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ABSTRACT 

 

Constitutive modeling is a method that is useful in providing precise predictions 

of material response in components subjected to a variety of operating conditions. A 

process for optimizing the material constants of the Miller constitutive model for uniaxial 

modeling was developed and implemented in an automated optimization routine. 

Generally, up to twenty experiments simulating a range of conditions are needed to 

identify the material parameters for the model. The research sought to minimize the 

amount of empirical data that is necessary for optimization, aiming to reduce the costs 

and time necessary to carry out this procedure for more expensive classes of materials. 

The ultimate goal was to develop a robust method for determining the material constants 

of a viscoplastic model using a minimum amount of experimental data. An automated 

optimization routine was implemented into a program, referred to as uSHARP, developed 

as part of the research to determine constitutive model parameters. Central to the method 

was the use of more complex stress, strain, and temperature histories than are 

traditionally used, allowing for the effects of all material parameters to be captured using 

as few tests as possible. By carrying out successive finite element simulations and 

comparing the results to simulated experimental test data, the material constants were 

determined from 75% fewer experiments. By reducing monetary costs and time required, 

this procedure will allow for a more widespread application of advanced constitutive 

models in industry, allowing for better life prediction modeling of critical components in 

high temperature applications. 
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1.  INTRODUCTION 

 

Constitutive modeling is a field of engineering mechanics that has received 

considerable research attention over the past several decades, with much focus on the 

development of unified constitutive models.  Recent advances in computer processing 

speed have enabled the implementation of these models into finite element analysis 

(FEA) software applications such as ANSYS and ABAQUS, yielding accurate and cost-

effective predictions of stresses and strains in structural components under a non-generic 

variety of operating conditions, such as creep, fatigue, and thermal-mechanical fatigue.  

Under these conditions, certain alloys display inelastic behavior in the form of coupled 

creep and plasticity, commonly referred to as viscoplasticity.  A variety of material 

models have been developed to correlate with mechanical test data.  For this research, the 

Miller unified constitutive model (Miller, 1976a) will be used to run simulations using 

the ANSYS general purpose FEA software.  The purpose of the research is to develop a 

robust method of parameter determination, using a minimum number of experimental 

tests, which can be easily applied to many different types of viscoplastic constitutive 

models.   

Traditional methods for step-by-step parameter determination require data from 

upwards of twenty experimental tests (Chan et al., 1986; Rowley et al., 1994; Miller, 

1976b).   Often, a large amount of data is needed in order to determine only a portion of 

the total number of material constants.  This trend is evident in Fig. 1, where a large 
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number of creep test data were used to determine only four of the eight material 

parameters in the Miller model.  One test type used for parameter determination is a low 

cycle fatigue test; these tests are typically run until stress saturation occurs, sometimes 

approaching one hundred cycles (Ramaswamy et al., 1985).  Examples of the standard 

tests used in parameter determination are shown in Fig. 2.  These tests were conducted on 

the René 80 alloy and used to determine constitutive model parameters.  Typically, 

combinations of creep, low cycle fatigue, and tensile data at various temperatures are 

used for material constant determination.   

An efficient, easily applied optimization scheme could drastically reduce the 

amount of experimental data needed to determine inelastic constitutive model parameters, 

reducing both monetary costs and time required to implement advanced constitutive 

models in industry.  This would allow for more accurate preliminary design of critical 

components, reducing the need for expensive design modifications as product 

development progresses.  If a parameter determination scheme is designed in such a way 

so as not to be specific to any particular constitutive model, then a robust method will 

result which will be applicable to a broad range of constitutive models and experimental 

test types.  A more advanced application of such a formulation is the capability to design 

materials to achieve a particular combination of mechanical properties.  It is important to 

note that, for this research, the focus will be on determining the inelastic material 

constants.  The elastic constants can be determined from simple tensile tests or slightly 

more complicated tests which will be identified in future work. 



 

Figure 1: Large number of 

parameters in the Miller unified constitutive

Figure 2: Standard tests types used for parameter determination

(b) creep tests, and (c) low
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: Large number of creep data used to determine only four of the eight material 

parameters in the Miller unified constitutive model (Miller, 1976b)
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(b) creep tests, and (c) low-cycle fatigue tests (Ramaswamy et al., 1985)

of the eight material 
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include (a) tensile tests, 

cycle fatigue tests (Ramaswamy et al., 1985) 
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2.  BACKGROUND 

 

 Viscoplastic constitutive modeling is an important technique used in the design of 

components in high temperature applications, such as in turbine engines (Ramaswamy et 

al., 1985).  These material models allow design engineers to predict stresses and strains in 

critical components using finite element analysis software such as ANSYS, ABAQUS, 

etc.  The results of such preliminary analyses allow for the optimization of shape 

geometry to improve factors of safety and reduce high stress concentrations. Finite 

element modeling can also be used to determine properties which allow for reasonable 

life prediction of components subject to a combination of cyclical loading and 

temperature cycling.  The Miller model was designed for use in high temperature 

applications, and is capable of reasonably predicting material behavior under such 

conditions (Miller, 1976a; Miller, 1976b).  Furthermore, the Miller constitutive model 

was extended to a multiaxial formulation for more complex geometries and loading 

conditions (Kagawa and Asada, 1983).  Unfortunately, the use of advanced constitutive 

models is limited by the large amount of experimental data needed to determine material 

constants contained in the model and the often tedious step-by-step procedure used to 

determine these constants.  This has confined the field of advanced constitutive modeling 

primarily to the realm of academia, rather than to widespread practical application in 

industry. 

2.1 The Miller Unified Constitutive Model 
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The Miller model is most useful for predicting the behavior of materials in high 

temperature applications and is capable of modeling a wide range of material behavior 

including time-, rate-, and history-dependence.  As a unified constitutive model, both 

creep and plastic strain are combined under the moniker of inelastic strain.  The Miller 

model is convenient to use due to its low number of material constants, ease of 

implementation into finite element software packages, and its ability to accurately 

simulate a range of material behavior.  There are difficulties in application of the Miller 

model, however.  The formulation of the model includes three hyperbolic sine functions, 

as shown in Eqs. 2-4.  As a result, numerical simulation of the Miller model is 

computationally expensive (Ramaswamy et al., 1985).  Furthermore, the model is only 

capable of reasonably predicting behavior of materials that work-harden considerably 

(Miller, 1976a).  This limits its applicability to certain classes of materials, such as steels. 

The Miller unified constitutive model satisfies several important criteria that make 

it appropriate for testing an optimization procedure such as this one.  Since the 

verification of the optimization procedure depends heavily on simulations conducted by 

ANSYS, it is important that the model be suitable for implementation into a finite 

element analysis program.  Fortunately, the Miller model has already been coded to work 

with ANSYS by way of a user-programmable function (UPF) developed at UCF.  This is 

a custom feature that allows for a user to define a constitutive model that will be used by 

ANSYS to predict material behavior.  Another important factor is the dependence of 

material constants on temperature.  If several of the constants changed with temperature, 

an attempt at optimization would be further complicated by the need for more isothermal 

tests at various temperatures.  This is clearly in opposition with the overall goal of 
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reducing the number of tests required.  In the Miller model, none of the material 

constants are temperature-dependent (Miller, 1976a), meaning fewer tests will be 

required.  A third consideration that makes the Miller model suitable is that only cyclical 

and creep (or stress relaxation) data are needed to determine the constants.  Both of these 

tests are relatively simple and can be conducted with equipment that is readily available. 

The theory used in the derivation of the Miller model limits its application to 

alloys that work-harden considerably, such as aluminum alloys and steels (Miller, 1976a).  

More specifically, the model focuses on the effects of two particular types of hardening: 

isotropic and kinematic.  These two phenomena reflect changes in material strength with 

respect to deformation history.  Isotropic hardening implies that material strength remains 

constant in all directions.  For example, straining a material specimen in the tensile 

direction will strengthen it both in the tensile and compressive directions.  Kinematic 

hardening, on the other hand, reflects different material strengths with respect to different 

orientations in a material.  For example, straining a specimen in the tensile direction may 

strengthen it in the tensile direction but weaken it in the compressive direction (Miller, 

1976a).  These effects are accounted for in the strain rate equation.  Essentially, the 

model predicts that the strain rate of a material under loading is a function of the 

difference between the applied stress (σ) and the kinematic hardening variable, divided 

by the isotropic hardening variable.  Kinematic hardening and isotropic hardening are 

denoted by the variables R and D, respectively, in the basic strain rate equation 

�� = � �� − �	 
.                                                                    (1) 
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In this formulation, the variable R and D take the forms of internal state variables (ISVs) 

which describe the internal state of the candidate material.  Even though these so-called 

ISVs cannot typically be measured through direct observation, they are necessary to 

describe the nature of the microstructure and its evolution. Since the values of R and D 

change during the deformation history of a material, equations are needed to model the 

behavior of these two factors.  These equations are not solely dependent on the strain or 

strain rate, but rather depend on the entire previous deformation history (Miller, 1976a).  

It is through the evolution of R and D, called the back stress and drag stress respectively, 

that viscoplastic effects are captured by the Miller model.   

