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ABSTRACT 
Helical compression springs are commonly used devices 

capable of storing kinetic energy.  Typical applications vary in 
simplicity, ranging from low stress amplitudes and in favorable 
environments, e.g. ball point pen spring at room temperature, to 
millions of cycles in elevated temperatures, e.g. valve train 
spring in IC engines.  Regardless of the load or environment, 
springs are able to use the intrinsic elasticity of the material and 
the initial geometry to resist plastic deformation, all while 
allowing for the transfer of load over various distances.  
Generally, these loads are parallel to the axis of the spring; 
however, as more complex designs arise, these uniaxial springs 
are gaining popularity in a variety of off-axis loading situations, 
e.g. flexible shaft couplings, invalidating traditional 
stress/strain equations.  As such, equivalent stress and strain 
equations have been developed capable of fast, real-time 
calculations based upon visual inspection of the bent helix.  
Coupled with the initial dimensions and material of the spring, 
the state of equivalent stress/strain can be resolved at any 
position within the wire.  Experiments were conducted on 
several off-the-shelf steel springs (conforming to ASTM 
A229), then compared to FEA and analytical solutions.  
Ultimately, it was observed that through an approximation of 
the bent helix, the equivalent stress and strain can be 
determined at any location within the wire, allowing for the 
approximation of life and crack initiation locations of the 
spring. 

NOMENCLATURE 
α  Spring Helix Angle 
εi  Strain in i-th Direction [in/in (mm/mm)] 
εvm  Equivalent Strain [in/in (mm/mm)] 
θT  Angular Deflection 
ν  Poisson’s Ratio 
ρ  Radius of Curvature [in (mm)] 
σi  Stress in i-th Direction [ksi (MPa)] 
σvm  Equiavlent Stress [ksi (MPa)] 

τ  Shear Stress [ksi (MPa)] 
d  Wire Diameter [in (mm)] 
ymax  Distance from Neutral Axis, max [in (mm)] 
A  Cross Sectional Area [in2 (mm2)] 
C  Spring Index 
D  Spring Diameter [in (mm)] 
E  Elastic Modulus [Msi (GPa)] 
F  Externally Applied Force [lbf (N)] 
G  Shear Modulus [Msi (GPa)] 
GF  Gage Factor 
I  Second Moment of Inertia [in4 (mm4)] 
J  Polar Moment of Inertia [in4 (mm4)] 
Ks  Shear Stress Correction Factor 
Kw  Wahl Factor 
L0  Free Length [in (mm)] 
M  Externally Applied Moment [lbf·in (N·mm)] 
Na  Number of Active Coils 
ΔR  Change in Resistance [Ω] 
R  Radius [in (mm)] 
Ri  Initial Resistance [Ω] 
T  Externally Applied Torque [lbf·in (N·mm)] 
ΔVout Change in Voltage [V] 
Vex  Excitation Voltage [V] 

INTRODUCTION 
Helical compression springs have become commonplace in 

designs requiring the gradual application of load.  Compressive 
forces are typically exerted aligned with the spring helix and 
applied concentrically with the coils, as is the case in 
automotive valve springs and suspension components.  Spring 
designers tailor the shape and size of axial compression springs 
to meet the design requirements without accounting for non-
negligible off-axis or multiaxial loading [1]; however, as more 
complex designs incorporate larger degrees of multiaxial load 
carrying capability, the effects of uniform and non-uniform 
bending must be considered. 
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The shear stress formulation commonly found in 
engineering texts has gained notoriety as being the dominate 
stress throughout the coils [2,3].  Summarized in texts in the 
1960s [4], the state of stress can be related to the externally 
applied force and the physical properties of the spring, i.e.,  
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where the first term accounts for direct shear and the second is 
the shear stress due to torsion. Additional simplification 
furnishes the shears stress as a function of F, D and d, i.e., 
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Through the use of a shear stress correction factor, Ks, Eq. (2) 
can be further reduced, e.g., 
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The shear stress correction factor, Ks, accounts for the increase 
or decrease in stress based on the location on the wire that is 
under observation.  Achieving more accuracy, the Wahl Factor, 
Kw, has been used to replace Ks, which solely depends on the 
spring index, C, i.e., 
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Substitution of Eq. (4) into Eq. (3) furnishes the maximum 
shear stress, which occurs along the inside of the coil due to the 
curvature effect, i.e., 
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however, this maximum shear stress and its location are the 
result of an axially applied load, with no consideration given to 
off spring-axis or eccentric loads.  The location of maximum 
stress remains constant, regardless of the magnitude of load 
applied.  

