely due to the high degree of shear 

coupling and relative rotational motion of the wires in this orientation, which cannot be directly 

accounted for in a homogenize modeling effort. Future work must be undertaken to improve the 

homogenized material model to account for the energy of these rotational and sliding motions. 

Again, investigation of the  FEM contours confirm that, in the case of either bias (45º) material 

orientations, or in cases where the notch orientation, α, is 45º, the location of maximum strain is 

not at the location of minimum radius of curvature, but rather is offset by some angle. This 

highlights the need to consider the entire edge of the notch when investigating the degree of 

stress concentration.  
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Figure 5.4: Comparison of the simulated elastic strain in the y-camera direction to the DIC y-camera direction strains for 

elliptical notched (α = 0º) SS316L woven wire mesh in various material orientations 
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Figure 5.5: Comparison of the simulated elastic strain in the y-camera direction to the DIC y-camera direction strains for 
elliptical notched (α = 45º) SS316L woven wire mesh in various material orientations 
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Figure 5.6: Comparison of the simulated elastic strain in the y-camera direction to the DIC y-camera direction strains for 
elliptical notched (α = 90º) SS316L woven wire mesh in various material orientations 
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 For the case of slit notches (λ = 0.0) in the SS316L woven wire mesh, it is observed that 

the homogenous FEM simulations, in general, do not accurately predict the location or 

magnitude of the maximum y-direction  elastic strain, as shown in Figs. 5.7 through 5.9. The slit 

notches were generated in the model geometry by reducing the length of the minor radius to 

5.0% of the major radius. This method lends itself to simplistic parametric modeling of the 

system, while producing a reasonable approximation of the slit notch geometry. It was elected to 

model the slit notch root with very fine quadratic elements (10,000 nodes on notch edge) rather 

than using singular elements to capture the behavior of the material at the notch root, again for 

ease of parametric modeling. It is noted that the slit aligned with the warp axis is not represented 

for the θ = 45º (bias) material orientation due to a lack of correlation data, as discussed in Ch. 3. 

 

Figure 5.7: Comparison of the simulated elastic strain in the y-camera direction to the DIC y-camera direction strains 
for slit notched (α = 0º) SS316L woven wire mesh in various material orientations 
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Figure 5.8: Comparison of the simulated elastic strain in the y-camera direction to the DIC y-camera direction strains for 

slit notched (α = 45º) SS316L woven wire mesh in various material orientations 
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Figure 5.9: Comparison of the simulated elastic strain in the y-camera direction to the DIC y-camera direction strains for 

slit notched (α = 90º) SS316L woven wire mesh in various material orientations 
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The large zones of gray in the FEM contours of both Fig. 5.8 and 5.9 indicate that the FEM 

results do not correlate well with the scale of the DIC results in the bias (45º) slit notched cases. 

Again, this is attributed to the inability of the model to capture the large relative rotations of the 

discrete wires in the off-axis material orientation. For a qualitative comparison of the results in 

these cases, Fig. 5.10 is supplied, but it must be noted that the scales of the contours in this figure 

are not consistent with each other or with the respective DIC contours. In general, the FEM 

contours do not show the dispersion of the strain concentration over the entire edge of the notch 

as seen in the DIC contours, but rather show distinct regions of extremely localized high strain. 

Furthermore, the far-field effects of the notch are not consistent between DIC measurements and 

FEM in the slit notch cases, as the DIC plots show very little effect in the field away from the 

notch, while the FEM plots show a larger region of perturbation. Given these observations, 

caution must be exercised in using homogenized elastic FEM results to predict the magnitude 

and location of the maximum stresses in slit notched geometries of SS316L woven wire mesh 

material, particularly in the bias (45º) material  orientation.     

 

Figure 5.10: Re-scaled FEM strain contours in the y-camera direction for the case of (a) α = 45º, θ = 45º, and(b) α = 
90º, θ = 45º 

y-camera 

x-camera 
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5.2.2 Biaxial Simulations 
 

 Similarly to the uniaxial case, comparison of experimental results from biaxial tensile 

tests performed on the SS316L woven wire mesh material to numerical results from 

homogenized macro-scale FEM simulations is key to furthering the understanding of how this 

class of materials behaves in the presence of a stress riser. Prior to detailed inspection of the 

stress state near the tip of a notch using the previously described FE model, it is advantageous to 

leverage the simulations for comparison to the full-field DIC strain contours. To facilitate this 

comparison, boundary conditions have been imparted onto the FE model that exactly match the 

conditions of the experiment at the time of image capture for SCF determination, and the scales 

of the strain contours for the DIC and FEM cases have been made to equal each other. 

Comparison of the first principal stress contours, where the 1-direction is equivalent to the weft 

direction as described in Chapter 4, are presented in Fig. 5.11 through 5. 14 for all 

experimentally treated cases.  

 The results of the uniaxial simulations, as presented in the previous section, indicate that 

the most likely notch case for acceptable comparability to exist between the macro-scale FE 

simulations and the experimental DIC results is for the λ = 1.0 circular notches. Figure 5.11 

shows the results of the λ =  1.0 case, for both the equibiaxial (γ = 1.0) and unequal-biaxial (γ = 

1.2) stretch ratios. Analysis of Fig, 5.11 reveals that the strain contours near the edge of the notch 

are similar both in magnitude and in distribution for both cases. Areas of negative strain present 

in the experimental case are not present in the simulations, but this is likely attributed to the 

inhomogeneity of the SS316L micronic mesh structure, i.e., this is indicative of poor strain 
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energy transference into certain zones near the notch edge, or low Meso-Scale Geometric 

Coupling (MSGC).    

          

Figure 5.11: Experimental and simulated contours of first principal strain in the vicinity of a circular notch in (a) 
equibiaxially loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material.   

In addition to the circular notched cases, the oriented slit notch cases were also treated via 

macro-scale FEM simulations. Figure 5.12 shows a comparison of the simulated and 

experimental results near the edge of a slit notch (λ = 0.0) oriented in line with the warp material 

orientation (α = 0º) for both equibiaxial and unequal-biaxial cases. Inspection of Fig. 5.12 shows 

that while the DIC and simulated strain contours generally agree in distribution and magnitude in 

the areas close to the notch root, the simulations predict higher strain values at the notch root. 

This is consistent with the uniaxial simulation results, and the high levels of strain at the near 

singularity of the slit type notch root is expected for the homogenized continuum model.  Also, it 

is observed that the fillets tend to perturb the strain contours to a higher extent in the DIC 
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experiments than in the simulations predict. It is interesting to note that the levels of low strain 

observed just above the notch root in the DIC contours are also observed in the model results, 

however the magnitudes of the respective minimum strain values are again  not consistent. 

 

Figure 5.12: Experimental and simulated contours of first principal strain in the vicinity of an α = 0º slit notch in (a) 
equibiaxially loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material.   

The modeled case which least resembles the DIC contour results is the α = 45º slit notch, shown 

in Fig. 5.13 for both the equibiaxial and unequal-biaxial cases. The divergence of the 

experimental and simulated strain distribution results for the inclined notch case is believed to be 

directly related to the lower level of inter-wire coupling associated with the bias (45º) material 

orientation, and  the inability of the subject material to react mode II type loading. Additionally, 

it is likely that improved camera resolution and noise reduction is necessary for DIC to be 

capable of spatially resolving the highly localized region of increased strain predicted by the 

FEM simulations. Inspection of 5.13 shows that in both experimental cases, the first principal 
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strain distribution around the circular fillet interferes with the strain distribution around the root 

of the notch, making accurate determination of the effects of the inclined slit notch challenging.  

This is particularly evident in Fig. 5.13 (b), which shows the case of γ = 1.2, where the notch has 

no visually apparent affect on  the strain field in the gage section of the material. Inspection of 

the equibiaxial case shown in Fig. 5.13 (a), however, does show a region near the notch root 

where the strain magnitude and distribution is similar to the simulated case. 

  

Figure 5.13: Experimental and simulated contours of first principal strain in the vicinity of an α = 45º slit notch in (a) 
equibiaxially loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material.   

The final experimental case available for comparison to the homogenized macro-scale mode 

results is the α = 90º slit notch. Figure 5.14 shows the simulated and DIC experimental first 

principal strain contours in the region of a slit notch oriented with the weft axis for both 

equibiaxial and unequal-biaxial cases. Again it is observed that the general distribution in the 

vicinity  of the notch edge is captured by the homogenized macro-scale FE model, however the 

model predicts significantly higher strains at the notch root than are measured experimentally via 
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DIC. These results highlight the ability of the DIC experimental method to predict the location of 

maximum strain, while pointing out the limitations of FEM for predicting realistic strain or stress 

values at the root of a notch approaching a singularity due to the considerable dependence of 

predicted field magnitude on mesh density. Use of numerical fracture mechanics approaches, 

such a defining a Stress Intensity Factor (SIF) in place of the SCF at the notch root, may improve 

the simulation results, but this is considered beyond the scope of this thesis and is left for future 

work. 

 

Figure 5.14: Experimental and simulated contours of first principal strain in the vicinity of an α = 90º slit notch in (a) 
equibiaxially loaded, and (b) unequal-biaxially loaded SS316L woven wire mesh material.   
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5.3 Numerical Prediction of Intermediate SCF values 

5.3.1 Uniaxial Tension Simulations 

  The ultimate goal of the elastic simulations outlined in this chapter is to extend the 

experimental SCF regime into untested material orientations, and to compare the results of 

homogenous numerical modeling efforts to those obtained experimentally though full-field DIC. 

To facilitate this, the model has been exercised parametrically in material orientations varying 

from warp (0º) to weft (90º) in increments of 15º. To determine the SCF of each respective notch 

geometry and material orientation, the theta component of the stress has been extracted at every 

node on the edge of the notch using a path operation (see Appendix B for details). The FEM 

derived SCF curves, plotted as a function of material orientation, are presented in Fig. 5.15 for 

the various experimentally treated notch aspect ratios and orientations. Comparison of these plots 

to the experientially derived SCF values as function of material orientation, shown in Fig. 3.35, 

reveals similarities in the trends of the SCF, particularly in the case of the circular notches. 

Figure 5.15 shows that the maximum SCF occurs at a material orientation, θ, of 30º in all cases. 

The bias (45º) orientation FEM simulation for the case of the elliptical (λ = 0.5) notch oriented 

with the loading axis (α = 0º) does not produce the outlier value seen for the elliptical notch case 

in the experimental data. The slit notch (λ = 0) oriented at α = 90º, however, does show an 

elevated value for the SCF of 120.0 in the bias (45º) material orientation, which is roughly twice 

the outlier value from the respective experimental case. This supports the high experimental SCF 

values, indicating that future work, perhaps using a full-field extrapolation approach as detailed 

in the future work section of this thesis, is necessary prior to concluding the DIC results are 

unreasonable. It is noted that as the notch root radius continues to approach a value of zero, i.e., a 

true slit or crack, the use of the SCF as an analytical tool becomes limited, as it would require the 
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stress to approach infinity at the notch root. Clearly this is not possible, and such a crack in a 

homogenous material requires analysis using fracture mechanics approaches. This is beyond the 

scope of this thesis, and such analysis is left to future work. 
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Figure 5.15: The stress concentration factor (SCF) as a function of SS316L woven wire mesh material orientation a 

various notch aspect ratios and orientations.  
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5.3.2 Biaxial Tension Simulations 

 As was the case for the uniaxial simulation regimen, it is desirable to employ the macro-

scale simulation technique as a means to both expand the experimental test matrix, and to judge 

the effect of the homogenization assumption on the simulation results. To facilitate this, ANSYS 

Parametric Design Language (APDL) has been used to parametrically investigate the effects of 

slit notch orientation on the SCFs associated with a λ = 0.0 notch incised into both equibiaxially 

loaded and unequal-biaxially loaded SS316L wove wire mesh material. Figure 5.16 shows the 

numerically predicted SCF associated with various slit notch inclinations incised into the biaxial 

cruciform geometry shown in Fig. 5.2, as well as the baseline circle cases. The definition of the 

SCF in this case is consistent with Eq. (4.2.1), where the Hill equivalent stress is used as the 

stress comparator. For comparison, the SCF calculated using the Von Mises equivalent stress, 

which is isotropic in nature, is also plotted for each respective case in Fig. 5.16. Inspection of 

Figure 5.16 shows that the SCF for the biaxial case tends to be maximum when the notch is 

oriented with the warp axis (α = 0º). It is observed that the measures of SCF determined using 

the Hill and Von Mises equivalent stresses tend to follow similar trends for both the equibiaxial 

and unequal-biaxial stretch ratios from α = 0º through α = 45º. The divergence observed at α = 

60º is attributed to the isotropy of the Von Mises Equivalent stress, which in general predicts a 

more symmetric SCF trend than the Hill stress.  In comparison to the experimental results 

observed in Figs. 4.22 and 4.23, where the maximum SCF occurs at α = 0º and the  minimum 

occurs at α = 45º, the simulation trends are reasonably well consistent. Where the experimental 

and numerical results differ greatly is in magnitude, as the numerical simulations predict SCF 

values nearly an order of magnitude greater than is measured from the biaxial DIC experiments. 
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This difference in magnitude can be attributed to a combination of mesh sensitivity in the region 

of the slit notch singularity, and to divergence from the assumption of continuity of the actual 

material. Indeed, it is noted that the magnitude of the stress at the notch tip predicted by FEM is 

highly mesh dependent, with smaller element sizes producing higher levels of SCF, and vice 

versa. Again, note that the slit notches are approximated in the model, with the minor radius 

equal to 5.0% of the major radius. 