An example of the evolution of the back and drag stresses for a constant 

amplitude strain controlled cyclic fatigue test can be seen in Fig. 3, as well as the 

corresponding stress history.  As the number of cycles increases, the peak stress 

amplitude increases, indicating the occurrence of cyclic hardening.  After approximately 

6000 seconds, the peak amplitude remains nearly constant, indicating cyclic hardening 

has reached saturation.  This cyclic hardening effect is captured by the drag stress.  It is 

evident that throughout the duration of cyclic hardening, the drag stress increases until it 

reaches a steady state value after cyclic saturation has occurred.  The back stress 

evolution is much more dynamic, following the cyclic nature of the stress response.  As 

the number of cycles increases, the peak amplitude of the back stress decreases slightly, 

before reaching a steady state value. 
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Figure 3: (a) Stress history, (b) drag stress evolution, and (c) back stress evolution for a 

constant amplitude strain-controlled cyclic fatigue test 

In order to derive a usable function for the strain rate, steady state creep data were 

used as a starting point.  Equations for the evolution of R and D were developed using 

warm working and work-hardening theory.  The end result is the following set of three 

differential equations that are capable of predicting both steady state and transient 

material behavior (Miller, 1976a), i.e., 
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�� = &��� − &����'sinh  ((�|�|) )! "#$(�)                                         (3) 

	� = &+|��|  ,-+ + |�| − �(+(�
 	/0 − &+-+���' sinh((+	/))!.                             (4) 

The θ′ term is the only temperature-dependent factor in the Miller model.  Its value is 

dependent on the current temperature of the material (T) and the melting temperature (Tm) 

of the material.  It can be expressed as 

��(2) =
34
5exp 9, −:0.6=2>0 ,?$ �0.62>2 
 + 10@ , 2 ≤ 0.62>

exp �−:=2 
 , 2 ≥ 0.62>                      (5)� 

where k is the ideal gas constant.  Contained in these three differential equations are eight 

viscoplastic constants that must be determined, as seen in Table 1.  Also contained in 

Table 1 are ranges for the constants available in literature (Miller, 1976b; Kagawa and 

Asada, 1983; Ramaswamy et al., 1985).  None of these parameters are temperature-

dependent; in fact, the only factor that temperature affects is the form of the θ′ term.  The 

testing procedure that has historically been used to determine these constants is outlined 

in Miller (1976a).  It must be noted that two more variables, A and C1, are introduced 

during the process of determining these variables.  They do not factor into the above 

equations, but are used to determine A1 and A2. 

Table 1: Material constants which need to be determined for the Miller model. 

Material 

Constants 

A
1
 A

2
 B C

2
 H

1
 H

2
 n Q 

Units (ksi
-1

) (ksi
-3

) (sec
-1

) (ksi) (ksi) (unitless) (unitless) (cal/mol) 

Typical 

Value 

Ranges 

0.8-

0.93 
7.42x10

-5
- 

5.94x10
-3

 

1.03x10
14- 

1.0x10
15

 

0.1- 

50 

280- 

10,000 

100 1.60-5.8 91,000- 

104,600 
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 The Miller model has been applied to several different materials, including type 

304 stainless steel (Miller, 1976b; Kagawa and Asada, 1983) and Hastelloy X 

(Ramaswamy et al., 1985).  The ability of the model to predict the behavior of type 304 

stainless steel can be seen in Fig. 4.  It is evident that the tensile simulations more closely 

match experimental data at higher temperatures.  The reason for this is not immediately 

clear, and requires further investigation (Miller, 1976b).  In the case of the cyclic fatigue 

simulation, the yield strength predicted by the model is somewhat higher than that of the 

experimental data, but the model still performs adequately in characterizing the response 

of the material. Fatigue data were taken from Miller (1976b) and the simulation was 

performed using an implementation of the Miller model with the ANSYS finite element 

software package.  

 

Figure 4: Application of the Miller model to predict behavior of type 304 stainless steel 

for (a) monotonic loading and (b) first cycle of fatigue test (Miller, 1976b) 
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2.2 Literature Review 

 Due to the importance of parameter determination in constitutive modeling, much 

research has been done towards solving the problem (Adebanjo, 1993; Cao and Lin, 

2008; Kawasaki et al., 1998; Mustata and Hayhurst, 2005; Mulyadi et al., 2006).  Upon 

review of the literature, it is evident that a widespread trend in parameter estimation is the 

development of an optimization procedure relevant only to a particular model or problem.  

Lacking is the existence of a procedure that is easily implemented to work with different 

constitutive models.  Additionally, there seem to be significant faults when it comes to 

the development of objective functions for parameter determination.  In nearly every 

case, the researchers have employed functions which compare simulated data with 

experimental data in order to determine the “best fit,” without consideration to certain 

cases which might cause discrepancies during the process of parameter determination.  In 

only one case (Cao and Lin, 2008) do the authors account for the differences in numbers 

of data points in different experimental data sets.  The other investigators ignore the bias 

introduced into least squares calculations caused by higher numbers of data points when 

multiple curves are used simultaneously; this might lead to some of the fit discrepancies 

present in literature.  Furthermore, minimal consideration is given to the application of an 

objective function which can allow for data with different orders of magnitude to be used 

simultaneously.  Kawasaki and coworkers (1998) use a very basic weighted objective 

function of the form  

1 1

( ) ( ) ( , ) , (6)
n m

ij exp ij pred ij

j i

f w σ ε σ ε
= =

= −∑∑x x  
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 where σexp and σpred are the experimental and predicted stress values, respectively.  The i 

and j terms represent the number of data points in the dataset, and the number of datasets 

being used.  The function employs weighting values, wij, to provide higher consideration 

to certain parts of the material response spectrum.  Use of this objective function does not 

account for different numbers of data points in different datasets, nor does it allow for the 

simultaneous use of datasets with different orders of magnitude.  Furthermore, the 

authors do not describe how the weighting values were determined, nor do they provide 

the weight values used during the parameter determination process.   

In Adebanjo (1993) the author forgoes the use of an objective function altogether, 

relying on a visual “best fit” to determine the parameters.  This removes any sense of 

objectivity and eliminates repeatability.  It also means that much user involvement is 

required, introducing the possibility of human error.  There is no way to quantify the 

caliber of the fit when using a visual method.  Additionally, few of the papers address the 

need to normalize different data types, such as stress and strain, to the same order of 

magnitude so two different test types can be used concurrently in parameter 

determination. 

Prior research has relied on the implementation of several different algorithms to 

minimize their respective objective functions and determine the material constants.  

Indeed, many optimization algorithms exist for solving these highly non-linear problems.  

What is not addressed is the quality of the experimental data used to determine the 

material parameters.  No attempt is explicitly made to reduce the number of experimental 

tests needed to determine the material parameters.  The authors do not examine or discuss 

whether or not the tests that were used to determine the material constants were broad 
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enough in scope to capture the effects of all the constants.  It is possible that in some 

cases, a value was obtained for material parameters that would not be capable of 

accurately predicting material behavior in cases outside of the test matrix used in their 

determination.  For example, in Cao and Lin (2008) only tensile test data were used to 

obtain a fit for the parameters of a unified constitutive model which was designed to 

predict material behavior under many different conditions.  It may be possible that these 

tensile-based values do not accurately reflect the behavior of the material under cyclic 

loading, and this issue is not addressed by the authors. 

It is evident from the literature review that constitutive modeling is an important 

research area, and the determination of material parameters is a very important 

consideration.  The development of a truly robust method for parameter determination 

has remained elusive, but each paper contributes something to the cause.  It seems, 

however, that too much focus is being placed on the performance of the optimization 

algorithms being used (evolutionary algorithms, downhill simplex method, etc.) and their 

performance, rather than on sound, widely applicable theory for parameter determination.  

The performances of such optimization algorithms are well established; they have been 

applied to many difficult-to-solve problems in the past (Corana et al., 1987; Hooke and 

Jeeves, 1961).  Constitutive model parameter determination is essentially a highly non-

linear minimization problem, and several different algorithms exist that perform 

adequately (Mustata and Hayhurst, 2005; Mulyadi et al., 2005; Kawasaki et al., 1998).  

Rather, more focus needs to be placed on developing a sound method - a simple yet 

effective objective function, automatic weighting routines, and a standardized procedure 

that can be used on multiple experimental test types simultaneously and without bias.  
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None of the researchers address the problem of minimizing necessary experimental test 

data to allow for a broader application of constitutive models.  Traditionally, several 

types of experimental tests are used.  Tensile tests conducted at various temperatures are 

commonly used.  Cyclic fatigue tests are another standard test type used for parameter 

determination.  Typically, these tests are run until cyclic saturation has occurred, and 

numerous tests at various temperatures are needed.  Creep tests are a third standard test 

type.  As shown in Fig. 1, the results from many different creep tests may be needed to 

determine constitutive model parameters.  Certainly, automated parameter determination 

methods have successfully been implemented, but no focus has been made on developing 

a method that can be used easily and cost effectively by a wide range of users in industry, 

allowing for more accurate preliminary design using finite element analysis.  The 

identification of a small number of tests capable of distinctly capturing the effects of the 

material constants, and as a result, allowing for the determination of accurate values 

without requiring an excessive amount of data would be a very significant advance in the 

field of parameter determination.  Implementation of these complex test histories into an 

automated optimization routine using a robust objective function and automatic 

weighting values will greatly simplify the parameter determination process, resulting in a 

more efficient method for the optimization of material constants. 

2.3 Type 304 Stainless Steel 

 Application of the Miller model will be limited to type 304 stainless steel in this 

research.  The chemical composition of this alloy is shown in Table 2.  Type 304 stainless 

steel is frequently used in high temperature applications due to its corrosion resistance 
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properties, which result from the inclusion of chromium and nickel in the chemical 

composition (ASM Metals Handbook, 1991).  The dependence of ultimate tensile strength 

(UTS) and 0.2% yield strength on temperature is shown in Fig. 5.  Both of the material 

properties decrease in value as temperature increases.  Similarly, the elastic modulus 

decreases as temperature increases, as shown in Fig. 6.  The ultimate tensile strength 

must be considered in the design of experimental tests for parameter determination; the 

Miller model does not include failure criteria, so the experimental tests designed for 

parameter determination must avoid approaching the UTS.  Likewise, the fatigue life of 

type 304 stainless steel, shown in Fig. 7, must be considered during experimental design.  

If the necessary data is not collected before fatigue fracture occurs, the experimental data 

will be useless.  This existing data for type 304 stainless steel will be kept under 

consideration while developing experiments for material parameter determination to 

ensure that excessive damage or premature failure will not occur in material specimens. 