Equally important in design considerations, the axial 
deflection experienced upon the application of load can be 
equated through the use of Castigliano’s theorem, under the 
assumption that the spring is elastic, homogenous, isotropic and 
has uniform dimensions, e.g., 
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The latter term in parenthesis in Eq. (6) essentially reduces to 
unity, allowing for the simplification with a small assumption.  
Generally, in design calculations, Eqs. (5) and (6) are regarded 
as the governing stress and deflection models for uniaxially 
loaded springs [3-5].  Thus, torsion dominates the stress 
distributed on the helixes cross-section, validating the reduction 
of Eq. (1). 

To properly account for the bending stresses that are 
encountered during multiaxial loading, elementary beam theory 
provides for the maximum stress encountered in a cantilever 
beam as a function of the bending moment [6], i.e., 
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Figure 1: Standard helical compression spring 
subjected to a uniaxial load along the central axis of 

the helix. 

Figure 2: View of deformed helical compression spring subjected to a uniform moment, with 
location of the specified helix and coil reference frames. 
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Equation (7) will be utilized further in developing the stress 
formulation at any location in the next section.  

A limitation to existing analytical models of stress 
distributions in springs is that they require that either the 
externally applied force, F, or the applied moment, M, is 
known.  In the case of flexible shaft couplings, however, these 
forces and moments can be difficult to calculate if the curvature 
is variable.  That is to say, the nature of the spring lends itself 
to being able to infer deflection from inspection rather than 
load.  Ability to measure deflection with relative ease compared 
to load provokes the necessity for a deflection-based method of 
stress determination. 

BENDING ANALYSIS 
Previous works suggest that when a spring undergoes 

bending, the wire is subjected to both torsion and flexure [7,8].  
Wolansky has studied the effects of bending on helical 
compression springs and formulated expressions for both 
flexural and torsional stresses experienced, i.e., 
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Under the application of a pure moment, the angular deflection, 
θT, can be approximated as a function of the applied moment 
and material properties [8,9], i.e., 
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It is assumed that a helical compression spring subjected to 
uniaxial loading through the central axis only, Fig. 1, enabling 
the use of Eqs. (5) and (6).  However, when a moment is 
applied to the ends, as in Fig. 2, stresses due to bending must be 
accounted for.  Positions along the spring are shown using R1, 
R2, θ1 and θ2, where R1 is distance to the center of the wire, θ1 is 
the angle made with respect to a defined axis, R2 is the distance 
from the center of the wire and θ2 is the angle made with 
respect to a defined axis in the wire.   

Figure 3: Strain gages 1 and 2 affixed to the subject steel 
compression spring used in this study (3 and 4 are 180° opposite).

Figure 4: Extracted coils used in the numerical simulation.

 Upon observation, the wire is expected to exhibit a 
torsional state of stress at cross-sections along the inner and 
outer radius, while a bending state of stress is expected along 
the neutral axis.  Using the defined coordinate system, both the 
torsional and bending stresses can be resolved into individual 
components, i.e., 
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As θ1 rotates from 0 to π/2 (from the outer/inner radius to the 
neutral axis), the state of stress is expected to transform from 
pure torsion to pure bending.  By equilibrium conditions, the 
torque, T, and the moment, M, are equivalent and Eqs. (10) and 
(11) can be combined to form a single, scalar-valued quantity 
using the von Mises equivalent stress formulation, i.e., 
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Additionally, the torque can be approximated through 
visual inspection of the bent helix.  With knowledge of the free 
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length of the spring and the radius of curvature, the torque can 
be approximated,  
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Combining Eqs. (12) and (13), the equivalent stress at any point 
within the wire can be approximated, i.e.,  
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Equation (14) can be used to approximate the equivalent 
stress at any position within the wire based solely upon visual 
inspection  of the bent helix.  It should noted that the spring is 
expected to be a linear, elastic material with a uniform, 
symmetric cross section and the load imposed does not induce 
yielding of the material.  If these conditions are not met, Eq. 
(14) is no longer valid and additional measures must be taken to 
properly determine the state of stress. 