Notch Orientation, α, (degrees) 

0 20 40 60 80 100

G
ro

ss
 S

tre
ss

 C
on

ce
nt

ra
tio

n 
Fa

ct
or

, K
g,

n 

0

20

40

60

80

100

120 λ = 1.0 (Hill)
λ = 1.0 (Von Mises)
λ = 0.0 (Hill)
λ = 0.0 (Von Mises)

Notch Orientation, α, (degrees) 

0 20 40 60 80 100

G
ro

ss
 S

tre
ss

 C
on

ce
nt

ra
tio

n 
Fa

ct
or

, K
g,

n 

0

20

40

60

80

100

120 λ = 1.0 (Hill)
λ = 1.0 (Von Mises)
λ = 0.0 (Hill)
λ = 0.0 (Von Mises)

 

Figure 5.16: Simulated gross stress concentration factors for (a) equibiaxially loaded, and (b) unequal-biaxially loaded 
SS316L woven wire mesh material as a function of notch orientation for both circle (λ = 1.0) and slit (λ= 0.0) notch cases.     
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While the slit notch (λ at 0.0) case simulations produce accurate trends, but fail to capture 

magnitude of the experimental SCF values, the circle notch (λ at 1.0) case simulations predict the 

order of magnitude of the biaxial SCF with reasonable accuracy. The macro-scale simulations 

predict a SCF for the equibiaxially loaded circle notch case of 8.7, which represents a 29.4% 

difference with respect to the experimentally determined SCF of 11.7, while the simulations 

predict a SCF value of 10.9 or the unequal-biaxial case, compared to the experimental value of 

7.6, with a percent difference of 35.7%. This provides further evidence to the fact that 

divergence of the simulated slit notch SCF magnitudes from the experimental cases is due in 

large part to a breakdown of the SCF as a viable tool for gauging the state of stress near a notch 

approaching the aspect ratio of a crack. 
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CHAPTER 6: MESO-SCALE ELASTO-PLASTIC FINITE ELEMENT 
ANALYSIS 

 

6.1 Meso-Scale Model Definition 

 Meso-Scale numerical simulations were conducted to model the behavior of SS316L 

woven wire mesh subject to various stress states [Kraft and Gordon, 2011]. To carry out these 

simulations, a 3D meso-scale finite element model was created using ANSYS. This simulation 

technique requires that individual wires be modeled, both geometrically and constitutively, and 

employs 3D contact elements to define frictional wire contact and allow relative wire sliding. 

The model was designed to facilitate comparability to the tensile experiments, with controlled 

displacements being applied uniaxially to the mesh. Material properties were defined for each 

wire type (warp or weft) independently, with the goal being to match the material response of the 

tensile specimens from the warp (0°) and weft (90°) orientations. This entails a parametric 

process in which each property is iteratively selected to achieve optimal curve-fit to the 

experimental data. Defined elastic constants, such as the Elastic Modulus and Poisson's ratio, 

were forced to conform with the published properties for SS316L, while properties such as 

strength, friction coefficient, contact stiffness, and hardening parameters were optimized to 

achieve optimal correlation with experimental results. It must be noted that physical influences 

such as residual plasticity in the wires, or geometrical disparities in the mesh due to 

manufacturing processes as shown in Fig. 1.5, are not explicitly captured in this modeling effort, 

but instead are taken into account by iterative maximization of the regression coefficient between 

the numerical model and experimental load-deflection relationships, i.e., the model is 

phenomenological in nature. As predicted by Eq. (1.2.1), the wire strengths defined in the model 
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vary somewhat from published properties for SS316L, as shown in Table 1.1; but overall the 

response of the model is exceptional given the geometric complexity. To investigate the elasto-

plastic response of the meso-structure, a multi-linear kinematic hardening (MKIN) model was 

employed for the warp and weft wires based on published tensile curves for SS316L [Blandford 

et al., 2007]. The boundary conditions chosen for this modeling effort reflect the need for easy 

comparison to experimental data. Displacement was applied to one face of the model via a scaled 

rate identical to the tensile experiments. Symmetry constraints were then applied to the free 

edges of the mesh geometry via frictionless supports, as illustrated in Fig. 6.1. 

 

Figure 6.1: Finite element mesh of meso-scale model used to facilitate numerical modeling of the 316L SS woven wire 
mesh with boundary conditions used to simulate the tensile testing of the weft (90º) orientation sketched, along with 

illustration of rotation and cropping used to form off-axis simulation results. 
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 To capture the behavior of the SS316L twill dutch woven wire mesh in the first quadrant 

of  σ1-σ2 space, a series of uniaxial tensile experiments were conducted in various material 

orientations, ranging from 0° (warp) to 90° (weft) in 15° intervals. Capturing this behavior via 

the meso-scale finite element model can be realized through one of two methods. One option is 

to rotate the stress state imparted onto the model to match that of each experimental orientation. 

This method helps ensure proper stress distribution, and lends itself conveniently towards 

parametric modeling. The use of this method via controlled displacement boundary conditions, 

however, requires the definition of complex boundaries to ensure the applied displacement is 

dependent on the strain of previous load step. To eliminate this difficulty, it was elected to rotate 

and crop the model geometry to each respective orientation, and then to apply a uniaxial 

controlled displacement to the rotated specimen. This boundary condition, also illustrated in Fig. 

6.1, assures easy comparison to the experimental data, and achieves shearing strains on the 

material through shear coupling effects as in the uniaxial experiments.  

6.2 Meso-Scale Model Results 

6.2.1 Load-Deflection Response of the Model 

 The model was exercised in a parametric fashion to test the meso-scale response of the 

woven wire mesh in every material orientation tested experimentally. The warp (0°) and weft 

(90°) orientations serve as benchmarks for the identification of the wire material properties, and 

so serve as good indicators of how well the model behaves with respect to experimental data. 

The simulated load versus displacement response of the main weave axes is provided in Fig. 6.2 

in conjunction with the experimental results. The fit is exceptional through the elasto-plastic 
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region in both axes, validating the ability of the simplistic constitutive model to capture the 

macroscopic response of the material.  

 

Figure 6.2: The elasto-plastic response of the meso-scale finite element model as compared to the mechanical response of 
the 325x2300 316L SS woven wire mesh subject to tensile testing in the warp (0º) and weft (90º) orientations.  

 Off-axis simulations were necessary to show that the meso-scale response of the SS 316L 

woven wire mesh could be related to the macro-scale response for all tension loading modes. 

Good agreement between meso-scale numerical results and macro-scale test results in all 

material orientations is necessary to justify the use of global constitutive assumptions to model 

this material. Such results in all orientations allow the design engineer to homogenize the meso-

structure of the mesh, and develop strength and life predictions based solely on easily obtainable 

macro-scale material characteristics. The load versus displacement response of the numerical 

simulations in each off-axis orientation is provided in Fig. 6.3, along with their respective 
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experimental curve. Inspection of Fig. 6.3 shows that the meso-scale model response closely 

follows the response of the macro-scale in the elasto-plastic region. 

 

Figure 6.3: Load - Displacement curves from off-axis meso-scale numerical simulation of the 325x2300 SS316L woven 
wire mesh compared with experimental results. 
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This fact justifies the use of homogenized orthotropic material properties to model this material, 

alleviating the need to consider the geometry or characteristics of the ensemble of wires in the 

mesh. The exceptional fit of the meso-scale model response to experimental data in most 

orientations also justifies the development of a 2D orthotropic finite element to model higher-

level mechanical aspects of this material, such as fatigue and damage characteristics. It must be 

noted that the R2 values reported in Fig. 6.3 are calculated for the correlation up to ultimate 

tensile strength of the experimental case, or to the end of the simulation curve, whichever is first. 

6.2.2 Meso-Scale Yield Behavior 

 The global mechanical behavior of a composite material is in general a function of its 

constituents. Typically, the material properties of the individual components and the interactions 

between the different substrates governs the global response of the material. Woven materials 

like the SS316L twill dutch woven wire mesh in question are similarly dependent on the 

behavior and interaction of their components. The meso-scale characteristics of the mesh, such 

as the weave pattern, tightness, and uniformity, ultimately determine its global behavior. 

Evolution of the global behavior of the mesh throughout elasto-plastic transition is a function of 

the behavior of the individual wires in the weave. The material properties, geometry, and contact 

parameters of the wires are important factors in the overall mesh behavior, and a thorough 

understanding of mesh yielding requires investigation of these influences. Woven materials 

possess an intermediate level of internal component interaction not encountered in homogenous 

materials. An intermediate scale of material evolution, in which individual wires begin to yield at 

the meso-scale, exists between the microstructural accumulation of defects and the global 

evolution of the material. In the same manner that accumulation of damage at the micro-scale 
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ultimately leads to global yielding in homogenous materials, accumulation of plasticity at the 

meso-scale leads to global yielding of the woven wire mesh. It is postulated that wire level 

yielding reaches some critical value prior to any discernable deviation of the macro-scale 

material response from elastic behavior. In this light, meso-scale plasticity accumulation prior to 

global mesh yielding can be viewed as macro-scale elastic damage accumulation.   

 To investigate the relationship between localized wire yielding and global yielding of the 

325x2300 SS316L twill dutch woven wire mesh, further numerical simulations were conducted 

with the goal of mapping the progression of wire level plastic deformation with respect to the 

macro-scale response. The developed finite element model, constrained in an identical fashion as 

described in Fig. 6.1, was used along with the MKIN model to simulate the development of local 

plastic strain at the meso-scale of the mesh. Equivalent plastic strain was recorded at key areas 

on the individual wires, typically at points of contact where plasticity was the highest, as 

illustrated in Fig. 6.4. These areas were carefully chosen from central locations in the mesh such 

that boundary effects were minimal, but it must be noted that the reported plastic strains are 

local, and not indicative of overall wire plasticity. The progression of local equivalent plastic 

strain in the wire level is related to the global response of the woven mesh by plotting the global 

macro-level experimental stress-strain relationship with respect to meso-scale equivalent plastic 

strain accumulation. This relationship is illustrated in Fig. 6.5 for various material orientations.

 Analysis of Fig. 6.5 reveals a definite dependence of wire plasticity evolution on material 

orientation, and provides some evidence to suggest that localized equivalent plastic deformation 

indeed reaches some critical value at the meso-scale prior to global yielding of the woven mesh. 

The high level of strain energy in the warp wires for both the 75º and weft (90º) cases is 

surprising considering the dominant loading direction is weft, however, it must be considered 
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that the compressive stresses in the warp wires due to crimp interchange and contact with the 

weft wires are quite large. It is observed, particularly in the weft dominant orientations (60° - 

90°), that significant wire level plasticity develops prior to the material exhibiting signs of global 

yielding. This behavior indicates that individual wire yielding is indeed a source of elastic 

damage that may affect the global elasticity of the woven mesh. 

 

Figure 6.4: Example area of interest for investigation of meso-scale equivalent plastic strain development in the 325x2300 
SS316L woven wire mesh. 

Damage, typically defined as the accumulation of microstructural defects within a material, in 

this case could be defined by plasticity developing at the intermediate meso-scale. Future work is 

planned to develop a relationship for the development of wire level plasticity to macro-scale 

elastic damage through continuum damage mechanics.       
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Figure 6.5: The development of plastic strain at the meso-scale predicted by the numerical simulations with respect to the 

global stress-strain relationship of the 325x2300 SS316L woven wire mesh at various material orientations. 
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6.2.3 Mathematical Modeling of Meso-Scale Plastic Strain 

 As in the case of fiber-reinforced composite materials, the mechanical behavior of 

micronic woven wire mesh material is dominated by the deformation and failure mechanisms of 

the individual wires constituting the mesh, and the interaction between these wires. As is 

evidenced in Fig. 6.5, the macro-scale plastic flow and eventual rupture behavior of the subject 

material is driven in the meso-structure of the material. In this respect, global yielding of the 

woven wire mesh is not a function of the movement of microscopic atomic level dislocations as 

in homogenous materials, but rather is realized through the wire yielding, individual wire failure, 

and load redistribution occurring on the meso-scale. This suggests that macro-scale mesh failure 

can be modeled by considering meso-scale plastic strain as a driving mechanism behind global 

yielding. On this premise, it is proposed that the development of a model relating the meso-scale 

equivalent plastic strain to the total global tensile strain of the material would allow for the 

prediction of mesh rupture due to meso-scale plasticity. The prediction of mesh failure could 

then be realized by simply tracking the total strain state in a region of interest, which lends itself 

particularly well to the previously introduced macro-scale homogenous FE modeling of a 

notched geometry. The ability to predict the level of meso-scale plasticity in a material from 

macro-scale strain measurements could also potentially be leveraged as a damage indicator in 

Non Destructive Evaluation (NDE) of this class of materials, or to determine the state of a 

material subjected to complex loading conditions. Such a model, in conjunction with the 

measured wire or fiber tensile properties, i.e., ultimate wire plastic strain, could provide a high 

caliber correlation for failure modeling. To this end, an analytical model has been developed 
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based on the trends observed in Fig. 6.5 to predict the level of meso-scale plastic strain, ,pl mesoε , 

present locally in the material as a function of the total global strain, ,T macroε , i.e., 

( ),,
,,

y macroT macro
T macro

b
pl meso ae cε εε ε−= +

                                    
 (6.2.1) 

It is noted that the model presented in Eq. (6.2.1) is not based on physical mechanisms, and that 

the proposed constants in their present form are simply chosen via regression analysis 

optimization. The term ,y macroε   here is the macroscopic yield strain of the material, which is 

dependent on material orientation. Furthermore, it must be noted that the hardening behavior 

prescribed to the SS316L wires in the MKIN model used to predict the plastic strain in the meso-

scale FE model is not reflective of actual SS316L tensile results, but rather has been selected via 

an optimization of the overall FE model response as described in Section 6.1. Thus, the use of 

the current optimized constants, provided in Table 6.1, must be cautioned, and the model as 

proposed herein can be treated as a first-order approximation only. To provide increased physical 

meaning to the plasticity model, and to lay the groundwork for future improvements, an initial 

attempt has been made to provide functional forms of the constants with respect to the material 

orientation. Ideally, the constants, which are different for the warp and weft wires, should be 

symmetric about the perpendicular material axes, and should be governed by periodic functions 

of the material orientation, θ, taking into consideration parameters such as power law or voce 

hardening coefficients [Kraft and Gordon, 2011]. As the form of the model proposed in Eq. 