Table 2: Chemical composition of type 304 stainless steel (Steichen, 1973) 

 

Carbon Chromium Nickel Manganese Silicon

0.052 (wt %) 18.92 9.52 1.1 0.52

Phosphorus Sulfur Molybdenum Nitrogen Iron

0.011 0.01 0.12 0.052 Balance
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Figure 5: Temperature dependence of ultimate tensile strength and 0.2% yield strength 

for type 304 stainless steel 

 
Figure 6: Temperature dependence of elastic modulus for type 304 stainless steel 
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Figure 7: Fatigue life of type 304 stainless steel at elevated temperatures 
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3.  COMPUTATIONAL METHODS 

3.1 Finite Element Implementation 

 In order to compare theoretical results with experimental test data, the Miller 

model was implemented into a finite element program known as ANSYS by Patel and 

Stewart (2008).  Since the tests conducted for parameter estimation are typically uniaxial 

the most appropriate model of an experimental test specimen is a single three 

dimensional SOLID185 element consisting of eight nodes, as presented in Fig. 8.  All 

loads or displacements were applied to the top four nodes, while the bottom of the 

element had fixed displacement in the z-direction.  The element cross sectional area was 

allowed to deform to account for the effects of Poisson’s ratio.  In this manner, uniaxial 

experimental tests were simulated. 

 

       Figure 8: Eight-node element and boundary conditions used in ANSYS simulations 

 An ANSYS input file was required to drive the simulations that were done (see 

Appendix A).  The command structure of the basic input file that was used is presented in 

x

y

z
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Figure 9.  Since this file takes the form of a text-only document, sections of it can be 

modified easily by a simple FORTRAN code.  When using an input file, the user must 

first define the test conditions and any constitutive model parameters necessary for the 

simulation.  The input file then defines the coordinates of the nodes for the element and 

their degrees of freedom.  These can be modified by the user to suit their needs.  Since 

ANSYS performs the simulations using discrete time step approximations, ∆t
(i)

, there are 

several parameters which must be set to control the progression of time throughout the 

simulation.  No load or displacement can be applied instantaneously, so a finite ramping 

time must be defined.  As the solution progresses throughout the simulation, the time step 

that is taken by ANSYS varies depending on the conditions.  This can cause problems in 

the solution if the time step is too large.  To prevent this, the user must define a maximum 

time step size that is appropriate for the simulation being run.  This is typically related to 

the strain rates that are experienced in the simulation, and should be verified before 

accepting any simulation data as accurate. 
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Figure 9: ANSYS input file process flowchart 

3.2 ANSYS User Programmable Feature 

 In order to use the Miller viscoplasticity model with the ANSYS finite element 

software program, it was implemented into a user programmable feature (UPF).  The 

UPF exchanges information with ANSYS in order to calculate the tensorial stress, 

tensorial strain, and the displacement vector, as outlined in Fig. 10.  ANSYS provides the 

test parameters to the UPF, as well as the conditions of the stress or strain state at the 

current time step.  The UPF uses this information to calculate the material elastic and 

inelastic Jacobian matrices, which are passed back to ANSYS and used to calculate the 

states of stress and strain for the subsequent time step.  The convergence of the solution is 

checked by a Newton-Raphson line search method, and the process continues for the 

subsequent time step.  Through this iterative process, the material behavior is simulated 

using the Miller model.  It is important to note, that this procedure is not specific to the 
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Miller model.  A UPF can be created for any compatible constitutive model and 

implemented into the ANSYS program. 

Figure 10: Simulation procedure using ANSYS and UPF 
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of magnitude for the material parameters are known.  The routine has demonstrated an 

inability to converge when the initial guess is not close to the proper order of magnitude.  

As such, the best initial starting point will be values that have previously been determined 

through the standard means for another material.  This limitation, however, is a result of 

the optimization algorithm implemented into uSHARP, and not a problem with uSHARP 

itself.  The application of a more robust optimization algorithm could mitigate this 

problem.  Additionally, the constitutive model must accurately represent the behavior of 

the material for which it is being used.  For example, the Miller model does not 

incorporate damage evolution; it would not be appropriate for predicting tertiary creep 

damage in a material.   

If the uSHARP routine is used to optimize material constants, it is imperative that 

the test histories of the experimental and simulated data closely match.  It is easy to 

simulate complicated test histories; it is difficult, however, to carry these out 

experimentally due to errors in equipment and natural imprecision present in the current 

usage of PID controllers.  The emerging research being conducted with more advanced 

control systems indicates that in the near future these complicated test histories will be 

accurately replicated (Barnes et al., 2009). 

3.3.1 Optimization Procedure 

 The uSHARP optimization routine makes use of an iterative procedure to 

determine the material constants through successive simulations.  Simulations are 

conducted which match the test history of the experimental data and the material 

parameters are varied until a “best fit” is achieved.  Key to this process is the use of a 

sophisticated objective function.  This objective function relates the material constants 
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and the caliber of the fit between experiment and simulation.  When the objective 

function is minimized, a best fit has been achieved and the material constants determined 

by the program are the constants which accurately reflect the behavior of the 

experimental data.  The model and constants can then be used to simulate more complex 

service histories. 

 Since the uSHARP routine was designed so that multiple test types could be used 

simultaneously, a simple least squares function was not adequate.  Different orders of 

magnitude present in different data types would naturally skew the value of the objective 

function towards higher orders of magnitude.  Additionally, different data sets contain 

different numbers of data points, which would lead to skewing in the objective function 

by weighting tests with higher numbers of data points higher than tests with fewer data 

points.  To account for these phenomena, a standard weighted least squares function was 

developed to allow for the simultaneous use of different experimental test types without 

unintended skewing (see Appendix B).  The form of this objective function is as follows:  

2

1 ,max

( ) ( )1
( ) 100 . (7)

n
ex i sim i

i

i ex

y t y t
S w t

n y=

 −
= ×  

 
∑  

 

Symbol Meaning

n Number of data points in the FEM simulation

w(ti) Weight value for the data point at time index ti

yex(ti) Experimental data value interpolated to the FEM time index ti

ysim(ti) Value of the FEM simulation data corresponding to time index ti

yex,max Maximum magnitude of the experimental dataset (positive or negative)

        Table 3: Objective function parameters 
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 Equation 7 contains several different parameters, which are described in Table 3.  

Essentially, the least squares function accounts for the differences between the 

experimental and simulated data at each time index as a percentage of the maximum 

value of the experimental data set.  This has the effect of scaling all test types to the same 

order of magnitude.  Additionally, the total least squares value is normalized to the 

number of data points used in its calculation.  This prevents test data containing more 

time indices from being weighted higher than data with fewer time indices.  uSHARP can 

use multiple tests simultaneously in the determination of material parameters.  This is 

done by adding the individual objective function values from each test type together, and 

minimizing the value of this combined objective function:  

1

, (8)
m

total j

j

S S
=

=∑  

where m is the total number tests being combined into Stotal.  

 It is important to note that the uSHARP objective function requires that the values 

between the data sets have the same time indices.  Finite element simulations and 

experimental data will rarely, if ever, have identical time indices.  For example, a low 

cycle fatigue experimental test may be sampled at 50 Hz, while a simulation of the same 

experiment may output data at approximately 7 Hz.  To account for this, the experimental 

data points are linearly interpolated to the same time indices as the finite element 

simulation, as shown in Fig. 11.  Although the different types of experiments, such as 

creep and low cycle fatigue tests, are not linear, the errors induced by using linear 

interpolation are small due to the proximity of data points.  It is important to point out 
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that time indices are used for the x-values in the uSHARP objective function because 

each index is unique within the dataset.  There are no cases where two y-values exist for 

the same time index in a single dataset.  If another index for the x-values was used, such 

as strain in the case of a hysteresis loop, multiple y-values could exist for a single x-value.  

This would greatly complicate the process of determining the objective function, and is 

the reason why time is the preferred index.  

 

Figure 11: Example of linear interpolation used to calculate y values of Dataset 1 at x 

values of Dataset 2 

 The uSHARP objective function is a weighted least squares function.  Depending 

on the test type being used, a different weighting function will be employed.  Currently, 

weighting functions have been developed for two different test types: low cycle fatigue 

and stress relaxation.  Each weighting function is designed to emphasize the more 

dynamic regions of material behavior, where the Miller model parameters influence the 
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material behavior most prominently. The simplest of the weighting functions is used for 

low cycle fatigue tests.  All data points above a certain stress magnitude in tension and 

compression are weighted with a value of 2.5, while all points below this value are 

weighted as 1.0.  This range of values was determined from practical experience and its 

utility was verified in the experimental results.  The effect of the weighting scheme is an 

emphasis on the inelastic regions of material response where the Miller model, and not 

simple elastic theory, predicts the behavior.  The weighting function developed for the 

stress relaxation is more complicated, using both the stress rate and the derivative of the 

stress rate: 

 
0 1 2

0 1 2
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( ) , (9)

( ) ( )
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i i
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where the dot and double dot refer to differentiation with respect to time.  The C1 and C2 

parameters are constants which eliminate nonequivalent units, and are equal to 1 sec/ksi 

and 1 sec
2
/ksi, respectively.  The effect of this weighting function is shown in Fig. 12. 

 The weighting function in Eq. 9 is designed to keep all values of w(ti) between 1.0 

and 2.5.  The lower value of 1.0 is set automatically as the stress relaxation approaches a 

steady state value.  When this occurs, both ( )itσ�  and ( )itσ��  approach zero, leaving only 

the C0 term.  The C0 term is a constant which is calculated to set the upper limit of the 

weighting function at 2.5, and is defined as 

( )0 1 max 2 ,max

7
( ) , (10)

3
iC C C tσ σ= +� ��  
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where maxσ� is the maximum rate of stress relaxation, and ,max( )itσ�� is the stress rate 

derivative at the time index where the maximum stress relaxation rate occurs.  Equation 

10 ensures that the maximum weighting value of 2.5 occurs at the location where the 

maximum rate of stress relaxation occurs.  This is desirable in order to determine the 

hardening parameters present in the Miller model more accurately.  The effects of the 

hardening parameters are more present in the regions of material behavior where 

relaxation is occurring most rapidly.  Since experimental data do not represent a 

continuous function, and cannot be differentiated, a finite difference approximation was 

used to calculate the stress rate and derivative of the stress rate, using the form of 
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Figure 12: Stress relaxation, during strain control, weighting values determined by 

uSHARP 
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The uSHARP routine combines all of these features into an automated 

optimization procedure, requiring an initial guess for the material parameters and ANSYS 

input files matching the experimental tests being used in the optimization process.  From 

there, simulations are run and the initial guess is modified until a best fit has been 

achieved, as presented in Fig. 13.  Updating the guess for the material parameters at each 

iteration is handled by an optimization algorithm incorporated in the uSHARP routine. 