EXPERIMENTAL AND NUMERICAL ANALYSIS 
To characterize the states of both stress and strain under 

mechanical loading, springs (or their numerical renderings) are 
often subject to loading at their ends and the deflection is 
analyzed [9].  For the experimental portion of the current study, 
a generic compression spring was selected and subjected to an 
end moment.  The dimensions (Table 1) and properties (Table 
2) of the subject spring for this study were selected for several  

Table 1 - Spring Geometric Properties   
Wire Diameter, d [in (mm)] 0.20   
Mean Diameter, D [in (mm)] 1.98   
Free Length, L0 [in (mm)] 8.00   
Solid Length, Ls [in (mm)] 2.59   
Number of Active Coils, Na 10.5   
Spring Index, C = D/d   9.57   
Spring Rate, k [lb/in (N/mm)] 32.3 
End Conditions   Closed and Ground 
 
Table 2 - Spring Material    
Elastic Modulus, E [Msi (GPa)]  30.0 (207)  
Shear Modulus , G [Msi (GPa)] 11.5 (79.3)  
Yield Strength, Sy [ksi (MPa)] >115 (>795)* 
Ultimate Strength, Sut [ksi (MPa)] 229.5 (1580)* 
Poisson’s Ratio, ν   0.292  
*Value is proprietary to spring maker; approximation 

Figure 5: Extracted coil from the full model, revealing the transition 
from a torsional state of stress (A) to a bending state of stress (D) 

and the intermediary stress distributions (B and C). 

 
reasons.  The spring was designed to be large enough to be 
equipped with typical foil strain gages.  The wire material was 
selected to A229, a commonly used standard for spring 
material. 

Both Na and C were designed to be well within their 
recommended ranges for static service [4], i.e., 

 
 153 ≤≤ aN , (15) 

 124 ≤≤ C . (16) 

Based on both the mechanical properties and the dimensions, a 
spring rate [e.g. F/δ from Eq. (6)] of 32.3 lb/in (5.7 kN/m) 
results.  This spring design confers a low enough stiffness for 
the spring to be loaded manually and a large enough stiffness to 
be mechanically loaded by a tabletop universal test frame. An 
additional limitation that is imposed is that of the helix angle 
and the spring index.  Equations (15) and (16) are valid 
whenever α is less than 15° and C is greater than 3.7 [2].  For 
most practical purposes, these conditions are met for flexible 
shaft couplings, as more coils and smaller helix angles provide 
stability.  In the event large pitch angles are used, these effects 
must be taken into account. 
 Experiments were carried out on readily available, off-the-
shelf helical compression springs that conform to ASTM A229.  
Specifically, the springs were Class II, having a strength 
requirement of 216 ksi (1489 MPa).  The physical dimensions 
of the spring, as well as the high strength, allowed for the 
attachment of strain gages at various locations along the helix. 

Linear strain gages were affixed to the surface of the spring 
at locations of expected maximum strain, Fig. 3.  With the 
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experimental rig developed to impose pure bending, the spring 
was able to rotate so that the gages can be placed along the 
neutral axis or the inner/outer radius.  Under the application of 
a lateral load, these gages can capture the strains at the key 
locations to determine the state of strain [13]. 