(6.2.1) represents only a first order mathematical approximation, however, the form of the 

equations governing the constants as a function of material orientation are not constrained as 

such, and are presented herein merely to demonstrate that the parameters provided in Table 6.1 
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do in fact hold functional forms in theta. Improvements to the meso-scale FE model will provide 

for improvements to the constant formulations, and this is discussed in detail in the future work 

section of this thesis. The formulations of the constants are expressed as follows. 

 
3.325 40.0003warpa e

πθ⎛ ⎞
⎜ ⎟
⎝ ⎠

−
=  (6.2.2) 

 
55.00 120.0025wefta e

πθ⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

−
=  (6.2.3) 

 3 261.92 171.0 55.55 121.1warpb θ θ θ= − + − +  (6.2.4) 

 3 246.44 241.4 137.3 6.6weftb θ θ θ= − + − +  (6.2.5) 

 4 3 20.284 1.118 1.102 0.294 0.004weftc θ θ θ θ= − + − +  (6.2.6) 

 4 3 20.284 1.118 1.102 0.294 0.004weftc θ θ θ θ= − + − +  (6.2.7) 

The functional forms of Eqs. (6.2.2 - 6.2.7) are determined via regression analysis fit of the 

constants to the optimized parameters presented in Table 6.1, and are not representative of any 

physical material behavior. The fit of the coefficient models to the optimized meso-scale 

plasticity model constants is shown in Figs. 6.6 through 6.8 for the parameters a, termed the 

meso-scale plastic strain scale factor, b, termed the meso-scale plastic strain exponential 

coefficient, and c, the meso-scale plastic strain linear coefficient, respectively. In all cases, the fit 

is found to be acceptable, and the parameter fitting functions are found to produce reasonable 

trends capable of predicting the constants in intermediate material orientations. The largest 

deviation of the predicting functions from the optimized constants is seen for the case of the 

exponential coefficient, b, in orientations where the plasticity is largely dominated by the warp 

wires, i.e., where bweft should ideally equal zero. The fit produced by Eq. (6.2.1) with respect to 
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the meso-scale plasticity level predicted by the FE model is provided in Fig. 6.9 for all treated 

material orientations.  

Material Orientation, θ, (radians)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

M
es

o-
S

ca
le

 P
la

st
ic

 S
tra

in
 S

ca
le

 F
ac

to
r, 

a

0.000

0.002

0.004

0.006

0.008

0.010

aweft(θ)
awarp(θ)
aoptimized,weft

aoptimized,warp

 

Figure 6.6: The orientation dependence of the meso-scale plastic strain scale factor, a, as predicted by Eqs. (6.2.2) and 
(6.2.3), with respect to the parameters values developed from regression optimization of Eq. (6.2.1).   
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Figure 6.7: The orientation dependence of the meso-scale plastic strain exponential coefficient, b, as predicted by Eqs. 
(6.2.4) and (6.2.5), with respect to the parameters values developed from regression optimization of Eq. (6.2.1).    
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Figure 6.8: The orientation dependence of the meso-scale plastic strain linear coefficient, c, as predicted by Eqs. (6.2.6) 
and (6.2.7), with respect to the parameters values developed from regression optimization of Eq. (6.2.1).    

 

To demonstrate the ability of the parameter prediction functions to formulate reasonable model 

parameters in all material orientations, Figure 6.9 has been generated using constants formulated 

via the prediction functions. Inspection of Fig. 6.9 reveals that the fit of the mathematical model 

to the simulation results is sufficient to treat the model as a first order approximation for 

predicting meso-scale material failure in both the warp and the weft wires. Note that the different 

wires posses their own constants for each respective material orientation, which is reflective of 

the varying deformation mechanisms amongst the weft and warp wires. It is also noted that a 

clear transition occurs at the 60º material orientation, where plasticity in the weft wires becomes 

significant enough to contribute to mesh rupture. This observation is consistent with the rupture 

behavior observed form uniaxial tensile tests [Kraft and Gordon, 2011].  
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Figure 6.9: Comparison of the finite element and mathematical models of the progression of the meso-scale plastic strain 

as a function of the total global strain applied to the material 
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Table 6.1: Optimized parameters for the mathematical model relating meso-scale wire plasticity to the applied macro-
scale total strain 

Material 
Orientation, θ (º) Wire Type a b c 

0 
Warp 1.00x10-4 120.0 1.230 

Weft 0 0 0 

15 
Warp 2.00x10-4 120.0 0.400 

Weft 0 0 0 

30 
Warp 1.25x10-5 130.0 0 

Weft 0 0 0 

45 
Warp 3.50x10-4 150.0 0 

Weft 0 0 0 

60 
Warp 8.00x10-4 180.0 0 

Weft 5.40x10-4 80.0 0 

75 
Warp 1.95x10-3 205.0 -0.085 

Weft 3.30x10-3 150.0 -0.200 

90 
Warp 3.50x10-3 215.0 -0.275 

Weft 8.00x10-3 200.0 -0.350 
 

 

6.3 Numerical Implementation of a Meso-Scale Plasticity Model to Predict Mesh Rupture 

 The meso-scale plasticity model presented in Eq. (6.2.1) is ideal for implementation into 

the macro-scale finite element model previously introduced in Chapter 5, as it relates the failure 

of individual wires in the SS316L woven wire mesh to the global strain state of the material. As 

the strain state near the region of a notch is straightforward to track using the finite element 

method, it is possible to use Eq. (6.2.1) to relate the state of total mechanical strain in an element 

to the meso-scale equivalent plasticity of the wires that would ideally comprise that element. 

When the equivalent meso-scale plastic strain is predicted to have reached some predefined 

criterion, taken in this case as the elongation to failure of SS316L, as shown in Table 1.1,  then 

the wires, either warp or weft, in that element are said to have failed. Thus, the element is 
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considered to have lost stiffness, and should be disregarded in further load steps of the analysis. 

The commercial FEM software package, ANSYS, provides a built-in functionality for reducing 

element stiffness based on a user defined criterion known as Element Death, and this feature has 

been leveraged to facilitate element failure based on predicted wire plastic strain levels using the 

meso-scale plasticity model in Eq. (6.2.1). It should be emphasized that the Element Death 

feature in ANSYS does not remove any elements from the mesh that have exceeded the failure 

criterion, but rather reduces their associated stiffness by multiplying the element stiffness matrix 

by a severe reduction factor, 1x10-6 in this case, such that the elements not longer contribute to 

the solution. To maintain continuity of the solution throughout subsequent load steps, the 

deactivated element loads, mass, specific heat, etc., are immediately reduced to zero. 

Additionally, the energy of the deactivated elements are not considered in the total model energy 

[ANSYS, 2012]. By selecting and plotting only the “live” elements remaining in the mesh for 

each load step, crack propagation in the SS316L woven wire mesh material can be simulated 

using the macro-scale FE model. Additionally, the reduction in “killed” element stiffness 

effectively reduces the overall stiffness of the model, allowing for the global unloading of the 

material due to mesh rupture to be simulated. To illustrate the constitutive response of an 

element being killed by the Element Death routine, a single element model, incorporating a 

single  unit square PLANE82 element with boundary conditions as illustrated in Fig. 6.10(a), has 

been exercised in ANSYS. The element is observed to display a typical elasto-plastic response 

until the maximum total strain criterion (0.8% strain in this case) is exceeded, as shown in Fig. 

6.10(b). Upon the criterion being reached, the element stiffness is immediately reduced to near 

zero through the remainder of the applied displacement. While the Element Death feature in 

ANSYS is a very useful simulation tool, it is relatively poorly developed in the ANSYS 
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catalogue [ANSYS, 2012] , and employment in a parametric simulation routine is somewhat 

cumbersome. As such, it is pertinent that the logic used to implement the meso-scale plastic 

model be documented, and this is provided in the form of a flow-chart in Fig. 6.11. Additionally, 

the ANSYS APDL code used to generate the simulation results in this section is provided in 

Appendix B. The model geometry employed in the mesh failure simulations is identical to that 

shown in Fig. 5.1(a), however, the mesh has been greatly refined to facilitate accurate crack 

growth. The FE mesh used to discretize the circular notched specimen geometry is provided in 

Fig. 6.12, along with a sketch of the boundary conditions applied to the model. It is noted that 

while roller type conditions at the boundary shown in Fig. 6.12 would be ideal, the notch is far 

enough removed from the bottom edge of the specimen so as to not be affected by the clamped 

conditions. 

 

 

Figure 6.10:  The elasto-plastic response of a single PLANE82 element being deactivated using the ANSYS Element Death 
routine, along with the applied boundary conditions. 

δy = 0 

δy = 0 
δx = 0 
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Figure 6.11: Flow chart outlining the logic steps used to kill elements in the macro-scale FE model using the meso-scale 
plastic strain model  



220 
 

The linear elastic material model used for this case is orthotropic,  and identical to the one used 

in modeling the strain distribution around various notches in Chapter 5. Additionally, plastic 

material behavior is captured in this modeling effort using anisotropic hardening, i.e., the 

ANSYS model ANISO, which allows for different yield strengths and different tangent moduli 

to be defined for the respective principal material orientations, and for the case of pure shear. 

The ANISO plasticity parameters defined for the mesh failure simulations are provided in Table 

6.2. As the anisotropic plasticity model requires the definition of a pure shear yield strength, and 

pure shear  testing of thin materials such as the SS316L woven wire mesh is challenging due the 

tendency of the material to buckle, this parameter has been estimated using the bias (45º) tensile 

yield strength via a model proposed by Chen [Chen et al., 2007], i.e., 

 45sin
2xy

SS k ω=  (6.3.1) 

where the term Sxy is the yield strength under pure shear, S45 is the bias (45º) uniaxial tensile 

yield strength (5.0ksi), k is a converting coefficient set at 0.7 as recommended in the literature 

[Chen et al., 2007], and ω is the angle between the warp and weft directions, which is assumed to 

be 90º in this case. The tangent moduli for each case is treated as a model optimization 

parameter, and so has been selected via an error reduction study with respect to the uniaxial 

experimental results.  

Table 6.2: Parameters defined for the anisotropic plasticity model used for the macro-scale failure simulations of SS316L 
woven wire mesh material 

Loading Condition Yield Strength, Sy (ksi) Tangent Modulus, T (ksi) 

Uniaxial Warp (0º) 11.7 280.0x103 

Uniaxial Weft (90º) 22.8 700.0x103 

Pure Shear 4.69 15.0x103 
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Figure 6.12: The finite element mesh used to simulate the failure of SS316L woven wire mesh material when notched with 
a circular stress riser, and the applied boundary conditions. 

 To demonstrate the ability of the meso-scale plasticity model to provide a first-order 

prediction of the failure of the SS316L woven wire mesh material, the described FEM 

implementation has been exercised for the cases of circular notched uniaxial specimens loaded in 

both the warp (0º) and weft (90º) material orientations. The numerical prediction of crack growth 

in the warp (0º) oriented SS316L woven wire mesh is provided in Fig. 6.13, along with contours 
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of damage in the warp wires, defined as the ratio of meso-scale plastic strain level in the element 

to the failure criterion. Values of damage greater than one indicate elements that are to be killed 

in the subsequent load step.  

 

Figure 6.13: Simulated crack growth from a circular notch in SS316L woven wire mesh material loaded in the warp (0º) 
material orientation.  
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The observation that in some instances the damage value is much larger than one indicates that 

this simulation could benefit from an adaptive time stepping routine, such that the load step 

could be automatically bisected to achieve better refinement of the crack growth path, and this 

modification is suggested for future work. Inspection of Fig. 6.13 shows that the crack growth is 

symmetric on either side of the notch, and generally progresses along a path normal to the 

loading direction as would be expected. The simulations shows a large process zone as is 

expected in the warp (0º) material orientation, and overall the simulation conforms well to the 

experimental rupture zone shown in Fig. 3.36 with regards to appearance.  In an effort to make a 

more objective assessment of the performance of the meso-scale plasticity model in predicting 

mesh failure in the warp (0º) material orientation, the  plastic load-displacement response of the 

simulation is compared to the experimental results in Fig. 6.14.   
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Figure 6.14: The experimental and simulated load - plastic deformation response of circular notched SS316L woven wire 

mesh material in the warp (0º) material orientation. 