 

  Figure 13: uSHARP optimization routine process flowchart 

 

3.3.2 Optimization Algorithm 

 In order to minimize the objective function used in the uSHARP routine, an 

optimization algorithm was needed.  Several criteria were used in the selection of this 

algorithm.  First, it was desired that no derivatives or gradients be required for 

minimization.  The complex nature of the Miller model would make such calculations 

difficult and would limit the robustness of the uSHARP routine by requiring modification 
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for use with any other constitutive model.  To this effect, an optimization algorithm 

requiring only objective function evaluations was strongly desired.  Second, due to the 

length of time required to carry out a single finite element simulation, an efficient 

optimization algorithm requiring a minimum number of iterations was desired.  While 

this would almost certainly constrain the uSHARP routine to the use of a local optimizer, 

the length of time required for an optimization run would be practical and not too costly 

in terms of computation time.  Lastly, an optimization algorithm requiring only a single 

initial guess was considered important to the goal of minimizing the amount of user input 

required to perform an optimization run.  Often, a set of material constants for a 

particular constitutive model can be found in literature.  These published constants would 

serve as a good initial guess for an optimization run.  All of these desired characteristics 

are met by the Hooke-Jeeves direct search algorithm (Hooke and Jeeves, 1961), which is 

a robust local optimization algorithm.  The logic process of the Hooke-Jeeves algorithm 

can be seen in Fig. 14.  Its utility has been demonstrated on objective function 

minimization used for curve fitting with good results (Hooke and Jeeves, 1961).  This is 

similar to the procedure used by the developed method for parameter determination, 

meaning the Hooke-Jeeves algorithm is well suited for incorporation into the uSHARP 

routine (see Appendix C). 

 It should be noted that any non-linear optimization algorithm requiring only 

objective function evaluations could be used with uSHARP.  In fact, the structure of the 

uSHARP routine makes it very easy to implement other optimization algorithms into the 

program.  Early on in the current study, the use of a simulated annealing algorithm 



30 

 

(Corana et al., 1987) was briefly investigated with promising results, but full validation 

will be saved for future study. 

 

Figure 14: Hooke-Jeeves algorithm process diagram (Kuester and Mize, 1973) 
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4.  EXPERIMENTAL PROCEDURE 

4.1 Advanced Candidate Experiments 

 A major focus of the research was determining a small number of candidate 

experiments that would allow for the determination of the material parameters with a 

minimum amount of experimental data.  These experiments take the form of numerically 

simulated mechanical test data generated from the UPF with the published Miller 

constants for type 304 stainless steel, shown in Table 4 (Miller, 1976b).  These simulated 

experiments are useful in designing the actual mechanical experiments that will be 

performed with future research.  After an analysis of the material parameters was 

performed based on Miller (1976a), the necessary test conditions were determined for the 

parameter determination.   

The experimental behavior affected by each of the constants is shown in Table 5.  

The absence of the Q parameter must be noted.  The determination of this parameter 

requires data at different temperatures.  To maintain simplicity for the preliminary stages 

of the research, isothermal test conditions were used, eliminating the ability to determine 

Q.  Future research will include non-isothermal test histories to enable the identification 

of this parameter. 

  Table 4: Values of Miller constants for type 304 stainless steel 

   

Inelastic Constant A1  (ksi-1) A2  (ksi-3) B (sec-1) C2  (ksi) H1   (ksi) H2 n

“Experimental” Value 

from Miller (1976b) for 

type 304 stainless steel

0.8 7.42x10-5 1.0x1015 1.0x10-1 2.8x102 1.0x102 5.8
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Two candidate experiments were identified for use with the aforementioned 

uSHARP optimization routine.  In order to run the uSHARP routine, “experimental” tests 

were simulated using the ANSYS finite element program.  The material constants from 

Miller (1976b) for type 304 stainless steel were used for these simulations.  The value for 

Q was set at 91,000 cal/mole, as defined by Miller.  In this way, the material constants of 

the “experimental” test data were already known, allowing for verification of the 

optimization routine once uSHARP had determined values for material parameters.  Once 

the key simulated experiments have been identified and the parameter optimization 

process has been fully developed, experimental specimens will be used to obtain actual 

data.  The uSHARP optimization routine can then be verified under real conditions. 

               Table 5: Effect of constants on material behavior 

 

 One simulated “experimental” test that was used was a strain-controlled low cycle 

fatigue test with ramping strain amplitude, as shown in Fig. 15a.  The strain amplitude for 

the first cycle was 0.05%, and the amplitude of the last cycle was 0.5%.  The time per 

quarter cycle was held at a constant 10 seconds, and the simulated temperature was 

Material 

Constants

Strongly Influences

A1    (ksi-1) Cyclic behavior at high strain ranges

A2 (ksi-3) Cyclic behavior at high strain ranges

B   (sec-1) Secondary creep

C2   (ksi) Cyclic behavior at low strain ranges

H1   (ksi) Cyclic behavior at intermediate strain ranges

H2   (unitless) Cyclic and isotropic hardening, primary creep

n  (unitless) Secondary creep
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593°C.  The strain rates experienced during the test ranged from 5.0x10
-3

 % sec
-1

 to 

5.0x10
-2

 % sec
-1

.  This was done in order to provide material behavior at different strain 

rates, an important consideration with a strain rate sensitive model such as the Miller 

model (Miller, 1976a).  Additionally, different strain amplitudes in a single test provide a 

broad spectrum of material behavior using only one test specimen.  This low cycle 

fatigue test was used to simulate the non-hardening and cyclic material behavior so the 

corresponding constants could be determined.  Six cycles were simulated in order to 

allow for reasonable simulation times. 

The second “experimental” test type that was used to determine the material 

parameters was a strain-controlled stress relaxation test, also at 593°C.  Two different 

strain amplitudes were applied in one test, as depicted in Fig. 15b.  The first strain 

amplitude was 0.075%, followed by a ramping up to a level of 0.1%.  Each of the 

amplitudes was held for 600 seconds.  One second was used as the strain ramping time.  

This was done in order to determine the material hardening and creep properties and 

allow for the determination of the corresponding material constants.  The two different 

strain amplitudes were used in order to gather material information under different 

conditions using only one test. 
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Figure 15: "Experimental" (a) low-cycle fatigue test at 593°C and (b) stress relaxation 

test at 593°C used for parameter determination 

 In case the previously described “experimental” tests were not sufficient to 

accurately determine the material parameters, a third test was created to be used along 

with the low cycle fatigue and stress relaxation tests.  A strain-controlled ratcheting test 

was simulated at 593°C for fifteen cycles.  The strain for the test was increased 0.05% 

under loading and decreased 0.025% during unloading, as depicted in Fig. 16.  This 
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process was repeated fifteen times for a maximum amplitude of 0.4%.  The time between 

successive peaks was held at a constant 40 seconds so that the strain rates varied.  A high 

number of cycles were simulated in the ratcheting test to account for any shortcomings 

resulting from the low number of cycles present in the “experimental” low cycle fatigue 

test.  This resulted in a significantly longer computation time; the compromise would 

come in the form of more accurate constants.  The ratcheting test would only be 

employed for parameter determination if the stress relaxation and low cycle fatigue tests 

proved insufficient. 

  

Figure 16: Ratcheting test used for parameter determination 

 Because the evolution of the internal state variables, R and D, is responsible for 

characterizing the material behavior, it is important to investigate how the ISVs evolve 
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same temperature, under a stress of 15 ksi.  The ratcheting and ramping amplitude low-

cycle fatigue tests were both compared with simulated constant peak amplitude strain-

controlled cyclic fatigue tests.  For comparison with the ratcheting test, the peak strain 

amplitude of the standard cyclic test was set at 0.4%, the maximum amplitude 

experienced by the designed experiment.  Similarly, the peak strain amplitude for the 

standard cyclic test corresponding to the ramping amplitude low-cycle fatigue test was set 

at 0.5%, the maximum amplitude experienced by the designed candidate experiment. 

 

Figure 17: Drag stress comparison with standard experiments for (a) stress relaxation test, 

(b) ratcheting test, and (c) ramping amplitude low-cycle fatigue test 
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Figure 18: Back stress comparison with standard experiments for (a) stress relaxation 

test, (b) ratcheting test, and (c) ramping amplitude low-cycle fatigue test 

None of the designed experiments demonstrate significant evolution of the drag 

stress compared to the standard test types.  This means that very little isotropic hardening 

is occurring during the designed experiments.  This is likely due to the low amount of 

inelastic deformation occurring during the designed experiments.  The back stress 

evolution is much more dynamic for the proposed ratcheting and ramping amplitude low-

cycle fatigue tests than the standard experiments.  While the back stress evolution 

demonstrates cyclic behavior in the standard test, it is essentially steady state; there is 
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cyclic in nature; instead, it steadily rises throughout the duration of the test.  There is very 

minimal back stress evolution during the stress relaxation test. 

All of the simulated “experimental” tests were designed so that they could be 

realistically conducted by the available hardware, thus allowing for actual experimental 

validation following the preliminary trial runs using the aforementioned synthetic data.  

None of the “experimental” tests feature instantaneous changes in strain level; there are 

no strain rates which are not achievable mechanically.  While it was assumed that more 

complex control systems will enable more complicated experimental tests to be 

accurately conducted, the experimental tests that will be conducted for validation will be 

controlled by a PID controller.  Correspondingly, none of the tests designed here should 

contribute too difficult of a challenge for the test frame; they are slightly more complex 

versions of standard experiments which are routinely conducted and are all isothermal.  

Furthermore, to ensure that the designed experiments could be conducted on specimens 

without premature failure, all of the strain rates and maximum strain amplitudes were 

kept to levels at or below those of the data found in Miller (1976b).  There is no reason to 

believe that the candidate experiments designed here will accrue damage to a degree that 

would invalidate the data for use with the Miller model.  Certainly, if the experiments 

were allowed to continue indefinitely, the specimens would rupture eventually; however, 

the needed quantity of experimental data will be acquired prior to specimen failure. 