To compare the equivalent stress experienced and that 
predicted by Eq. (14), an equivalent strain formulation is 
needed.  The equivalent von Mises strain, Eq. (17), could then 
be reduced to include only one axial strain, Eq. (18), i.e., 

 
  ( ) ( ) ( )

( )
2

6
1

1
222

222

zxyzxy

xzzyyx

vm

γγγ

εεεεεε

ν
ε

++−

−+−+−

⋅
+

= ,  
(17) 

 
xvm ν+1

εε ⋅=
1

.
  (18) 

Rearranging the gage factor equation, Eq. (19), the uniaxial 
strain can be obtained through a change in the resistance of the 
strain gage, e.g., 
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where ΔR is the change in resistance of the strain gage, R is the 
initial strain gage resistance and G.F.  is the gage factor of the 
strain gage.  Furthermore, in a quarter Wheatstone bridge, when 
the change in resistance of the strain gage is significantly less 
than the initial resistance, the change in resistance can be 
related to the change in voltage, Eq. (20) [14], 
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where Vout is measured output voltage across the completed 
Wheatstone Bridge and Vex is the excitation voltage used.  
Combining Eqs. (18), (19) and (20), the equivalent von Mises 
strain can be obtained through observation of the outputted 
voltage from quarter Wheatstone bridge when a uniaxial strain 
is imposed, i.e., 
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Equation (21) is valid whenever a uniaxial strain is applied to a 
linear, elastic and isotropic material.  

Recently, analyses have been carried out on springs that 
involve the implementation of numerical routines.  Many 
studies focused on the life-prediction of compression springs 
subjected to axial and multiaxial loading [9-12].  Particularly, 
numerical results were compared to existing analytical models 

that employ the critical plane approaches to predict multiaxial 
crack initiation [12].  Results published in the literature review 
provided strong correlation between analytical and numerical 
models.  

Fig. 6 

Fig. 7 

Fig. 8 

Figures 6-8: Equivalent stress trajectories along (top) θ2= 0 (middle)
θ2= π/2 and θ2= 3π/2 and (bottom) θ2= π as θ1 increases from 0 to 
π/2.  Included are the actual and predicted maximum stresses, along 

with the predicted stresses at different distances from the wire neutral
axis. 
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Experimental and analytical solutions were compared to 
results from a finite element analysis (FEA).  The spring used 
in the apparatus was rendered and a mesh of elements was 
created in ANSYS multipurpose software.  The output from the 
numerical simulation provided the stresses as equivalent 
stresses (von Mises), as well as directional uniaxial stresses and 
strains; therefore, direct comparison between the predicted and 
actual stresses could be made. 

To obtain a high fidelity resolution of the stress 
distribution, two coils were extracted from the full model and 
simulated as an independent submodel, Fig. 4.  These coils 
were meshed utilizing quadratic tetrahedral elements with 
nodes that were unconstrained in all degrees of freedom.  A 
total of 6,825 linear, 20-noded elements were contained in the 
model.  Proportional displacements and conditions were 
applied to this submodel, resulting in identical stresses as the 
full model.  From this submodel, effective stress trajectories 
were extracted for comparison with Eq. (14). 

RESULTS AND DISCUSSION 
Results from the numerical analysis were compared with 

values obtained from the experimental and analytical portions 
of this investigation.  As expected, the spring underwent a 
change from a torsional state of stress to a bending state as θ1 
increased from 0 to π/2, i.e., from the inner/outer radius to the 
neutral axis.  A single, half coil was extracted from the middle 
of the full model and the evolution of the stress field is shown,  
Fig. 5. 

Upon further analyzing Fig. 5, several observations are 
made.  Along the θ1 = 0 and π planes, a purely torsional state of 
stress is observed, Fig. 5A.  A gradual change in the state of 
stress is seen at intermediate planes of θ1 = π/6 and θ1 = π/3, 
Figs. 5B and 5C, respectively.  The change in the state of stress 
is completed once θ1 = π/2 and a cross-sectional slice at this 
position reveals a pure bending state of stress, Fig. 5D.  This 
confirms the assumption that the stress distribution at any 
cross-section is a function based upon the distance from the 
neutral axis.  Furthermore, it confirms that when multiaxial 
deflections are imposed onto helical compression springs, the 
stress distribution is not constant throughout the helix. 