Key features to compare in assessment of the performance of the model are the strain hardening, 

ultimate tensile strength, and unloading behavior of the model with respect to the experimental 
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results. The model appears to perform well in all respects for the warp (0º) material orientation, 

clearly showing the gradual unloading and low strain hardening associated with the warp (0º) 

material orientation.  

 The weft (90º) direction failure is characterized by brittle type material behavior, with 

very little global plastic strain and quick unloading upon reaching the ultimate tensile strength. 

The process zone is generally observed to be more compact than the warp (0º)  case, and tends to 

progress along a sharp and well defined path. The failure prediction at a circular notch in the 

SS316L woven wire mesh material loaded in the weft (90º) material axis is presented Fig. 6.15, 

along with contours of weft wire damage, defined similarly as in the warp (0º) orientation case. 

Again, the failure surface is observed to be symmetric with respect to the circular notch, and is 

observed to generally progress in a direction normal to the loading axis. The sharpness of the 

rupture zone observed in experiments is not captured by the simulations, however, and in fact the 

process zone appears to be larger in the weft (90º) degree simulation than for the warp (0º) case. 

This is attributed to the rapidity of the growth of meso-scale plastic strain in this material 

orientation, and the lack of an adaptive load stepping routine to reduce the plastic strain step size. 

Indeed, if the load step size is too large, it is observed that the natural distribution of strain begins 

to dominate the element death progression rather than the small zone of increased global strain at 

the growing crack tip. It is speculated that the addition of an automatically bisecting load step 

algorithm into the simulation in future work will improve the appearance of the simulated crack 

growth by ensuring that only the elements at the crack tip exceed the criterion for each given 

load step. Nonetheless, inspection of the plastic load - displacement curves for the experimental 

case and the simulated case, presented in Fig. 6.16, does show that the brittle type failure and 

rapid unloading associated with the weft (90º) material orientation is captured by the model.  
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Figure 6.15: Simulated crack growth from a circular notch in SS316L woven wire mesh material loaded in the weft (90º) 
material orientation. 
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Plastic Displacement, δpl, (in) 

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014 0.016 0.018

Lo
ad

, P
, l

b f
 

0

10

20

30

40

50

60

Experimental (UA-C-90-00) 
ANSYS Results

 

Figure 6.16: The experimental and simulated plastic load - plastic deformation response of circular notched SS316L 
woven wire mesh material in the weft (90º) material orientation. 

Inspection of Fig. 6.16 also demonstrated that the hardening model prescribed for the simulations 

captures the behavior of the weft (90º) oriented material observed in experiments. Overall, the 

model results for the weft (90º) case indicate that, while improvements  to both the meso-scale 

plasticity model and the numerical implementation routine are needed to obtain accurate crack 

growth behavior, the model is capable of capturing the global behavior of the material using 

meso-scale simulation results, and future work is warranted in honing this multi-scale approach.    
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS FOR 
FUTURE WORK 

 Woven metallic materials hold significant promise for use in high performance filtration 

and trace detection applications, and are excellent candidates for use as reinforcement in 

emerging composites. Prior to implementation of this class of material into new technologies, 

however, there must exist a general understanding of their mechanical behavior, and of the 

applicability of classical mechanics of materials models to extrapolate design scenarios. 

Accordingly, this thesis, which focused on a representative 325x2300 SS316L twill dutch 

micronic woven wire mesh, has worked to address knowledge gaps in several fundamental areas 

that are key to expanded use of this class of material in industry. Three key aspects of the 

mechanical behavior of the representative micronic metallic woven structure have been studied 

in depth in this work, namely (1) the applicability of an in-plane linear elastic orthotropic model 

to govern the elasticity of the woven mesh, (2) the effect of stress concentrations on the 

mechanical behavior and ultimate rupture of the mesh, and (3) the yielding behavior of the 

woven structure at the macro and meso scales. While these aspects have been studied 

independently in this research through a rigorous experimental testing and numerical simulation 

regimen, consideration of the combination of these characteristics is necessary to understand, and 

ultimately to model, the elasto-plastic mechanical behavior of this class of materials. Thus, some 

discussion of the overall findings of the uniaxial and biaxial experiments, as well as the macro 

and meso-scale modeling effort, is necessary. Presented here is a brief summary of the findings 

of the experimental and numerical characterization results, and a discussion of conclusions that 

can be drawn from this work. Also, the short-comings of this work are discussed, and 

recommendations for future work are made.           
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7.1 Concluding Statements 

 Three distinct experimental test sequences, discussed in great detail in Chapters 3 and 4 

of this thesis, have been completed in this work, each intended to classify various aspects of the 

mechanical behavior of the SS316L twill dutch woven wire mesh material. The first 

experimental testing regimen, a series of uniaxial tensile tests on standard flat tensile specimens 

incised at various material orientations, provided much information on the general elasto-plastic 

mechanical behavior of the subject material. Next, the central experiments to this work, uniaxial 

tensile tests on notched specimens, were conducted to gage the effect of various notch aspect 

ratios and orientation on the mechanical behavior of the woven wire mesh. Finally, biaxial 

tensile tests were performed on both smooth and notched cruciform specimens using an in-house 

designed linkage-based load frame, providing data pertinent to the development of a modified 

yield-surface, and results pertinent to understanding the effects of notches on the subject material 

in service type conditions. Taking a panoramic view of these experimental results allows for 

some significant conclusions to be drawn regarding the mechanical behavior of the subject 

material. 

 The mechanics of materials view for the modeling of, and design with, the metallic 

woven structure treated in this thesis has focused around the simplifying assumption of 

continuity and homogeneity of the material, as shown in Fig. 7.1. Indeed, engineers are 

constantly searching for simple yet accurate models for design and analysis, and so the 

applicability of the homogenization assumption for this class of materials in central to the 

expansion of use of this material in various industries. Overall, review of the experimental and 
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analytic modeling efforts in this thesis show that the subject material can be treated as a 

homogenous continuum with reasonable accuracy in most cases.  

 

 

Figure 7.1: Illustration of the continuum assumption used in analytic and numerical modeling of the SS316L woven wire 
mesh material in this thesis. 

The elastic constants are observed to follow trends associated with Hooke's Law, and in general 

it is found that an in-plane orthotropic constitutive relationship may be employed for the subject 

material with minimal error. In addition to the formulation of the orthotropic elastic constants, 

the smooth uniaxial testing results have been used to analyze the ability of the Hill yield 

criterion, which is fundamentally an orthotropic criterion based largely on the mechanical 

behavior observed in homogenous rolled plates, to predict the yield behavior of the SS316L 

woven wire mesh material. While the overall fit of the Hill criterion to the uniaxial experimental 
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results is reasonable, particularly in the principal material orientations and on the bias (45º), it 

has been found to be less acceptable in other off-axis orientations. Modifications to the Hill 

criterion to account for interaction between the shear and axial stress terms have been shown to 

improve the fit to the experimental data greatly, and so it is concluded that the interaction, or 

coupling, of the shear and axial stress terms is intrinsic to the yield behavior of the metallic 

woven wire mesh material.    

 The central work of this thesis is in the characterization of the mechanical behavior of 

this class of material when affected by a stress concentrator under both uniaxial and biaxial 

loads. For the case of uniaxially loaded notched geometries, the analytic solutions for the Stress 

Concentration Factor (SCF) are found to be directly applicable in only a few cases, namely cases 

of circular notches and medium aspect ratio elliptical notches aligned with the principle material 

axes. In general it has been observed that the analytical solutions tend to diverge from the 

experimental results as the notch aspect ratio approaches a slit or crack, and that the analytic 

solutions do not perform well, in terms of predicting magnitude and location of  maximum stress, 

in the bias (45º) material orientation. It is possible that the divergence between the elasticity 

based analytic model and the experimental results is due in part the data analysis techniques 

employed in this thesis, and recommendations for improvement are made in the subsequent 

section. In general, it is concluded that the effective SCF is highly-dependent on the material and 

notch orientation, and that the inhomogeneous nature of this material reduces the effect of notch 

aspect ratio on the overall stress state in the mesh, particularly in orientations that exhibiting 

lower coupling between adjacent wires, such as the warp (0º) orientation. For the case of 

centrally located notches in the experimentally treated biaxially loaded cruciform specimen, the 

results clearly indicate that the orientation of the notch, the aspect ratio of the notch, as well as 
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the stretch ratio, are important parameters in accounting for the overall perturbation of the stress 

field. The results, however, are not conclusive with regards to the effect of these parameters on 

the exact SCF, and this is owed in part to the specimen geometry, and to the limitations of the 

data reduction methods used to analyze the DIC results. What is conclusive, however, is the 

trend of the SCF to be at a maximum  when the notch is oriented with one of the principle 

material orientations, and at a minimum when the notch is at some inclination to the loading 

axes. 

   Another important conclusion which can be drawn from this thesis is that, in general, 

the finite element method is an acceptably accurate tool for modeling this class of materials. In 

nearly every case, the homogenized orthotropic FE model shows excellent agreement with the 

experimental DIC strain contours developed from uniaxial and biaxial tensile testing. Based on 

the simulation results and observations of model behavior, some suggestions can be made 

regarding the modeling of this class of materials: (1) a high-order in-plane quadrilateral element 

(such as PLANE82 in ANSYS) should be employed with a thickness option enabled [(0.0035in 

(0.089mm) in this case], (2) large lateral contractions (roughly equal to the axial extension) 

should be expected in off-axis material orientations, and care should be taken to assure the 

boundary conditions do not restrict these contractions, (3) the use of isotropic equivalent 

representations of the results, i.e., the Von Mises stress, should be avoided, as they generally do 

not predict maximum locations or values well, and (4) while in smooth cases element size is not 

observed to affect the results, element size must be strictly controlled (minimized and consistent) 

in notched regions. Again, deviation is observed for the case of slit type notches, which serves to 

reinforce the conclusion that this class of materials is not impacted a crack or slit to the same 

degree as a homogenous plate with equivalent elastic properties. Additionally, the multi-scale FE 
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modeling effort has shown that the yielding behavior observed on the macro-scale is driven by 

meso-scale wire plasticity and individual wire failure, it is has been demonstrated that a failure 

model can be successfully designed around this phenomenon to predict mesh failure.  

 This principal goal of this thesis is to formulate an approach for characterization of 

metallic woven wire mesh materials. Based on the results of this work, conclusions regarding the 

application of this approach to other specifications of this material class can be drawn, and 

recommendations for experiments and analysis can be made. In order of decreasing importance, 

the most effective characterization procedures are: (1) uniaxial tensile tests in the principal 

material orientations, and on the bias, (2) leverage uniaxial tensile test results to formulate 

material compliance, and plastic behavior, (3) intermediate off-axis tensile tests to confirm 

orthotropy, (4) Biaxial tensile tests to analyze material yield behavior under in-service 

conditions, (5) meso-scale FE modeling to analyze wire-level deformation and failure 

mechanisms, (6) macro-scale FE modeling to exercise material models and expand the test 

matrix.   

7.2 Recommendations for Future Work 

 While the work presented in this thesis represents a significant contribution to the 

understanding of the mechanical behavior of metallic micronic woven structures, the overall lack 

of attention paid to this subject in the literature demands that this work be extended in the future. 

Based on the progress made in conducting the research presented in this thesis, and considering 

the challenges encountered, recommendations for the future study of micronic woven wire mesh 

materials can be made. In general, the following recommendations can be classified as either 

suggestions for improvement of data acquisition through better load frame and specimen design, 
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or as areas that have been identified as lacking sufficient development in this thesis for 

immediate employment by engineers in industry. 

Recommendations for Improvement of Experimental Design and Data Analysis 

Data Analysis 

 It is generally observed that the DIC method fails to perform well in regions of 

singularity at the root of a notch. For this reason, the SCFs produced in this work have been 

termed near notch SCF values, and are thus not indicative of the maximum values that should be 

expected at the root of the notch. An alternative data reduction technique is possible, however, 

that would allow for improved measurement of the SCF associated with a notched geometry 

using DIC measurements. The proposed method, which has been employed previously to 

measure fracture mechanics parameters [Mogadpalli and Parameswaran, 2008], involves the 

semi-empirical derivation of the stress fields in the notched body by using the DIC results to fit 

the governing equations to the observed data via regression analyis. Thus, DIC data taken from 

an area away from the notch edge, where this thesis has shown the results to be valid, could be 

used to extrapolate the state of stress at the notch edge. This method holds similarities to the 

Hutchinson-Rice-Rosengren (HRR) fields used to predict the state of stress near a plastic crack 

tip, in that it would involve the numeric solution of known field equations to predict stress values 

at the notch tip. Future work required to develop this method includes: 

• The identification of potential functions which satisfy the boundary conditions of the 

various problems, thorough analysis and optimization of the correlation procedures, i.e., 

how many data points are necessary to obtain accurate results. 
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• Development of software code to perform the two-dimensional regression optimization 

of the field equations, and development of software code to solve the fourth order 

differential field equations that would result from such an analysis. The result of these 

developments would be a robust method for characterizing stress concentrations in this 

class of materials using DIC strain field data taken away from the notch tip, as well as 

providing for a mechanism to support quantitative comparison of FEM contours to 

experimental DIC contours.   