4.2 Parameter Determination using uSHARP 

 The “experimental” data that were used to validate the uSHARP optimization 

routine were created by finite element simulation using the constants for type 304 
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stainless steel determined by Miller (1976b) and applied to the previously outlined strain 

controlled experiments.  As noted, an initial guess for each of the material constants is 

required for parameter determination.  In order to validate the functionality of the 

uSHARP routine, a simulation was initiated using a guess for the material parameters that 

was biased and close to the “experimental” constants.  Following successful validation, 

the initial guess was modified to a standard initial guess, seen in Table 6, and the 

optimization was executed again.  The effects of the two initial guesses on the simulation 

of the ramping amplitude low-cycle fatigue test can be seen in Fig. 19.  It is clear that the 

close initial guess provides a fairly close recreation of the “experimental” data.  In 

contrast, the standard initial guess provides a stress amplitude that is nearly double that of 

the “experimental” data.  As mentioned previously, the uSHARP routine performs best 

when the appropriate orders of magnitude for the constants are already known.  This is 

evident in the selection of the standard guess.  It is assumed that for any future parameter 

determination runs using a different alloy the constants developed for stainless steel will 

be used as a starting guess.  This assumption is provided as justification for choosing an 

initial guess which is on the proper order of magnitude.  During every optimization run, 

the evolution of the constants and the objective function value were recorded after each 

iteration.  This enabled for real time updates of these values as the parameter 

determination progressed, and created a comprehensive log of these values for analysis 

following an optimization run. 
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Table 6: Material constants used to simulate "experimental" data and those used as an 

initial guess. 

 

 
Figure 19: Effect of initial guesses on behavior during ramping amplitude low-cycle 

fatigue test 
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stress relaxation test (Fig. 15b) and low cycle fatigue test with ramping amplitude (Fig. 
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guess.  For both runs, the Hooke-Jeeves algorithm was used as the optimization 

algorithm.  Once material parameters were determined by uSHARP, they were compared 

to the “experimental” set to check for accuracy.  These results are presented in the 

following section.  Once the constants had been determined using only the stress 

relaxation and ramping low cycle fatigue test, the ratcheting test was included and all 

three tests were used simultaneously to determine the material parameters using the 

Hooke-Jeeves algorithm.  For the ratcheting test, the weighting function developed for 

low cycle fatigue tests was applied.  In each case, the time versus stress data were used in 

the fit, with the stress values being used for ysim and yex in Eq. 7.  

 During each optimization routine, the same input files that were used to generate 

the “experimental” data were used to generate data for each iteration and evaluate the 

objective function.  The only difference between the input files was the material constants 

used.  This was done under the assumption that with more advanced control systems, 

experimental and simulated test histories will closely match.  There will, of course, be 

variances under real conditions but at this stage of the research, the goal is to develop a 

functional optimization routine.  The uSHARP routine must first be validated under ideal 

conditions before the expenses of actual experimental testing should be incurred. 
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5.  RESULTS AND DISCUSSION 
 

5.1 Material Parameter Determination 

The uSHARP routine was used three separate times to determine the Miller model 

material parameters.  An outline of the initial guess used and the “experimental” tests 

used to determine the material constants is shown in Table 7.  Two parameter 

determinations were done with the simultaneous use of the stress relaxation test and 

ramping amplitude low-cycle fatigue test to evaluate and minimize the objective function.  

The first determination was done using the close guess.  The second was done using the 

standard guess.  Once results had been obtained for both cases, the ratcheting test was 

added, and using the standard initial guess, the parameter determination was performed 

again.  In each case, the “experimental” data was generated using the constants 

determined by Miller for type 304 stainless steel, as shown in Table 8 (Miller, 1976b). 

Table 7: Initial guess and "experimental" tests used for parameter determination 

Parameter 

Determination 
Initial Guess 

Stress 

Relaxation Test 

Ramping 

Amplitude Low-

Cycle Fatigue 

Ratcheting Test 

1 Close guess X X  

2 Standard guess X X  

3 Standard guess X X X 

 

The first parameter determination run was conducted using the close, biased guess 

and two of the “experimental” tests: the ramping amplitude low-cycle fatigue and stress 

relaxation tests.  The close, biased guess was used to simulate a situation where the 

constants of a similar material are known and can serve as a starting point, or a premature 
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convergence of the optimization algorithm occurred.  It was also done to test the 

functionality of the uSHARP routine under nearly ideal conditions.  The values of the 

constants used for the initial guess and “experimental” test simulations are presented in 

Table 8, along with the final converged constant values.  The percent differences between 

the constants of the “experimental” and solution sets are also presented as a way to verify 

the accuracy of the final converged constants.  It is apparent that the “experimental” 

constants were not accurately determined during the optimization run. 

  Table 8: Values for material constants during first parameter determination 

 

 While the converged constants and the “experimental” constants did not match, 

the graphical fits between the simulations of the two datasets were very good, as shown 

in Fig. 20.  The stress history of the final converged solution matches that of the 

experimental data very closely for both the stress relaxation test and the low cycle fatigue 

test.  The stress histories for the initial guess are also quite close to those of the 

“experimental” tests, indicating a severe bias in the initial guess. 

The evolution of the objective function throughout the optimization using the 

close initial guess is shown in Fig. 21.  Starting with an initial value of 93.97, the 

objective function achieved a minimum value of 0.1614 where the best fit occurred.  It is 

A1  (ksi-1) A2  (ksi-3) B (sec-1) C2  (ksi) H1   (ksi) H2 n

“Experimental” Value 

from Miller for 304 SS

0.8 7.42x10-5 1.0x1015 1.0x10-1 2.8x102 1.0x102 5.8

Initial Guess 1.0 5.0x10-5 1.0x1015 1.0x10-1 2.0x102 1.0x102 4.0

Converged Values 1.53 3.28x10-5 1.31x1015 1.69x10-1 2.28x102 1.03x102 6.0

Percent Difference 91.3 55.8 31.0 69.0 18.6 3.0 3.4
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apparent that the optimization process progressed very close to the minimum after 

approximately 100 iterations.  Approximately 350 iterations are then spent with little 

change in the objective function value.  This is most likely due to the initial guess being 

close to the minimum value.  Because the initial guess was biased and close to the actual 

values of the “experimental” set, it did not take long for the uSHARP routine to find the 

close minimum.  Very little alteration of the constants was needed to create a very good 

fit to the “experimental” data.   

After the results of the close, biased guess indicated proper functionality of the 

uSHARP routine, a parameter determination was carried out again, this time with the 

standard initial guess.  Similar to the initial run, several of the final converged constants 

were not close in value to those of the “experimental” set, as shown in Table 9.  The 

uSHARP routine did determine four of the constants to within 4% of their corresponding 

“experimental” values: B, H1, C2, and n. A comparison with the results from the first 

optimization run shows a similar trend, with three of the four constants displaying 

relatively good matches with the Miller constants. 
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Figure 20: uSHARP convergence results using close initial guess for (a) stress relaxation 

test and (b) ramping amplitude low-cycle fatigue test 
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Figure 21: Objective function convergence for close, biased initial guess 

  Table 9: Values for material constants during second parameter determination 
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initial guess, the amplitude of the ramping low-cycle fatigue test was nearly double that 

of the “experimental” data, as shown in Fig. 22.  Additionally, the amount of stress 

relaxation occurring in the initial guess is nearly five times that of the “experimental” 
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data.  Again, the final fit of the converged values was very good, with nearly identical 

stress histories between the final converged values and the “experimental” data. 

 

Figure 22: uSHARP convergence results using standard initial guess for (a) stress 

relaxation test and (b) ramping amplitude low-cycle fatigue test 
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 Finding a solution using the standard initial guess required more than twice the 

number of iterations than the close, biased guess, as shown in Fig. 23.  This is due to the 

need to search a larger portion of the solution space than was previously required to find 

a minimum.  With a minimum objective function value of 0.2963, the solution fit for the 

standard initial guess was not quite as good as that of the close guess, which had a 

minimum objective function value of 0.1614.  Even though the initial guess provided an 

objective function value of 3063.0, a much worse starting point than with the close initial 

guess, the uSHARP routine was still successful in determining a very good fit; the final 

objective function value was on the same order of magnitude as that of the close, biased 

guess.  Relative to the scale of the problem, the difference between the two values is 

trivial. 

 

Figure 23: Comparison of objective function convergence between close and standard 

initial guesses.  
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 The results of these two runs indicate good performance of the uSHARP routine.  

While the constants were not determined accurately in all cases, this is most likely due to 

the candidate experiments than the uSHARP routine itself.  In order for the constants to 

be determined accurately, their effects on material behavior must be completely captured 

by the test matrix used during the optimization process.  An analysis of the ill-determined 

constants yields insight into how the test matrix might be improved.  In both cases, a poor 

solution for A1 and A2 was found.  These two constants strongly influence the material 

behavior at high strain amplitudes.  In order to determine their values, Miller (1976b) 

used results from more than 25 cyclic tests with constant strain amplitude.  The highest 

strain amplitudes in the data were approximately 3%.  Additionally, the tests were run 

until cyclic saturation occurred in all of the cases, meaning the peak stress values from 

cycle to cycle were constant.  The maximum strain amplitude reached in the simulated 

ramping low-cycle fatigue test was 0.5%, much lower than that used by Miller (1976b).  

In the simulated “experimental” test, cyclic saturation had not occurred.  Six cycles is not 

enough for saturation to occur in type 304 stainless steel; approximately 30 cycles are 

needed (Miller, 1976b).  Additionally, with the ramping strain amplitude, cyclic 

saturation would be difficult to determine.  The H2 constant strongly influences isotropic 

hardening and drag stress evolution.  As shown in Fig. 17, minimal drag stress evolution 

was present in the designed “experimental” tests.  This indicates that very little isotropic 

hardening occurred, meaning the test matrix was insufficient to determine H2. 