The non-uniform stress distribution is further emphasized 
through the mechanical tests conducted.  As the gages rotate 
through θ1 = 0 to π/2, large changes in strains are observed, 
Table 3.  With gages 1 and 3 located along the outer radii under 
multiaxial loading (location of pure torsion), strains are 
observed to deviate from both the strains predicted through Eq. 
(16) and those reported by FEA.  As expected, the strain gage 
located inside the coil reported the largest strain, which can be 
attributed to the curvature of the wire.  It is suggested that the 
linear strain gages may not be best suited to measure the state 
of strain at this location or that they are not affixed in an 
optimum orientation. 

Unlike the strains reported by gages 1 and 3, large changes 
in strains are observed in gages 2 and 4 as θ1 rotates from 0 to 
π/2.  When these gages are located along the neutral axis, 
maximum bending stresses are observed, as indicated by the 

large strains.  These results are in agreement with those from 
FEA and Eq. (14), as the three methods report similar results, 
Table 3.  While these gages are orientated along the neutral 
axis, the strains reported are higher than any other predicted or  
observed strains, suggesting that bending stresses possibly 
outweigh torsional stresses.  

Figure 9: Equivalent stresses along one representative, quarter turn of 
both θ1 and θ2, revealing the shift from pure shear to pure 

bending states of stress. 

Effective stress distributions along four key trajectories 
were extracted from the FEA model: on the outside (Fig. 6), top 
and bottom (Fig. 7), and inside (Fig. 8) of the coil at cross-
sections ranging from θ1 = 0 to π/2.   Each effective stress 
trajectory is compared to the predicted effective stress for that 
trajectory.  Since each curve is cyclic in nature, only the 
distribution from θ1 = 0 to π/2 is included without loss of 
generality. 

 
Table 3– Comparison of multiaxial effective strains, μin/in 
  Exp FEA Eq.14 
Gages along outer radii – π /2 Bend 
Gage 1 – (R= d/2, θ1= 0, θ2= π) 311.2 1873 1698 
Gage 2 – (R= d/2, θ1= 0, θ2= 3π/2) 207.4 1637 1589 
Gage 3 – (R= d/2, θ 1= 0, θ 2= 0) 233.4 1602 1471 
Gage 4 – (R= d/2, θ 1= 0, θ 2= π/2) 155.6 1637 1589 
        
Gages along neutral axis – π /2 Bend       
Gage 1 – (R= d/2, θ 1= π/2, θ 2= π) 77.8 126.6 53.3 
Gage 2 – (R= d/2, θ 1= π/2, θ 2= 3π/2) 1901 1845 1827 
Gage 3 – (R= d/2, θ 1= π/2, θ 2= 0) 77.8 112.4 46.2 
Gage 4 – (R= d/2, θ 1= π/2, θ 2= π/2) 1919 1911 1827 
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The prediction of stresses at any location through the use 
of Eq. (14) is also shown in Figs. 6-8.  Through visual 
inspection of the bent helix alone, equivalent stresses are 
approximated within 10% of their actual value with R2= d/2.  
Equation (14) is also capable of predicting the equivalent stress 
at any position on a cross-section, allowing for the reproduction 
the stress distribution throughout the wire.  Additionally, 
through one quarter turn of both θ1 and θ2, a contour of the 
stresses experienced is provided, Fig. 9.   

CONCLUSIONS 
 Based upon the observations of mechanical experiments 
and numerical simulations, an equivalent stress approximation 
technique for helical compression springs subjected to lateral 
loading is proposed.  Through the approximation of the 
curvature of radius, coupled with the geometry and material 
properties, the equivalent stress at any location within the wire 
can be approximated.  Crack initiation locations can be 
predicted by locating regions of the largest stress.  Additionally, 
life predictions can be made with relative ease, as the state of a 
stress is easily resolved.  Ultimately, a few “back-of-the-
envelope” calculations can provide insight to the life of a 
helical compression spring subjected to lateral loading.  Future 
work will continue on the stress approximation in springs 
subjected to non-uniform lateral loading, as well as a non-
circular cross-sections. 
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