Experimental Design Changes  

• Modification to the biaxial test frame is necessary to improve the ability for alignment of 

the test specimen and linkage arms, and to increase the number of potential stretch ratios. 

Both of these problems can be solved by adding a track mechanism to the biaxial frame, 

rather than the using the predetermined stretch ratio adjustment holes in the main load 

plates as shown in Fig. 2.11. Such a tack mechanism would force the alignment of the 

apposing linkage arms, and allow for increased flexibility in adjustment of the stretch 

ratio. 

• The grip assemblies must be improved such that unwanted lateral constraint at the fixed 

grips, which causes specimen buckling and out-of-plane deformations, is avoided in off-

axis cases. Basset [Bassett and Postle, 1999] has suggested several remedies for this 

situation, including modifications to the test specimens and modified grips. The outcome 

of such a modification will be improved off-axis tensile test results, particular in the bias 

(45º) orientation, where accurate results are critical to the calibration of the Hill yield 

criterion, and for shear modulus determination.  
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• Given the desirable simplicity of the uniaxial test specimens employed in this study, as 

shown in Fig. 2.1, it is more attractive in this case to alter the grip mechanism. Thus, it is 

recommended that future work be carried out to design roller grips, i.e., grips that will 

allow for the large transverse contraction of the subject material associated with the bias  

(45º) material orientation, for use in off-axis tensile tests. This modification will help 

prevent buckling of the test specimen, and increase the accuracy of the off-axis DIC test 

results. 

Recommendations for Improvement of the Proposed Models 

• Future work is needed to develop definitions for the modified Hill criterion parameter 

terms, I and K,  proposed in this thesis, such that experiments capable of defining these 

terms can be identified. Due to the shear stress and normal stress interaction implied by 

the addition of these terms, it is theorized that a biaxial tension plus shear test, along with 

the classical uniaxial and pure shear tests necessary to define the Hill constants, could be 

used for this purpose. Further development of the modified Hill yield criterion will 

require rigorous analysis to ensure its stability and convexity in all quadrants, as well as 

to provide a form that can easily be plotted as a failure envelope for comparison to other 

well-defined quadratic interaction yield theories such as Tsai-Hill or Tsai-Wu. 

• Future work is required to improve the multi-scale failure model based on meso-scale 

equivalent plastic strain as presented in Section 6.2.3. Primary areas for improvement are 

in the addition of physical observations, such as wire strain hardening behavior, observed 

mesh failure modes from SEM fractography, and the effects of crimp interchange, to the 

model.  The proposed constants, which must be defined based on physical observations 
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such as these, should be globally fit using periodic and symmetric functions of material 

orientation to reflect the orthotropy of the SS316L woven wire mesh. 

• The numerical implementation of this failure theory must be improved via the addition of 

an adaptive time stepping routine that will enable the numerical solver to automatically 

bisect load steps that cause the failure theory to be exceeded by too large a margin. This 

addition will improve crack growth predictions, and lead to improved load drop 

prediction.                   

• Future work is needed to investigate the slit notch geometry from a fracture mechanics 

perspective. It is conceivable that a near field approach similar to the one employed by 

Mogadpalli and colleague [Mogadpalli and Parameswaran, 2008] could be employed to 

experimentally determine the stress intensity factors associated with the slit notches in 

both uniaxial and biaxial cases for the SS316L woven wire mesh material. This would be 

particularly useful in the weft (90º) material orientation, where the material is observed to 

fracture in a brittle manner. 
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APPENDIX A 
DERIVATION OF THE STRESS STATE IN A UNIAXIALLY LOADED 
INFINITE ORTHOTROPIC PLATE WITH A CENTRAL ELLIPTICAL 

NOTCH 
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As the stress state is dependent on the material properties, we define them here: 

     

To allow calculation of the local material properties, we define them using the transformation 
equations: 

 where φ  is the material orientation 

 

 

 

 

Now, we can use the local material properties to solve the characteristic equation for μ , which is a measure 
of the anisotropy of the material:  

 

 we place the coefficients into a vector 
to allow mathcad to find the roots using 
the LaGuerre method 
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The positive roots are taken for analysis 

  

Now, apply the boundary conditions and define the geometry of the notch 

 Where P is a remotely applied stress 
 
a is the major axis of the elliptical notch 
 
b is the minor axis of the elliptical notch 

 

 

ϕ  is the notch orientation 
 

Next, we define a function that defines the notch edge for all angles along the open contour: 

 

Now, we consider the terms proposed by Lekhnitskii that help form the potential functions that solve this 
problem: 

  

  

Where the ζ  terms are part of the first term of an infinite series solution that forms the potential function, and 
the α  and β  terms are related to the boundary conditions of the problem 
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Finally, we can define the approximate complex potential functions as: 

  

Taking the derivative of the complex potentials we get: 

 

 

To facilitate plotting of the stress distribution, and to allow calculation of the Cartesian stress terms, we 
define the following vectors: 
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We rewrite the potential function derivatives as the following variables: 

 

 

And finally we can write the Cartesian stress terms from their well known relation to the complex potential 
functions: 

 

 

 

And conversion to the polar coordinate system allows for plotting of the theta component of stress:  
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The Uniaxial Macro-Scale FE Model: 

!====================================================5:07 PM 12/13/2012                             
! 
!MOMRG-UCF-MAE                                                                                                         
!ANSYS INPUT DECK - ORTHOTROPIC MODEL NOTCHED SPECIMEN                            
!STEVEN M. KRAFT                                                                                                        
!                                                                                                                        
!VERSION 3.0                                                                  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
 
finish 
/clear 
/PREP7 
 
!=====define the parameters for the geometry and material orientation================== 
 
theta=45           !material orientation  with respect to the weft axis 
ALPHA=0       !Notch orientation with respect to the loading axis 
w=.75              !width of a standard specimen    
l=1.25             !length of a standard specimen 
r=.125             !circle notch radius    
a=.125/2          !major radius of ellipse 
b=.125            !minor radius of ellipse  
 
!=======define Hill parameter values========================================= 
 
F=0.25 
G=3.17 
H=0.75 
N=38.5 
sy_max=22.8e3 
 
!====set initial, final, and increment values for the parameters to be varied=============== 
 
theta_ini=0 
theta_inc=15.0 
theta_fin=90 
 
!r_ini=.0625 
!r_inc=.0625 
!r_fin=.25 
 
!a_ini=.0625 
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!a_inc=.0625 
!a_fin=.5 
 
!b_ini=.625 
!b_inc=.0625 
!b_fin=.25 
 
j=1 
 
!====Do Loop on the parameter of interest====================================== 
 
*DO,theta,theta_ini,theta_fin,theta_inc 
PARSAV,,parameters,txt                         !Save all parameters to database 
*IF,j,GT,1,THEN 
FINISH 
/CLEAR 
/PREP7 
PARRESS,,parameters,txt                        !Read the paramters from the database  
*ENDIF 
FINISH 
 
!=====File Naming Information================ 
/filename, uniaxial_EllipseNotch_ortho_param 
/title, uniaxial_EllipseNotch_ortho_param 
 
/PREP7 
 
!define the geometry====================================================== 
 
BLC4,0,0,w,l,0                                !generates a rectangular area 
CYL4,w/2,l/2,r                                !generates a circle for the notch 
ARSCALE,2,2,1,(a/r),(b/r),1,0,1    !generates an ellipse if a and b are not equal to r  
AGEN,2,3,,,(r+(r/2)),,,,1 
ASEL,S,,,2,2,1, 
ADELE,ALL 
Local,22,1,w/2,l/2,0,0,0,0,,              !Create a local polar coordinate system to rotate ellipse      
csys,22 
ASEL,ALL 
APLOT 
AGEN,2,4, , , ,-ALPHA , , ,1          !Rotate ellipse by alpha 
ASEL,S,,,3,4,1, 
ADELE,ALL 
ASEL,ALL 
ASBA,1,2                           !generate notched geometry with symmetry - dimensions match 
                                            !single wide specimen quadrant                                                             
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!==================================================================== 
 
!define a local system to transform material properties into desired orientation 
 
local,11,0,0,0,0,theta,0,0,,         !the material is rotated into the theta orientation                  
 
!**NOTE** 
!**the 0 orientation is considered the weft material direction in this code** 
 
!==================================================================== 
 
!Element definition 
 
ET, 1, plane82 
Keyopt,1,3,3 
Keyopt,1,5,0 
Keypot,1,6,0 
R,1,.0035,  
 
ESYS,11                                        ! the local system is selected for all defined elements 
 
!==================================================================== 
 
!define the material model 
 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,3.09e6  
MPDATA,EY,1,,2.88e6  
MPDATA,PRXY,1,,.398  
MPDATA,GXY,1,,.031e6 
 
!define plasticity model - ANISO for now 
 
!****NOTE********************************************** 
!Material plasticity should be commented out for SCF determination* 
!****************************************************** * 
!TB,ANISO                                       !Anisotropic plasticity is employed 
!TBTEMP,0 
 
TSyx=10.29e3 
TSyy=1.93*10.29e3 
TSyxy=0.7*0.81*(10.29e3/sqrt(2)) 
CSyx=TSyx 
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CSyy=TSyy 
CSyxy=TSyxy 
TMx=2.8e5 
TMy=7.0e5 
TMps=.015e6 
 
!TBDATA,1,TSyx,TSyy,TSyy,TMx,TMy,TMy 
!TBDATA,7,CSyx,CSyy,CSyy,TMx,TMy,TMy 
!TBDATA,13,TSyxy,TSyxy,TSyxy,TMps,TMps,TMps      !yield strengths and tangent moduli 
are defined in data table    
 
 
!==================================================================== 
 
!Mesh the geometry using automatic meshing 
 
ASEL,ALL 
 
!Set the automatic meshing parameters 
 
MSHAPE,0,2D  
MSHKEY,0 
smrtsize, 3 
AMESH,ALL    
 
!refine the mesh at the notch location 
 
lrefine, 17,20,1,2 
 
!==================================================================== 
 
!switch back to the global system to define boundary conditions 
 
csys,0 
 
!====Define Fixed Condition on Bottom Edge======= 
 
lsel,s,line,,1 
nsll,s,1 
D,all,all,0 
nsel,all 
 
!====Define Force Condition on Top Edge========== 
 
lsel,s,line,,3 
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nsll,s,1 
*get,bnum2,node,,count 
F,all,fy,(.554/bnum2),, 
 
nsel,all 
 
FINISH 
 
!==================================================================== 
 
!Enter the solver 
 
/solu 
 
!we will apply a time step to ramp the mechanical load 
 
antype,0                                              !select static analysis type   
nropt,auto                                            !newton rhapson solver is set to automatic 
lnsrch,auto                                           !line search options are set to automatic      
time, 1                                                 !time at end of load step   
deltime,.1,.01,1                                   !set time increment   
autots,on                                              !toggle on/off auto time stepping  
outres,esol,all                                      !save element solutions for all time steps in the database  
outres,rsol,all                                      !save force reactions for all time steps in the database     
 
solve                                                    !solve the problem  
 
FINISH 
 
!==================================================================== 
 
!enter post-processing module 
 
/post1 
 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!HILL CRITERION CALCS! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
etable,stress_x,s,x 
etable,stress_y,s,y                             !put the Cartesian stress values in element tables 
etable,shear_xy,s,xy 
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!generate a dummy element table to be filled  with the hill values later 
etable,HILL,s,1                                                      
 
!get the total number of elements in the model 
*get,numelem,ELEM,,COUNT  
 
!dimension arrays to be filled with the element table values    
*dim,stressx,array,numelem,1,,,, 
*dim,stressy,array,numelem,1,,,, 
*dim,stressxy,array,numelem,1,,,,   
   
!fill arrays with the stress components for future operations    
 *vget,stressx,elem,1,etab,stress_x 
*vget,stressy,elem,1,etab,stress_y               
*vget,stressxy,elem,1,etab,shear_xy 
 
!normalize the stress components by the maximum yield stress 
*voper,sx_norm,stressx,div,sy_max,, 
*voper,sy_norm,stressy,div,sy_max,,              
*voper,sxy_norm,stressxy,div,sy_max,, 
 
!square the stress components 
*voper,stress_x_2,sx_norm,mult,sx_norm,, 
*voper,stress_x_y,sx_norm,mult,sy_norm,, 
*voper,stressxy_2,sxy_norm,mult,sxy_norm,,       
*voper,stress_y_2,sy_norm,mult,sy_norm,, 
 
!calculate the terms in hill criterion 
*voper,hill_1,stress_x_2,mult,(G+H),, 
*Voper,hill_2,stress_x_y,mult,(2*H),, 
*voper,hill_3,stress_y_2,mult,(F+H),,            
*voper,hill_4,stressxy_2,mult,(2*N),, 
 
!hill_tot is the hill criterion value 
*voper,hill_5,hill_1,sub,hill_2,, 
*voper,hill_6,hill_3,add,hill_4,, 
*voper,hill_tot,hill_5,add,hill_6,,              
 
!place the hill criterion value into an element table 
*do,k,1,(numelem),1 
detab,k,HILL,hill_tot(k,1,1)                     
*enddo 
 
 !plot the hill criterion values, averaged over the element and save an image 
pletab,HILL,avg                                
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/CONT,1,8,AUTO  
/replot 
 