 For the H1, B, n, and C2 constants, the two “experimental” tests were adequate in 

capturing their effects on material behavior.  Stress relaxation and creep behavior are 

strongly influenced by the B and n constants.  This was the main reason for the inclusion 
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of a stress relaxation test.  The effects of the H1 constant are seen at intermediate strain 

ranges.  It is apparent that the level of strain reached in the ramping amplitude low-cycle 

fatigue test was adequate in capturing the effects of this constant.  Lastly, the C2 constant 

is most influential on lower strain ranges, which seem well represented by the low-cycle 

fatigue test.  Since four of the Miller constants can be determined from these two tests 

they will remain in the test matrix and will be augmented by other candidate experiments 

capable of capturing the effect of the other three constants. 

 With these considerations in mind, the “experimental” ratcheting test was 

combined with the stress relaxation and ramping amplitude low-cycle fatigue tests, and 

the uSHARP routine was again used to determine the model constants with these three 

tests.  The standard initial guess was again used as the starting point to enable comparison 

with the previous parameter determination results.  For a third time, the material 

parameters converged to values which did not match the Miller experimental constants, 

as shown in Table 10.  Again, the B, H1, and n constants are the closest in value to their 

“experimental” equivalents.  The determination of A1 improved significantly from the 

previous run using the standard initial guess, indicating that the inclusion of the 

ratcheting test helped to capture the effects of the constant better than the use of only the 

other two tests.  The same can be said for the H2 constant; it is likely that the additional 

number of cycles in the ratcheting test has helped to better highlight cyclic hardening 

effects influenced by the H2 parameter.  Unfortunately, these improvements are 

accompanied by poor performance in the determination of the A2 and C2 constants.  This 

will be discussed further momentarily. 
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 The stress histories of the “experimental” and final converged solution were, once 

again, nearly identical, as shown in Figs. 24 and 25.  The initial guess used for the three 

tests was the same standard guess used in the previous optimization run, as reflected in 

the similarities between Figs. 22 and 25.  The standard initial guess proved to be a poor 

predictor of the material behavior during the ratcheting test.  Despite the low caliber of 

the initial fit, uSHARP was again successful in providing an excellent fit to the 

experimental data. 

Table 10: Values for material constants during first third determination 

 

The number of iterations required for convergence using three tests was nearly 

five times that of the previous run using the standard initial guess and two tests.  This is 

most likely due to an increased level of complexity introduced by the inclusion of a third 

test.  Previously, the differences between only two datasets needed to be minimized.  

Adding a third test increased the size of the search space required before an acceptable 

minimum was found by the Hooke-Jeeves algorithm.  Starting with an initial value of 

4276.9, the objective function converged to a final value of 0.1352 as shown in Fig. 26.  

This is of the same order of magnitude as the previous two minimum objective function 

values, indicating that the caliber of the fits are nearly the same in all cases. 

A1  (ksi-1) A2  (ksi-3) B (sec-1) C2  (ksi) H1   (ksi) H2 n

“Experimental” Value 

from Miller for 304SS

0.8 7.42x10-5 1.0x1015 1.0x10-1 2.8x102 1.0x102 5.8

Initial Guess 1.0 1.0x10-5 1.0x1015 1.0x10-1 1.0x102 1.0x102 1.0

Converged Values 0.46 3.01x10-4 8.19x1014 7.25x10-1 3.15x102 1.31x102 5.68

Percent Difference 42.5 305.7 18.1 625.0 12.5 31.0 2.07
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Figure 24: uSHARP convergence results using standard initial guess for ratcheting test 

used in conjunction with stress relaxation and low-cycle fatigue tests 

It was discovered after the third optimization run that the “experimental” stress 
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runs.  Because the first two optimization runs were conducted with the stress relaxation 

test and the low-cycle fatigue tests, the effects of the correct value of C2 were most 

prominent.  The stress relaxation behavior simulated by the Miller model is insensitive to 

the value of C2, as shown in Fig. 27.  Therefore, the effects of C2 were present primarily 
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second optimization run, as shown in Table 9.  When the ratcheting test was included, the 

Time, t (sec)

0 100 200 300 400 500 600 700

S
tr

e
s
s
, 

σ
  

( k
s
i)

0

5

10

15

20

25

30

Initial Guess

"Experimental" Dataset

Final Converged Solution

T= 593°C, 304 Stainless Steel



53 

 

incorrect C2 value was introduced into the experimental data, leading to the large error 

present between the value determined by Miller (1976b) and the final converged solution.  

It is not clear whether or not this error was the cause of the discrepancies between the 

converged values of the other constants and their “experimental” values, but it is likely 

due to the coupled nature of the equations which make up the Miller model.  What is 

clear is that the parameter determination runs need to be repeated with the proper 

experimental data.  This is currently in progress. 

It must be noted that the “experimental” data used here were free from any noise 

and errors induced by use of actual experimental hardware.  Essentially, the synthetic 

data represents a situation where the material response was perfectly measured 

experimentally, and the material properties were identical from specimen to specimen.  In 

reality, this is never the case.  Small errors introduced by the mechanical test frame and 

instrumentation contribute a very small amount of randomness into the results in the form 

of noise, and differences in manufacturing between two specimens will lead to variances 

in the results between two identical tests conducted on two different specimens.  This 

variance, however, should remain at less than 5% when the developed experiments are 

conducted on real material specimens (J. Karl, personal communication, April 2009).  

This implies that useable results can still be obtained, in spite of the inherent 

discrepancies.  
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Figure 25: uSHARP convergence results using standard initial guess for (a) stress 

relaxation test and (b) ramping amplitude low-cycle fatigue test used in conjunction with 

ratcheting test to determine material parameters 
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Figure 26: Comparison of objective function convergence for the three parameter 

determination runs 

 

Figure 27: Effect of C2 on stress relaxation behavior.  All parameters were held constant 

while C2 was varied. 
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5.2 Objective Function Analysis 

 The objective function featured in the uSHARP routine was designed to enable 

the use of different test types and data sets simultaneously for parameter determination.  

It is pertinent to perform an analysis as to whether or not this goal has been achieved.  

The standard objective function commonly used for automated parameter determination 

is a simple, weighted least squares function (Mustata and Hayhurst, 2005; Mulyadi et al., 

2006).  This is typically expressed in the form of 

( )
2

(13)

1

( ) ( ) ( ) ,
n

ex sim

i

S w i y i y i

=

= −∑  

where n is the number of data points, w(i) is the weight factor, yex is the experimental data 

point, and ysim is the simulated data point.  Multiple datasets are then combined in the 

form of Eq. 8.  To provide an indication of the utility of Eq. 7, the uSHARP objective 

function, the individual S values of each of the three tests were recorded during the third 

optimization process.  By comparing these results with S values calculated using Eq. 13 

during the same optimization run, the proposed objective function can be compared with 

the standard from current literature.  For both equations, the uSHARP weighting 

functions were used.  The evolution of S throughout the optimization process for both 

cases is shown in Fig. 28.  The results show that the use of the least squares error function 

would have been insufficient for the simultaneous use of the experimental data used 

during the parameter determination runs.  Equal consideration would not have been given 

to each test.  Use of the uSHARP objective function, however, eliminates this problem. 

 The use of Eq. 13 for the combination of the low-cycle fatigue and ratcheting test 

would have been sufficient in this case.  The least-squares values for both tests are 
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approximately on the same order of magnitude, meaning that neither of the curves would 

receive more weight than the other during the optimization process.  This trend can also 

be seen with use of Eq. 7, the uSHARP objective function.  However, the inclusion of the 

stress relaxation test creates a problem when using Eq. 13.  Throughout the duration of 

the optimization process, the value of S for the stress relaxation test is at least an order of 

magnitude lower than the values for the two other tests.  This creates a natural bias during 

optimization, providing more consideration to the ratcheting and low-cycle fatigue tests.  

This trend is not evident with use of the uSHARP objective function.  The individual S 

values remain on the same order of magnitude throughout the duration of the 

optimization process.  This is proof that uSHARP has satisfied the goal of allowing for 

the use of several different test types without undue consideration being given to any 

single test over the others.  This also represents an improvement over the standard 

objective function so commonly used for automated constitutive model parameter 

determination. 
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Figure 28: Individual objective function values for three "experimental" tests using (a) 

the uSHARP objective function (Eq. 7) and (b) standard objective function from 

literature (Eq. 13) 
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6.  CONCLUSION 

 

 The uSHARP optimization routine was successful in determining values for the 

material constants which created excellent fits with the “experimental” data.  While the 

final converged constants were not close to the “experimental” values in all cases, this is 

a reflection of an experimental test matrix which is not adequate in capturing the effects 

of all of the material constants rather than a failure in the functionality of uSHARP.  

These results highlight the need to verify the adequacy of the experimental test matrix 

used in any automated parameter determination routine before the results can be 

considered completely accurate.  A procedure using synthetic data where the 

“experimental” constants are already known, similar to the method used here, would be a 

good initial step to verify the adequacy of any test matrix before the commitment to 

actual experiments using test specimens was made. 

 Use of the uSHARP routine shows great promise in simplifying the procedure of 

parameter determination.  Four of the seven constants were determined to within 4% of 

their actual “experimental” values using only two tests, when typically more than twenty 

are used.  The addition of a third test type seemed to enable a more accurate 

determination of two more constants, though these results are unclear at this time due to 

an error in the experimental data.  It is predicted that once this error is accounted for, six 

of the seven constants will be determined accurately from only three tests.  Furthermore, 

since the uSHARP optimization process is completely contained, calling on an external 

program (ANSYS) to provide the necessary finite element simulations, it is expected to 

be adaptable to any constitutive model.  In this way, the developed parameter 



60 

 

determination method was designed to be broadly applicable to suit the needs of many 

different users, as its procedure is not specific to the Miller model. 

 The form of the objective function used in the uSHARP routine demonstrated 

superiority over the traditional form commonly found in literature.  The goal of enabling 

the use of multiple test types simultaneously with minimal user input was satisfied, 

ensuring that every “experimental” test used had equal consideration during the 

parameter determination process.  While the weighting functions were determined 

through a trial and error process, they have performed favorably.  In each case, the 

minimum of the objective function corresponded to a very good fit. 
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7.  FUTURE WORK 

 

Overall, the development of the described method has been a success, though 

much work remains to be done.  The forms of the weighting functions need to be 

optimized and additional weighting functions are needed for other test types, such as 

creep tests.  A modification of one of the three test types used here would be favorable in 

order to better capture the effects of the A2 constant.  Furthermore, simple tests designed 

to enable the determination of the elastic material parameters will be developed.  Once 

this has been done, the simulated test matrix will be conducted on actual test specimens 

to verify the functionality of uSHARP under non-ideal conditions.  Because the goal of 

the research was to develop a method which can be applied to a wide range of 

constitutive models, use of the uSHARP routine must be proven for several different 

types of constitutive models to ensure broad applicability.  The uSHARP routine is 

currently being used to determine material parameters for a tertiary creep damage model, 

and the initial results are promising.  An analysis of the effects of the initial guess would 

be pertinent as well, to ensure that a final solution is not completely dependent on the 

quality of the initial guess.  This analysis must consider, however, that the uSHARP 

routine was developed for application to cases where the orders of magnitude of the 

constants are already known.  
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APPENDIX A: SAMPLE ANSYS INPUT FILE 

 

Finish 

/Clear 

! 

/TITLE, Uniaxial Miller Model    ! Title of File 

/OUTPUT, C:\Miller_info, txt,,    ! File which gives procedural 

information 

/CONFIG, NRES, 20000     ! Number of possible results 

! 

! 

/prep7       ! Enters Pre-processor phase 

! 

! Parameter Declaration 

! 

! Thermal/Mechanical Conditions 

! 

length = 1      ! Length of Block in mm 

area   = length*length     ! area of square block mm^2 

nodes  = 8      ! nodes of block 

temp_c =   593      ! Temperature in Celcius 

temp_k =   temp_c+273.15    ! Celcius to Kelven Conversion 

tmp_ref = 0.0                                 ! Reference temperature in K 

temp_m=1800      ! Melting Temperature in K 

! 

! UPF Material Properties 

! 

*DIM,constants,,8 

*VREAD, constants(1), C:\OPT\Constants, txt,, 

(E12.5) 

Young = 22.5E3 

YS = 18.0   !KSI - 0.2% Yield Strength 

EE = 0.0005/10 

Poisson = 0.3 

A1 = 0.8 

A2X= 7.42 

A2 = A2X*1E-5           

BX = 1.0 

B = BX*1E15 

C2X = 1.0 

C2 = C1X*1E-1 

k = 1.9859 

H1X = 2.8 

H1 = H1X*1E2 

H2X = 1.0 

H2 = H2X*1E2 

n = 5.8 

Q = 91000.0  

! Determine Initial Drag Stress (ksi) 

! 

*IF,temp_k,LE,0.6*temp_m,THEN,,,, 

AR=1*EXP( (-Q/(0.6*k*temp_m))*(LOG((0.6*temp_m)/temp_k)+1)) 

*ELSE 

AR=EXP(-Q/(k*temp_k)) 

*ENDIF 

tmp1=(EE/(B*AR))**(1/n) 

D_o=(YS-0.002*H1)/LOG(tmp1+((tmp1**2)+1)**(1/2))**0.677 

! 

! Node locations of Block 

! 

N,1,0,0,0      ! Node,number,xcord,ycord,zcord 

  

N,2,1,0,0 

N,3,1,1,0 

N,4,0,1,0 

N,5,0,0,1 

N,6,1,0,1 
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N,7,1,1,1 

N,8,0,1,1 

! 

! Define Elements and Properties  

! 

ET, 1, Solid185, 0     ! Element Type used 

E,1,2,3,4,5,6,7,8     ! Creating an element from the nodes 

! 

! Degress of Freedom 

! 

D,1,UX,0      ! Degree of Freedom, node,   

! direction, value 

D,1,UY,0 

D,1,UZ,0 

D,2,UY,0 

D,2,UZ,0 

D,3,UZ,0 

D,4,UX,0 

D,4,UZ,0 

D,5,UX,0 

D,5,UY,0 

D,6,UY,0 

D,8,UX,0 

! 

! Data Parameters 

! 

data_freq      = 1     ! How often to record data, every 10 

steps. 

! 

load_init_time = .1     ! Initial Load Time in seconds 

load_mini_time = 1E-8     ! Minimum Deltim step time in seconds 

load_maxi_time = .15     ! Maximum Deltim step time in seconds 

load_ramp_time = 1E-2     ! Ramp time used in Deltim in seconds 

! 

! Define Properties of Material 1 (for CMS-UPF) 

! 

TB,USER,1,1,13      ! TB, Lab, MAT, NTEMP, NPTS 

TBTEMP, temp_k      ! TBTEMP, TEMP, KMOD 

TBDATA,1,Young,Poisson,A1,A2,B,C1   ! UPF Matl Props 

TBDATA,7,C2,k,H1,H2,n,Q    ! UPF Matl Props 

TBDATA,13,temp_m     ! UPF Matl Props 

! 

TB,STATE,1,,31,     ! Define 4 state variables 

TBDATA,1,0,0,0,0,0,0     ! Assign values to ISV's 

TBDATA,7,D_o,0,0,0,0,0     ! Assign values to ISV's 

TBDATA,13,0,0,0,0,0,0     ! Assign values to ISV's 

TBDATA,19,0,0,0,0,0,0                              ! Assign values to ISV's 

TBDATA,25,0,0,0,0,0,0                              ! Assign values to ISV's 

TBDATA,31,0,                                   ! Assign values to ISV's 

! 

! Temperature boundary conditions 

! 

TUNIF, temp_k 

TREF, tmp_ref 

TOFFST, 0. 

! 

FINISH 

! 

! Hystersis Loop Variables 

! 

n=6       ! Number of Cycles 

D_strain=0.005      ! Final Strain Level 

D_s_ini=0.0005      ! Initial Cycle Strain Level 

t0=10       ! Time Per 1/4th cycle (Quadrant) 

Multi=(D_strain/D_s_ini)**(1/(2*n-1)) 

D_ref=D_s_ini/Multi      

! 

t_ini=0       ! Initial Time 

t_inc=t0*4      ! Time Increment 

t_fin=t_inc*n      ! Final Time 

*DO,t1,t_ini,t_fin,t_inc 



66 

 

*IF,t1,EQ,t_fin,EXIT 

/SOLU       ! Enters Solution Phase 

! 

! Step 1 (Strain QI) 

! 

t2 = t1+t0 

D_ref=Multi*D_ref     ! Time at end of Step 

d1 = D_ref                   ! Displacement of step  

Antype, static      ! ANTYPE, Antype, Status, LDSTEP, 

!SUBSTEP, Action 

nropt,auto      ! Newton-Raphson set to auto for step 

lnsrch,auto      ! Activates line search used with NR 

!Nlgeom,0      ! Includes large deflection effects, 

0=off 

Solcontrol, 1      ! Optimizes nonlinear solutions 

!Cnvtol, F, 1E-10,, 2, minref    ! CNVTOL, Lab, VALUE, TOLER, NORM, 

!MINREF 

Time, t2      ! Time at end of step 

Deltim, load_init_time, load_mini_time, load_maxi_time ! DELTIM, DTIME, DTMIN, 

DTMAX, Carry 

Autots, 1      ! Auto Time Stepping 

D, 5, UZ, d1      ! Apply displacment to node 5 

D, 6, UZ, d1      ! Apply displacment to node 6 

D, 7, UZ, d1      ! Apply displacment to node 7 

D, 8, UZ, d1      ! Apply displacment to node 8 

Outres, All, data_freq     ! Outputs data to be read by ESOL 

OUTRES,SVAR, data_freq 

Crplim, 20, 1      ! CRPLIM, CRCR, Option, !Creep Ratio  

Rate, 1       ! Activates Creep for step 

Kbc, 0       ! Specifies stepped or ramped load, 

1=stepped 

Solve 

! 

! Step 2 (Strain - QIV) 

! 

t2 = t2+t0      ! Time at end of Step 

d1 = 0                       ! Displacement of step  

Antype, static      ! ANTYPE, Antype, Status, LDSTEP, 

SUBSTEP, Action 

nropt,auto      ! Newton-Raphson set to auto for step 

lnsrch,auto      ! Activates line search used with NR 

!Nlgeom,0      ! Includes large deflection effects, 

0=off 

Solcontrol, 1      ! Optimizes nonlinear solutions 

!Cnvtol, F, 1E-10,, 2, minref    ! CNVTOL, Lab, VALUE, TOLER, NORM, 

MINREF 

Time, t2      ! Time at end of step 

Deltim, load_init_time, load_mini_time, load_maxi_time ! DELTIM, DTIME, DTMIN, 

DTMAX, Carry 

Autots, 1      ! Auto Time Stepping 

D, 5, UZ, d1      ! Apply displacment to node 5 

D, 6, UZ, d1      ! Apply displacment to node 6 

D, 7, UZ, d1      ! Apply displacment to node 7 

D, 8, UZ, d1      ! Apply displacment to node 8 

Outres, All, data_freq     ! Outputs data to be read by ESOL 

OUTRES,SVAR, data_freq 

Crplim, 20, 1      ! CRPLIM, CRCR, Option, !Creep Ratio 

Limit 

Rate, 1       ! Activates Creep for step 

Kbc, 0       ! Specifies stepped or ramped load, 

1=stepped 

Solve 

! 

! Step 3 (Strain - QIII) 

! 

t2 = t2+t0 

D_ref=Multi*D_ref     ! Time at end of Step 

d1 = -D_ref                 ! Displacement of step  

Antype, static      ! ANTYPE, Antype, Status, LDSTEP, 

SUBSTEP, Action 

nropt,auto      ! Newton-Raphson set to auto for step 
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lnsrch,auto      ! Activates line search used with NR 

!Nlgeom,0      ! Includes large deflection effects, 

0=off 

Solcontrol, 1      ! Optimizes nonlinear solutions 

!Cnvtol, F, 1E-10,, 2, minref    ! CNVTOL, Lab, VALUE, TOLER, NORM, 

!MINREF 

Time, t2      ! Time at end of step 

Deltim, load_init_time, load_mini_time, load_maxi_time ! DELTIM, DTIME, DTMIN, 

DTMAX, Carry 

Autots, 1      ! Auto Time Stepping 

D, 5, UZ, d1      ! Apply displacment to node 5 

D, 6, UZ, d1      ! Apply displacment to node 6 

D, 7, UZ, d1      ! Apply displacment to node 7 

D, 8, UZ, d1      ! Apply displacment to node 8 

Outres, All, data_freq     ! Outputs data to be read by ESOL 

OUTRES,SVAR, data_freq 

Crplim, 20, 1      ! CRPLIM, CRCR, Option, !Creep Ratio 

Limit 

Rate, 1       ! Activates Creep for step 

Kbc, 0       ! Specifies stepped or ramped load, 

1=stepped 

Solve 

! 