/SHOW,TIFF,,0    
TIFF,COMP,1  
TIFF,ORIENT,HORIZ    
TIFF,COLOR,2 
TIFF,TMOD,1  
/GFILE,800,  
/CMAP,_TEMPCMAP_,CMP,,SAVE   
/RGB,INDEX,100,100,100,0 
/RGB,INDEX,0,0,0,15  
/REPLOT  
/CMAP,_TEMPCMAP_,CMP 
/DELETE,_TEMPCMAP_,CMP   
/SHOW,CLOSE  
/DEVICE,VECTOR,0 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!Sigma Theta around Opening Contour Results! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
!Change the results coordinate system to polar 
rsys,1                                                 
 
LSEL,S,LINE,,17,20,1 
NSLL,S,1 
 
*GET,numberOfNodes,NODE,,COUNT                        !Get the number of nodes  
*GET,nodeNumber,NODE,,NUM,MIN                         !Get the minimum node number 
PATH,CONTOUR,numberofnodes-1,6,1 
 
!Generate the path along the opening contour 
*DO,jj,1,(numberofnodes-1),1 
nodenumber=NDNEXT(nodenumber) 
PPATH,jj,nodenumber,,,,                                
*ENDDO 
 
 !Plot the Theta Component of stress onto the path 
PDEF,STRESSTH,S,Y,AVG                                
 
/output,stressth_%theta%_%alpha%_,txt                       !Output the path to a text file 
PRPATH,XG,YG,STRESSTH 
/output 
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j=j+1 
FINISH 
*ENDDO                                                 
!Exit the routine 
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The Cruciform Biaxial Macro-Scale FE Model 

!===================================================10:48 AM 3/9/2013 
!MOMRG-UCF-MAE                                                                                                       
!ANSYS INPUT DECK - BIAXIAL CRUCIFORM ORTHOTROPIC MODEL NOTCHED 
SPECIMEN                            
!STEVEN M. KRAFT                                                                                                        
!                                                                                                                        
!VERSION 2.0                                                                 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
FINISH 
/CLEAR 
/Prep7 
 
!Define the model Parameters=============================================== 
*SET,d,.8 
*SET,l1,1.5 
*SET,l2,1.5 
*SET,r,0.18  
*SET,pi,3.14159265   
*AFUN, RAD   
*SET,rr,.125 
*SET,aa,.125 
*SET,bb,.125/18 
theta=0 
 
!Set parameters and increments for do loops===================================== 
ALPHA_INI=0 
ALPHA_FIN=90 
ALPHA_INC=15 
 
a_ini=1 
a_fin=1.2 
a_inc=.2 
 
!==================================================================== 
 
!define Hill parameter values 
F=0.25 
G=3.17 
H=-0.75 
N=38.5 
sy_max=22.8e3 
!==================================================================== 
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!Nested Do loops simulate the various biaxial loading ratios and notch orientations 
j=1 
*DO,a,a_ini,a_fin,a_inc                 
*DO,ALPHA,ALPHA_INI,ALPHA_FIN,ALPHA_INC 
PARSAV,,parameters,txt 
*IF,j,GT,1,THEN 
FINISH 
/CLEAR 
/PREP7 
PARRESS,,parameters,txt 
*ENDIF 
finish 
 
!=====File Naming Information=================== 
/filename, Cruciform_Specimen_notched 
/title, Cruciform_Specimen_notched 
 
/prep7 
 
!define the geometry====================================================== 
K,1,-L1,0,0, 
K,2,-L1,d/2,0,   
K,3,-((d/2)+r),d/2,0,    
K,4,-(d/2),(d/2)+r,0,    
K,5,-(d/2),l2,0, 
K,6,0,l2,0,  
k,7,-(d/2),(d/2),0,  
k,8,0,0,0 
 
CIRCLE,7,r,,3,270, 
 
!generate lines connecting key points 
 
LSTR,       1,       2   
LSTR,       2,       9   
LSTR,       12,       5   
LSTR,       5,       6   
LSTR,       6,       8   
LSTR,       8,       1   
 
!define the area to be meshed   
 
AL, all 
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!generate a circle for the notch 
CYL4,0,0,rr                              
 
!generate an ellipse if a and b are not equal to r 
ARSCALE,2,2,1,(aa/rr),(bb/rr),1,0,1,1      
 
!Define Local polar coordinate system for notch rotation 
Local,22,1,w/2,l/2,0,0,0,0,, 
csys,22 
ASEL,ALL 
 
!Rotate the notch by alpha 
AGEN,2,2, , , ,-ALPHA , , ,1,1 
ASEL,S,AREA,,2 
LSEL,S,EXT, 
LSEL,ALL 
ASEL,ALL 
ASBA,1,2,SEPO 
 
!generate notched geometry with symmetry - dimensions match single wide specimen quadrant 
 
 
!==================================================================== 
 
!define a local system to transform material properties into desired orientation 
 
local,11,0,0,0,0,theta,0,0,,         ! the material is rotated into the theta orientation                  
 
!**NOTE** 
!**the 0 orientation is considered the weft material direction in this code** 
 
!==================================================================== 
 
!Mesh Parameters======================================================== 
 
ET,1,plane82 
KEYOPT,1,3,0 
KEYOPT,1,5,0 
KEYOPT,1,6,0 
   
ESYS,11                                           ! the local system is selected for all defined elements 
 
!define material model===================================================== 
 
MPTEMP,,,,,,,,   
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MPTEMP,1,0   
MPDATA,EX,1,,3.09e6  
MPDATA,EY,1,,2.88e6  
MPDATA,PRXY,1,,.398  
MPDATA,GXY,1,,.031e6 
 
!define plasticity model - ANISO for now 
 
!****NOTE********************************************** 
!Material plasticity should be commented out for SCF determination* 
!******************************************************** 
 
!TB,ANISO                                         !Anisotropic plasticity is employed 
!TBTEMP,0 
 
TSyx=10.29e3 
TSyy=1.93*10.29e3 
TSyxy=0.7*0.81*(10.29e3/sqrt(2)) 
CSyx=TSyx 
CSyy=TSyy 
CSyxy=TSyxy 
TMx=2.8e5 
TMy=7.0e5 
TMps=.015e6 
 
!yield strengths and tangent moduli are defined in data table   
!TBDATA,1,TSyx,TSyy,TSyy,TMx,TMy,TMy 
!TBDATA,7,CSyx,CSyy,CSyy,TMx,TMy,TMy 
!TBDATA,13,TSyxy,TSyxy,TSyxy,TMps,TMps,TMps         
 
!mesh the geometry and boundary conditions===================================== 
 
ASEL,ALL 
MSHAPE,1,2D  
MSHKEY,0 
smrtsize, 2 
 
!If the notch is rotated, the geometry lables will change. This is handled with IF, THEN logic: 
 
*IF,ALPHA,EQ,0,OR,ALPHA,EQ,90,THEN 
 
lesize,21,0,0,750 
AMESH,ALL    
LSEL,S,LINE,,21 
CM,NOTCH,LINE 
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LSEL,ALL 
LREFINE, 14,14,1,1                                      ! mesh is refined near the Fillet  
 
!apply the boundary conditions 
 
csys,0 
 
lsel,s,line,,20 
nsll,s,1 
D,all,uy,0 
nsel,all 
 
lsel,s,line,,19 
nsll,s,1 
D,all,ux,0 
nsel,all 
 
lsel,s,line,,15 
nsll,s,1 
*get,bnum,node,,count 
f,all,fX,-(10/(4*bnum)),, 
nsel,all 
 
lsel,s,line,,18 
nsll,s,1 
*get,bnum,node,,count 
f,all,fY,(a*10/(4*bnum)),, 
nsel,all 
 
!apply component names to the boundary condition lines for later use 
 
lsel,s,line,,15 
cm,boundryx,line 
lsel,s,line,,18 
cm,boundryy,line 
 
*ELSEIF,ALPHA,NE,0,OR,ALPHA,NE,90,THEN 
 
lesize,15,0,0,700 
amesh,all 
lsel,s,line,,15 
cm,notch,line 
lsel,all 
lrefine, 14,14,1,1                                   ! mesh is refined near the Fillet  
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!apply the boundry conditions 
 
csys,0 
lsel,s,line,,21 
nsll,s,1 
D,all,uy,0 
nsel,all 
 
lsel,s,line,,20 
nsll,s,1 
D,all,ux,0 
nsel,all 
 
lsel,s,line,,16 
nsll,s,1 
*get,bnum,node,,count 
f,all,fX,-(10/(4*bnum)),, 
nsel,all 
 
lsel,s,line,,19 
nsll,s,1 
*get,bnum,node,,count 
f,all,fY,(a*10/(4*bnum)),, 
nsel,all 
 
!apply component names to the boundary conditions for later reference 
 
lsel,s,line,,16 
cm,boundryx,line 
lsel,s,line,,19 
cm,boundryy,line 
 
*ENDIF 
 
lsel,all 
 
finish 
 
!==================================================================== 
 
!Enter the solver 
 
/solu 
 
!we will apply a time step to ramp the mechanical load 
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antype,0                                             !select static analysis type   
nropt,auto                                           !newton rhapson solver is set to automatic 
lnsrch,auto                                          !line search options are set to automatic      
time, 1                                                !time at end of load step   
deltime,.1,.01,1                                   !set time increment   
autots,on                                              !toggle on/off auto time stepping  
outres,esol,all                                      !save element solutions for all time steps in the database  
outres,rsol,all                                      !save force reactions for all time steps in the database     
 
solve                                                   !solve the problem  
 
FINISH 
 
!==================================================================== 
 
!enter the general post processor 
 
/post1 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!HILL CRITERION CALCS! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
etable,stress_x,s,x 
etable,stress_y,s,y                             !put the Cartesian stress values in element tables 
etable,shear_xy,s,xy 
 
 
!generate a dummy element table to be filled  with the hill values later 
etable,HILL,s,1                                                      
 
!get the total number of elements in the model 
*get,numelem,ELEM,,COUNT  
 
!dimension arrays to be filled with the element table values    
*dim,stressx,array,numelem,1,,,, 
*dim,stressy,array,numelem,1,,,, 
*dim,stressxy,array,numelem,1,,,,   
   
!fill arrays with the stress components for future operations    
 *vget,stressx,elem,1,etab,stress_x 
*vget,stressy,elem,1,etab,stress_y               
*vget,stressxy,elem,1,etab,shear_xy 
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!normalize the stress components by the maximum yield stress 
*voper,sx_norm,stressx,div,sy_max,, 
*voper,sy_norm,stressy,div,sy_max,,              
*voper,sxy_norm,stressxy,div,sy_max,, 
 
!square the stress components 
*voper,stress_x_2,sx_norm,mult,sx_norm,, 
*voper,stress_x_y,sx_norm,mult,sy_norm,, 
*voper,stressxy_2,sxy_norm,mult,sxy_norm,,       
*voper,stress_y_2,sy_norm,mult,sy_norm,, 
 
!calculate the terms in hill criterion 
*voper,hill_1,stress_x_2,mult,(G+H),, 
*Voper,hill_2,stress_x_y,mult,(2*H),, 
*voper,hill_3,stress_y_2,mult,(F+H),,            
*voper,hill_4,stressxy_2,mult,(2*N),, 
 
!hill_tot is the hill criterion value 
*voper,hill_5,hill_1,sub,hill_2,, 
*voper,hill_6,hill_3,add,hill_4,, 
*voper,hill_tot,hill_5,add,hill_6,,              
 
!place the hill criterion value into an element table 
*do,k,1,(numelem),1 
detab,k,HILL,hill_tot(k,1,1)                     
*enddo 
 
 !plot the hill criterion values, averaged over the element and save an image 
pletab,HILL,avg                                
/CONT,1,8,AUTO  
/replot 
/SHOW,TIFF,,0    
TIFF,COMP,1  
TIFF,ORIENT,HORIZ    
TIFF,COLOR,2 
TIFF,TMOD,1  
/GFILE,800,  
/CMAP,_TEMPCMAP_,CMP,,SAVE   
/RGB,INDEX,100,100,100,0 
/RGB,INDEX,0,0,0,15  
/REPLOT  
/CMAP,_TEMPCMAP_,CMP 
/DELETE,_TEMPCMAP_,CMP   
/SHOW,CLOSE  
/DEVICE,VECTOR,0 
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!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!Sigma Theta around Opening Contour Results! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
!The results coordinate system is Cartesian 
rsys,0                                                 
 
cmsel,s,notch,line                                                            !select the notch line component 
 
nsll,s,1 
 
*GET,numberOfNodes,NODE,,COUNT                        !Get the number of nodes  
*GET,nodeNumber,NODE,,NUM,MIN                         !Get the minimum node number 
 
!Generate the path along the opening contour 
PATH,CONTOUR,numberofnodes-1,10,3 
*DO,jj,1,(numberofnodes-1),1 
nodenumber=NDNEXT(nodenumber) 
PPATH,jj,nodenumber,,,,                                
*ENDDO 
 
!Plot the Cartesian stress components onto the path 
PDEF,STRESSY,S,Y,AVG 
PDEF,STRESSX,S,X,AVG 
PDEF,STRESSXY,S,XY,AVG 
 
!output the results to a text file 
/output,stressth_%CARTESIAN%_%a%_%ALPHA%_,txt 
PRPATH,XG,YG,STRESSX,STRESSY,STRESSXY 
/output 
 
finish 
 
!Enter the time history post processor========================================== 
 
/post26 
 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
!Load-Displacement Curve! 
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
 
!NOTE: This series of commands is useful if displacement boundary conditions are applied 
!             otherwise, ignore 
 
!Select the Y  boundary component and all of the nodes on that line    
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cmsel,s,boundryy,line                     
nsll,s,1                                               
*GET,numberOfNodes,NODE,,COUNT                        !Get the number of nodes    
*GET,nodeNumber,NODE,,NUM,MIN                         !Get the minimum node number 
 
!extract the reaction force in the y-direction     
RFORCE,2,nodeNumber,F,Y                                
*DO,ii,1,(numberOfNodes-1),1                                       !do this over all selected nodes   
nodeNumber = NDNEXT(nodeNumber)                                   
RFORCE,3,nodeNumber,F,Y  
              
!sum the reaction force of all nodes on the boundary                      
ADD,2,2,3                                              
*ENDDO  
PLVAR,2                                                                          !Plot the result with respect to time 
 
!output results to a text file 
/output,Biaxial_notch_load_time_Y_%A%_%ALPHA%_,txt 
PRVAR,2 
/output 
 
!Do the same for the X component 
lsel,all 
cmsel,s,boundryx,line 
nsll,s,1                                                
*GET,numberOfNodes2,NODE,,COUNT                        !Get the number of nodes    
*GET,nodeNumber2,NODE,,NUM,MIN                         !Get the minimum node number 
 
!extract the reaction force in the x-direction     
RFORCE,4,nodeNumber2,F,X                                
*DO,iii,1,(numberOfNodes2-1),1                                      !do this over all selected nodes   
nodeNumber2 = NDNEXT(nodeNumber2)                                 
RFORCE,5,nodeNumber2,F,X       
 
 !sum the reaction force of all nodes on the boundary                             
ADD,4,4,5                                               
*ENDDO  
PLVAR,4                                                                           !Plot the result with respect to time 
 
!output the results to a text file 
/output,Biaxial_notch_load_time_X_%A%_%ALPHA%_,txt 
PRVAR,4 
/output 
finish 
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j=j+1 
FINISH 
*ENDDO 
*ENDDO 
!Exit the routine 
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Macro-Scale Uniaxial Failure Simulation - Element Death 

!=====================================================!12:46 PM 3/17/2013                         
!MOMRG-UCF-MAE                                                                                                         
!ANSYS INPUT DECK - CRACK GROWTH SIMULATION IN THIN ORTHOTROPIC 
!PLATE WITH CIRCULAR NOTCH                             
!STEVEN M. KRAFT                                                                                                        
!                                                                                                                         
!VERSION 7.0                                                                                                             
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
finish 
/clear 
/PREP7 
! 
!define the parameters for the geometry and material orientation 
! 
theta=0                                  !material orientation  with respect to the WEFT axis 
w=.75                                    !width of a standard specimen    
l=1.25                                    !length of a standard specimen 
r=.125                                    !circle notch radius    
a=.125                                    !major radius of ellipse 
bb=.125                                  !minor radius of ellipse  
!set the time increment for the do loop to perform the load steps 
TM_BEGIN=2 
TM_INCR=1 
TM_END=15        
! 
! 
!define meso-scale strain parameters for each orientation to aid in element death criterion 
! 
!maximum plastic strain for ss316l wires used as failure criterion   
UTEPw=0.43                                     
UTEPs=0.05 
! 
*IF,THETA,EQ,90,THEN 
aw=1.00e-4 
as=0 
bw=120.0 
bs=0 
cw=1.23 
cs=0 
eyw=0 
eys=0 
*ELSEIF,THETA,EQ,75 
aw=2e-4 



269 
 

as=0 
bw=120.0 
bs=0 
cw=0.40 
cs=0 
eyw=.002 
eys=0 
*ELSEIF,THETA,EQ,60                            !**NOTE: 90 degrees is WARP in this code**! 
aw=1.25e-5 
as=0 
bw=130 
bs=0 
cw=0 
cs=0 
eyw=.025 
eys=0 
*ELSEIF,THETA,EQ,45                             
aw=3.5e-4 
as=0 
bw=150.0 
bs=0 
cw=0 
cs=0 
eyw=0.018 
eys=0 
*ELSEIF,THETA,EQ,30 
aw=8.00e-4 
as=5.40e-4 
bw=180 
bs=80 
cw=0 
cs=0 
eyw=0.0384 
eys=0.018 
*ELSEIF,THETA,EQ,15 
aw=1.95e-3 
as=3.3e-3 
bw=205 
bs=150 
cw=-0.085 
cs=-0.200 
eyw=0.0075 
eys=0.011 
*ELSEIF,THETA,EQ,0 
aw=.0035 
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as=8.00e-3 
bw=215 
bs=200 
cw=-.275 
cs=-.350 
eyw=0.0027 
eys=0.018 
*ENDIF 
! 
FINISH 
! 
/PREP7 
! 
!define the geometry====================================================== 
! 
BLC4,0,0,w,l,0                                                       !generates a rectangular area 
CYL4,w/2,l/2,r                                                       !generates a circle for the notch 
ARSCALE,2,2,1,(a/r),(bb/r),1,0,1                         !generates an ellipse if a and b are not equal to r  
AGEN,2,3,,,((0*w/1)-(0*w/40)),,,,1  
ASEL,S,,,2,2,1,                            
ADELE,ALL    
! 
!create local coordinate system to rotate the ellipse by                                              
LOCAL,22,1,W/2,L/2,0,0,0,0,,        
CSYS,22                             
ASEL,ALL 
APLOT 
AGEN,2,4, , , ,-ALPHA , , ,1                                 !rotate the ellipse by alpha     
ASEL,S,,,3,4,1, 
ADELE,ALL                          !  
ASEL,ALL 
ASBA,1,2                                                               !generate notched geometry without symmetry 
! 
!==================================================================== 
! 
!define a local system to transform material properties into desired orientation 
! 
local,11,0,0,0,0,theta,0,0,,       ! the material is rotated into the theta orientation          
! 
!***NOTE*** 
!THETA IS DEFINED WITH RESPECT TO THE WEFT DIRECTION IN THIS CODE, I.E., 
!THETA=0 IS WEFT         
! 
!==================================================================== 
! 
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!Element definition 
! 
ET, 1, plane82 
Keyopt,1,3,3 
Keyopt,1,5,0 
Keypot,1,6,0 
R,1,.0035,  
! 
ESYS,11                             ! the local system is selected for all defined elements 
! 
!==================================================================== 
! 
!define the material model 
! 
MPTEMP,,,,,,,,   
MPTEMP,1,0   
MPDATA,EX,1,,3.09e6                             !orthotropic elastic model employed 
MPDATA,EY,1,,2.88e6  
MPDATA,PRXY,1,,0.398  
MPDATA,GXY,1,,.031e6 
! 
!define plasticity model - ANISO for now 
!  
TB,ANISO                                                  !Anisotropic plasticity is employed 
! 
TSyx=14.29e3 
TSyy=28.0e3 
TSyxy=0.7*0.81*(10.29e3/sqrt(2)) 
CSyx=TSyx 
CSyy=TSyy 
CSyxy=TSyxy 
TMx=2.8e5 
TMy=7.0e5 
TMps=.015e6 
! 
!yield strengths and tangent moduli are defined in data table    
TBDATA,1,TSyx,TSyy,TSyy,TMx,TMy,TMy 
TBDATA,7,CSyx,CSyy,CSyy,TMx,TMy,TMy 
TBDATA,13,TSyxy,TSyxy,TSyxy,TMps,TMps,TMps       
!==================================================================== 
! 
!Mesh the geometry using automatic meshing 
! 
ASEL,ALL 
! 
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!Set the automatic meshing parameters 
! 
MSHAPE,0,2D  
MSHKEY,0 
SMRTSIZE, 1 
AMESH,ALL    
AREFINE,3,,,2 
! 
!refine the mesh at the notch location 
LREFINE, 17,20,1,2 
! 
!==================================================================== 
! 
!switch back to the global system to define boundary conditions 
! 
CSYS,0 
! 
!Fix the bottom edge 
! 
LSEL,S,LINE,,1 
NSLL,S,1 
D,ALL,ALL,0 
NSEL,ALL 
!Dimension the table of time-displacement values   
*DIM,DISP_TIME,TABLE,16       
!Displacement values                                                                                                         
DISP_TIME(1)=0,.002,.004,.006,.008,.009,.01,.011,.012,.013,.014,0.015,0.016,0.017,0.018,0.01
9    
!Time values                                          
DISP_TIME(1,0)=0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15                                                                                  
! 
FINISH 
! 
!==================================================================== 
! 
!Enter the solver 
! 
/solu 
! 
!we will apply a time step to ramp the mechanical load 
! 
!LS 1 
! 
LSEL,S,LINE,,3 
NSLL,S,1 
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D,ALL,UY,%DISP_TIME% 
NSEL,ALL 
!DL,3,,UY,%DISP_TIME% 
! 
antype,0                                              !select static analysis type   
nropt,auto                                           !newton rhapson solver is set to automatic 
lnsrch,auto                                          !line search options are set to automatic      
NLGEOM,Off                                    !Nonlinear geometry option turned off 
solcontrol,on                                       !optimized non-linear    
KBC,0                                                !loads are ramped 
time, 1                                                !time at end of load step   
nsub,5,5000,1                                     !set number of substeps 
autots,ON                                           !toggle on/off auto time stepping  
outres,esol,all                                     !save element solutions for all time steps in the database  
outres,rsol,all                                     !save force reactions for all time steps in the database     
! 
solve                                                  !solve the problem  
! 
FINISH 
! 
!==================================================================== 
!Enter the general post-processor 
/POST1                                                       
! 
SET,LAST 
!  
ESEL,ALL                                                                        !Select all elements 
!      
!Generate element tables of total Y-COMPONENT mechanical strain components in the plane                          
ETABLE,E_EQV_TOT,EPTO,Y                                      
! 
!Generate a dummy element table to be re-filled with WARP damage values later   
ETABLE,DAMAGEW,S,1  
!Generate a dummy element table to be re-filled with WEFT damage values later                                           
ETABLE,DAMAGES,S,1                                           
! 
!Get the total number of elements in the model 
*GET,NumElem,ELEM,,COUNT                           
! 
!Dimension the strain array to the number of elements in the model  
*DIM,STA_EQV,ARRAY,NumElem,1,,,,                            !    
! 
!Put Element table strain values into the array for manipulation 
*VGET,STA_EQV,ELEM,1,ETAB,E_EQV_TOT                           
! 
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! evaluate the meso-scale plasticity model for warp wires 
*VOPER,TGW,STA_EQV,SUB,EYW 
*VOPER,EW_1,TGW,MULT,BW 
*VFUN,EW_2,EXP,EW_1 
*VOPER,EW_3,AW,MULT,EW_2 
*VOPER,EW_4,CW,MULT,STA_EQV      
*VOPER,EW_T,EW_4,ADD,EW_3 
!  
!evaluate the meso-scale plasticity model for weft wires 
*VOPER,TGS,STA_EQV,SUB,EYS 
*VOPER,ES_1,TGS,MULT,BS 
*VFUN,ES_2,EXP,ES_1 
*VOPER,ES_3,AS,MULT,ES_2 
*VOPER,ES_4,CS,MULT,STA_EQV                                  
*VOPER,ES_T,ES_4,ADD,ES_3 
! 
! damage defined as the ratio of meso-scale plastic strain to ultimate plastic strain of ss316l wires 
*VOPER,DAMW,EW_T,DIV,UTEPw                                   
*VOPER,DAMS,ES_T,DIV,UTEPs 
! 
!Do loop places WARP damage values into dummy element table defined earlier 
*GET,NumElem,ELEM,,COUNT 
*DO,k,1,(NumElem),1 
DETAB,k,DAMAGEW,DAMW(k,1,1) 
*ENDDO                                                      ! 
! 
!Do loop places WEFT damage values into dummy element table defined earlier 
*GET,NumElem,ELEM,,COUNT 
*DO,k,1,(NumElem),1 
DETAB,k,DAMAGES,DAMS(k,1,1) 
*ENDDO                                                       
! 
! 
!Select all elements with a damage value greater than or equal to 1.00 
ESEL,S,ETAB,DAMAGEW,1.00,,,0                
ESEL,A,ETAB,DAMAGES,1.00,,,0 
! 
!Get the number of elements selected 
*GET,NUMSEL,ELEM,,COUNT                                   
!If - Then logic determines if CM file is to be written 
*IF,NUMSEL,EQ,0,THEN                                         
ESEL,ALL 
COUNT=0 
*ELSEIF,NUMSEL,GT,0 
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!Select all elements with a damage value greater than or equal to 1.00 
ESEL,S,ETAB,DAMAGEW,1.00                                     
ESEL,A,ETAB,DAMAGES,1.00         
        CM,TOKILL,ELEM       ! Create Kill Element Component 
 CMWRITE,KILL_LIST,CM                 ! Write Component to Disk 
count=1 
*ENDIF 
!  
parsav,all                                                   
! 
!Plot contour map of accumulated WARP damage, redirect plot to tiff file 
ESEL,S,LIVE 
PLETAB,DAMAGEW,AVG                                           
/SHOW,TIFF,,0    
TIFF,COMP,1  
TIFF,ORIENT,HORIZ    
TIFF,COLOR,2 
TIFF,TMOD,1  
/GFILE,800,  
/CMAP,_TEMPCMAP_,CMP,,SAVE   
/RGB,INDEX,100,100,100,0 
/RGB,INDEX,0,0,0,15  
/REPLOT  
/CMAP,_TEMPCMAP_,CMP 
/DELETE,_TEMPCMAP_,CMP   
/SHOW,CLOSE  
/DEVICE,VECTOR,0 
! 
 !Plot contour map of accumulated WEFT damage, redirect plot to tiff file 
ESEL,S,LIVE 
PLETAB,DAMAGES,AVG                                         
/SHOW,TIFF,,0    
TIFF,COMP,1  
TIFF,ORIENT,HORIZ    
TIFF,COLOR,2 
TIFF,TMOD,1  
/GFILE,800,  
/CMAP,_TEMPCMAP_,CMP,,SAVE   
/RGB,INDEX,100,100,100,0 
/RGB,INDEX,0,0,0,15  
/REPLOT  
/CMAP,_TEMPCMAP_,CMP 
/DELETE,_TEMPCMAP_,CMP   
/SHOW,CLOSE  
/DEVICE,VECTOR,0 



276 
 

! 
ESEL,ALL 
PARSAV,ALL 
FINISH                                                     !Exit the post-processor  
!==================================================================== 
! 
!LS2 AND THE REMAINING STEPS. 
! 
!Do loop runs the remaining time steps 
*DO,TM,TM_BEGIN,TM_END,TM_INCR  
!                             
!Save all parameters before entering the solver 
parsav,all                                                  
! 
/SOLU                                                     
antype,,rest                                            !Restart the solution and continue with remaining load 
steps  
parres                                                     !Read parameter file into the database                                                         
! 
! 
!If - then logic decides whether to execute element kill or to proceed to next load step 
*IF,COUNT,EQ,0,THEN                                        
        ESEL,ALL 
*ELSEIF,COUNT,GT,0,AND,COMPEXIST,GT,0,THEN 
        /INPUT,KILL_LIST,CM              ! Read in Component from Disk 
 CMSEL,S,TOKILL                          ! Select Current Component 
        /INPUT,KILL_LIST_2,CM                               ! Read in Component from Disk 
        CMSEL,A,TOKILL_2                                       ! Select Previous Component 
        EKILL,ALL                                                        ! Kill selected elements 
        CM,TOKILL_2,ELEM               ! Create secondary Kill Element Component 
 CMWRITE,KILL_LIST_2,CM             ! Write Component to Disk 
*ELSEIF,COUNT,GT,0,AND,COMPEXIST,EQ,0,THEN 
        /INPUT,KILL_LIST,CM 
        CMSEL,S,TOKILL                                       
        EKILL,ALL                                   
        CM,TOKILL_2,ELEM               ! Create secondary Kill Element Component 
            CMWRITE,KILL_LIST_2,CM             ! Write Component to Disk 
*ENDIF 
! 
ESEL,ALL 
! 
nropt,auto                                                 !newton rhapson solver is set to automatic 
lnsrch,auto                                                !line search options are set to automatic      
solcontrol,on                                             !optimized nonlinear 
nlgeom,off                                                !Nonlinear geometry option turned off 
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kbc,0                                                         !loads are ramped 
time, TM                                                   !time at end of load step   
nsub,5,1000,1                                            !number of sub-steps   
autots,on                                                    !toggle on/off auto time stepping  
outres,esol,all                                            !save element solutions for all time steps 
outres,rsol,all                                            !save force reactions for all time steps    
esel,all 
solve  
FINISH                         
! 
!==================================================================== 
! 
/POST1                                                      !Enter the general post-processor 
! 
SET,LAST 
!  
ESEL,ALL                                                !Select all elements 
!  
!Generate element tables of total Y-COMPONENT mechanical strain components in the plane                             
ETABLE,E_EQV_TOT,EPTO,Y                                      
! 
!Generate a dummy element table to be re-filled with WARP damage values later   
ETABLE,DAMAGEW,S,1 
!Generate a dummy element table to be re-filled with WEFT damage values later                                        
ETABLE,DAMAGES,S,1                                           
! 
*GET,NumElem,ELEM,,COUNT           !Get the total number of elements in the model  
! 
!Dimension the strain array to the number of elements in the model 
*DIM,STA_EQV,ARRAY,NumElem,1,,,,                             
!    
!Put Element table strain values into the array for manipulation 
*VGET,STA_EQV,ELEM,1,ETAB,E_EQV_TOT                         
!  
! evaluate the meso-scale plasticity model for warp wires 
*VOPER,TGW,STA_EQV,SUB,EYW 
*VOPER,EW_1,TGW,MULT,BW 
*VFUN,EW_2,EXP,EW_1 
*VOPER,EW_3,AW,MULT,EW_2 
*VOPER,EW_4,CW,MULT,STA_EQV                                  
*VOPER,EW_T,EW_4,ADD,EW_3 
!  
! evaluate the meso-scale plasticity model for weft wires 
*VOPER,TGS,STA_EQV,SUB,EYs 
*VOPER,ES_1,TGS,MULT,BS 
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*VFUN,ES_2,EXP,ES_1 
*VOPER,ES_3,AW,MULT,ES_2 
*VOPER,ES_4,CW,MULT,STA_EQV                                  
*VOPER,ES_T,ES_4,ADD,ES_3 
! 
!damage defined as the ratio of meso-scale plastic strain to ultimate plastic strain of ss316l wires 
*VOPER,DAMW,EW_T,DIV,UTEPW                                    
*VOPER,DAMS,ES_T,DIV,UTEPS 
! 
!Do loop places WARP damage values into dummy element table defined earlier 
*GET,NumElem,ELEM,,COUNT 
*DO,k,1,(NumElem),1 
DETAB,k,DAMAGEW,DAMW(k,1,1) 
*ENDDO                                                      ! 
! 
!Do loop places WEFT damage values into dummy element table defined earlier 
*GET,NumElem,ELEM,,COUNT 
*DO,k,1,(NumElem),1 
DETAB,k,DAMAGES,DAMS(k,1,1) 
*ENDDO                                                       
! 
!Select all elements with a damage value greater than or equal to 1.00 
ESEL,S,ETAB,DAMAGEW,1.00,,,0                                
ESEL,A,ETAB,DAMAGES,1.00,,,0 
! 
*GET,NUMSEL,ELEM,,COUNT                                 !Get the number of elements selected 
!If - Then logic determines if CM file is to be written 
*IF,NUMSEL,EQ,0,THEN                            
         ESEL,ALL 
         count=0 
*ELSEIF,NUMSEL,GT,0 
         ESEL,S,ETAB,DAMAGE,1.00                             
         CM,TOKILL,ELEM                    ! Create Kill Element Component 
  CMWRITE,KILL_LIST,CM                              ! Write Component to Disk 
         count=1 
*ENDIF 
!  
!Determine status of previous to kill component 
*GET,COMPEXIST,COMP,TOKILL_2,TYPE                            
! 
parsav,all                                                   
! 
!Plot contour map of accumulated WARP damage, redirect plot to tiff file 
ESEL,S,LIVE 
PLETAB,DAMAGEW,AVG                                           



279 
 

/SHOW,TIFF,,0    
TIFF,COMP,1  
TIFF,ORIENT,HORIZ    
TIFF,COLOR,2 
TIFF,TMOD,1  
/GFILE,800,  
/CMAP,_TEMPCMAP_,CMP,,SAVE   
/RGB,INDEX,100,100,100,0 
/RGB,INDEX,0,0,0,15  
/REPLOT  
/CMAP,_TEMPCMAP_,CMP 
/DELETE,_TEMPCMAP_,CMP   
/SHOW,CLOSE  
/DEVICE,VECTOR,0 
! 
!Plot contour map of accumulated WEFT damage, redirect plot to tiff file 
PLETAB,DAMAGES,AVG                                            
/SHOW,TIFF,,0    
TIFF,COMP,1  
TIFF,ORIENT,HORIZ    
TIFF,COLOR,2 
TIFF,TMOD,1  
/GFILE,800,  
/CMAP,_TEMPCMAP_,CMP,,SAVE   
/RGB,INDEX,100,100,100,0 
/RGB,INDEX,0,0,0,15  
/REPLOT  
/CMAP,_TEMPCMAP_,CMP 
/DELETE,_TEMPCMAP_,CMP   
/SHOW,CLOSE  
/DEVICE,VECTOR,0 
! 
! 
ESEL,ALL 
PARSAV,ALL 
FINISH                                                     !Exit the post-processor  
*ENDDO 
! 
! 
!ENTER TIME-HISTORY POST PROCESSOR  
! 
/post26 
! 
!Create job names for each run for each output file 
! 



280 
 

!**NOTE: The output files are referenced as 90-theta, such that the 
!            standard orientation convention is maintained in the results    
 
LOAD_DISP_JOB='LOAD_DISP_notched%90-theta%_.txt'               
! 
!Create index files for each output file set 
! 
*CFOPEN, INDEX_LOAD_DISP,txt,,append 
*VWRITE, LOAD_DISP_JOB 
%C 
! 
!select line containing DIS BC for force reaction 
LSEL,S,,,3              
!Select all of the nodes on that line                                   
NSLL,S,1      
!extract the reaction force in the y-direction                                              
*GET,numberOfNodes,NODE,,COUNT                        !Get the number of nodes    
*GET,nodeNumber,NODE,,NUM,MIN                         !Get the minimum node number 
RFORCE,2,nodeNumber,F,Y                                
*DO,i,1,(numberOfNodes-1),1                                       !do this over all selected nodes   
nodeNumber = NDNEXT(nodeNumber)                                   
RFORCE,3,nodeNumber,F,Y  
!sum the reaction force of all nodes on the boundary                                   
ADD,2,2,3                                              
*ENDDO  
!Plot the result with respect to time 
PLVAR,2                                                
! 
!output is redirected from the screen to a text file 
/output,LOAD_DISP%90-theta%_,txt                     
PRVAR,2                                                
/output 
! 
FINISH 
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APPENDIX C 
DATA ACQUISITION CIRCUIT DESIGN REFERENCE 
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List of Parts 

1. Futek load cell model #LCM300 
2. Omega LVDT sensor model #LD621-15 
3. CUI, Inc. AC/DC power supplies model #ESTA 12W 
4. Lego NXT Mindstorm analog to digital converter and controller 
5. Burr Brown INA-125 instrumentation amplifier 
6. Burr Brown INA-118 instrumentation amplifier 
7. 1µF capacitors (4) 
8. 10kΩ resistors (8) 
9. RS-232 breakouts (4) 
10. Voltage supply terminals (4) 
11. Electrical enclosure 
12. Vernier NXT sensor adapters (4) 
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Data Acquisition Sensors and Components 

Load Cell 

Futek Model # LCM300 

Rated Output: 2mV/V nom. 

Excitation: 15VDC maximum 

Maximum Load: 250lb (1112N) 
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LVDT Sensor 

Omega Model # LD621-15 

Excitation: 10 - 30VDC @ 25mA 

Output: 0 - 10VDC 

Maximum Deflection: 0.6in (15.0mm) 
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DC Power Supplies 

CUI, Inc. Model # ESTA 12W 

Maximum Power: 12 Watts 

Output Voltage: 12VDC 

Maximum Output Current: 1.0A 

Input Voltage: 90 - 264 VAC 
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NXT Mindstorm Analog to Digital Converter and Controller 

Lego Product # 8547 - NXT2.0 

Maximum Input Voltage: 5VDC 
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Analog Signal Processing Board 
Burr Brown INA 125 Instrumentation Amplifier:  

• Precision Voltage References at 1.24V, 2.5V, 5.0V, and 10.0V 
• Dual Supply Range: +/- 1.35V to +/- 18.0V 
• Input Range +/- 40V 
• 16 PIN DIP Packaging 
• Variable Amplification 

Burr Brown INA 118 Instrumentation Amplifier: 

• 8 PIN DIP Packaging 
• Dual Supply Range: +/- 1.35V to +/- 18.0 V 
• Input Range: +/- 40V 
• Variable Amplification 

Other Components: 

1µF Capacitor (4) 
10kΩ Resistors (8) 
RS-232 Breakouts (4) 
Voltage Supply Terminals (4) 
 

 

RS 232 9-
PIN Breakout 

INA 125  

Power Supply 
Rails  

Analog 
Voltage 
Sensor  

10kΩ 
Resistors 

INA 118  

1µF 
Capacitors 
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Complete Data Acquisition System 
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Schematic of Basic Circuits Used 

The Non-Inverting Summing Amplifier (INA-118) 

 1 2oE E E= +  

 

The Resistive Voltage Divider (LVDTs) 
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APPENDIX D 
BIAXIAL LOAD FRAME COMPONENTS 
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The Assembled Biaxial Load Frame in Equibiaxial Tension 
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Main Load Plate 
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Angle Pivot 
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Upper Linkage Arm 
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Grip Assembly  
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Camera Mount Assembly 
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Part Drawings 

Angle Pivot 
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Grip Link A 
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Grip Link B 
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Lower Linkage Arm 
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Upper Linkage Arm 
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Main Load Plate 
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Slider 
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Slider Track 
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Wave Grip Top 
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Wave Grip Bottom 
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Grip Plate 
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