! Step 4 (Strain - QII) 

! 

t2 = t2+t0      ! Time at end of Step 

d1 = 0                 ! Displacement of step  

Antype, static      ! ANTYPE, Antype, Status, LDSTEP, 

SUBSTEP, Action 

nropt,auto      ! Newton-Raphson set to auto for this 

step 

lnsrch,auto      ! Activates a line search used with 

Newton-Raphson 

!Nlgeom,0      ! Includes large deflection effects, 

0=off 

Solcontrol, 1      ! Optimizes nonlinear solutions 

!Cnvtol, F, 1E-10,, 2, minref    ! CNVTOL, Lab, VALUE, TOLER, NORM, 

MINREF 

Time, t2      ! Time at end of step 

Deltim, load_init_time, load_mini_time, load_maxi_time ! DELTIM, DTIME, DTMIN, 

!DTMAX, Carry 

Autots, 1      ! Auto Time Stepping 

D, 5, UZ, d1      ! Apply displacment to node 5 

D, 6, UZ, d1      ! Apply displacment to node 6 

D, 7, UZ, d1      ! Apply displacment to node 7 

D, 8, UZ, d1      ! Apply displacment to node 8 

Outres, All, data_freq     ! Outputs data to be read by ESOL 

OUTRES,SVAR, data_freq 

Crplim, 20, 1      ! CRPLIM, CRCR, Option, !Creep Ratio 

Rate, 1       ! Activates Creep for step 

Kbc, 0       ! Specifies stepped or ramped load 

Solve 

! 

*ENDDO 

Finish 

! 

/Post26       ! Entering Post processor 

/OUTPUT, C:\LCF, TXT,,   ! File where data results are outputed 

NUMVAR,200 

/GROPTS,View,1 

! 

ESOL,2,1,6,EPCR,Z,EPCRz     ! Stores creep in the Z for 

node 6 

ESOL,3,1,6,EPEL,Z,Elastic_z    ! Stores elastic in Z for node 6 

ESOL,4,1,6,EPPL,Z,Plastic_z    ! Stores plastic in Z for node 6 

ESOL,5,1,6,S,Z,Stress_z     ! Stores stress in Z for node 

6 

ESOL,6,1,6,SVAR,7,Ustatev 

XVAR,3       ! Graphs in the X axis, time = 0 

PLVAR,5       ! Graphs in the Y axis 
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LINES,300000      ! Maximum Number of lines in the data 

results file 

PRVAR,2,3,4,5,6      ! Stores data results in file 

! 

FINISH 
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APPENDIX B: uSHARP OBJECTIVE FUNCTION 

 

!-----------------------------------------------------! 

! THIS IS THE MAIN OBJECTIVE FUNCTION THAT WILL BE    ! 

! MINIMIZED BY THE HOOKE-JEEVES ALGORITHM.  IT SHOULD ! 

! CONTAIN ALL THE DATA SETS THAT ARE BEING FIT        ! 

! SIMULTANEOUSLY.                                     !                                          

!-----------------------------------------------------!  

! VERSION 1.0  12/17/2008                             ! 

! AUTHOR: ERIK HOGAN                                  ! 

!-----------------------------------------------------! 

! REVISIONS:                                          ! 

!-----------------------------------------------------! 

 

FUNCTION OBJECTIVE(X,N) 

 

IMPLICIT NONE 

 

  INTEGER N,I,J,STATUS,RSTATUS 

  INTEGER NDIMA1,NDIMA2,NDIMA3 

  INTEGER NVALS,NDIME1,NDIME2,NDIME3 

  

  REAL, ALLOCATABLE, DIMENSION(:) :: ANSTIME1,ANSDATA1 

  REAL, ALLOCATABLE, DIMENSION(:) :: ANSTIME2,ANSDATA2 

  REAL, ALLOCATABLE, DIMENSION(:) :: ANSTIME3,ANSDATA3 

  REAL, ALLOCATABLE, DIMENSION(:) :: EXTIME1,EXDATA1 

  REAL, ALLOCATABLE, DIMENSION(:) :: EXTIME2,EXDATA2 

  REAL, ALLOCATABLE, DIMENSION(:) :: EXTIME3,EXDATA3 

  REAL SRFUNC,PRCRFUNC,LCFFUNC 

  REAL SUM1,SUM2,SUM3 

  REAL X(N),OBJECTIVE,SIG,TTOL 

   

  !------------------------------------------------------------! 

  ! DEFINE STRESS TOLERANCE LEVEL FOR LCF TEST (SIG) AND TIME  ! 

  ! THRESHOLD (TTOL) FOR CREEP TEST.  SEE ACCOMPANYING         ! 

  ! FUNCTIONS FOR EXPLANATIONS AS TO WHAT THESE PARAMETERS DO. ! 

  !------------------------------------------------------------! 

  SIG=14.0 

 !TTOL= 0.0  NOT USED 

   

     

  !------------------------------------------------------------! 

  !Define the location of the constants file that is called by ! 

  !the ANSYS input file.                                       ! 

  !------------------------------------------------------------! 

  OPEN (UNIT=10, FILE='C:\OPT\Constants.txt', POSITION='REWIND') 

   

  !------------------------------------------------------------! 

  !This file is used to save the current guess at each         ! 

  !iteration.  It helps in case you want to see the progression! 

  !throughout the optimization routine.                        ! 

  !------------------------------------------------------------! 

  OPEN (UNIT=15, FILE='GUESS.TXT', POSITION='APPEND') 
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  !------------------------------------------------------------! 

  !Define the location of the experimental data file(s).       ! 

  !------------------------------------------------------------! 

  OPEN (UNIT=20, FILE='lcfex.txt', POSITION='REWIND') 

  OPEN (UNIT=21, FILE='ratex.csv', POSITION='REWIND') 

  OPEN (UNIT=22, FILE='srex.txt', POSITION='REWIND') 

   

  !------------------------------------------------------------! 

  ! ALL VARIABLES THAT WILL BE DETERMINED BY THE PROGRAM MUST  ! 

  ! BE INITIALIZED TO 0.                                       ! 

  !------------------------------------------------------------! 

  NDIME1=0 

  NDIME2=0 

  NDIME3=0 

  STATUS=0 

  NDIMA1=0 

  NDIMA2=0 

  NDIMA3=0   

  NVALS=0 

  RSTATUS=0 

  !---------------------------------------------------------------! 

  ! THE CURRENT GUESS NEEDS TO BE WRITTEN TO THE FILE THAT WILL   ! 

  ! BE CALLED BY THE INPUT DECK.                                  ! 

  !---------------------------------------------------------------! 

  DO I=1,N 

    WRITE (10,11) X(I) 

  ENDDO 

  CLOSE (10) 

  11 FORMAT(E12.5) 

  !------------------------------------------------------------! 

  ! SAVE THE CURRENT GUESS TO THE 'GUESS.TXT' FILE FOR REVIEW. ! 

  !------------------------------------------------------------! 

   

  DO I=1,N 

    WRITE (15,16) X(I) 

  ENDDO 

  WRITE (15,*)'------------------' 

  CLOSE (15) 

  16 FORMAT(E12.5) 

  

 !--------------------------------------------------------------! 

 ! FORCE THE GUESS TO REMAIN POSITIVE.                          ! 

 !--------------------------------------------------------------! 

   DO I=1,N 

    IF (X(I).LE.0) THEN 

        SUM1=1E10 

        SUM2=1E10 

        SUM3=1E10 

        GOTO 955 

    ENDIF  

   ENDDO 

   

!-------------------------------------------------------! 

! DETERMINE THE NUMBER OF DATA POINTS IN EACH DATASET   ! 

!-------------------------------------------------------! 

    !DATASET 1! 

    DO 
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        READ (20,*,IOSTAT=STATUS) 

        IF (STATUS /= 0) EXIT 

        NDIME1=NDIME1+1 

    ENDDO 

    REWIND (20) 

     

    STATUS=0 

     

    !DATASET 2! 

    DO 

        READ (21,*,IOSTAT=STATUS) 

        IF (STATUS /= 0) EXIT 

        NDIME2=NDIME2+1 

    ENDDO 

    REWIND (21) 

    

    STATUS=0 

     

    !DATASET 3! 

    DO 

        READ (22,*,IOSTAT=STATUS) 

        IF (STATUS /= 0) EXIT 

        NDIME3=NDIME3+1 

    ENDDO 

    REWIND (22) 

     

        

  !ALLOCATE ARRAY SIZES! 

  ALLOCATE (EXTIME1(NDIME1),EXDATA1(NDIME1)) 

  ALLOCATE (EXTIME2(NDIME2),EXDATA2(NDIME2)) 

  ALLOCATE (EXTIME3(NDIME3),EXDATA3(NDIME3)) 

   

!-----------------------------------------------------! 

! READ IN THE EXPERIMENTAL DATASETS.                  ! 

!-----------------------------------------------------!   

  DO I=1,NDIME1 

    READ (20,23) EXTIME1(I),EXDATA1(I) 

  ! PRINT *,EXTIME1(2),' ',EXDATA1(I) 

  ENDDO 

   

  CLOSE (20) 

   

  DO I=1,NDIME2 

   READ (21,695) EXTIME2(I),EXDATA2(I) 

  ENDDO 

  CLOSE (21) 

   

  DO I=1,NDIME3 

    READ (22,23) EXTIME3(I),EXDATA3(I) 

  ! PRINT *,EXTIME3(I),' ',EXDATA3(I) 

  ENDDO 

  CLOSE (22) 

   

23 FORMAT(E12.5,E12.5) 

695 FORMAT(F8.2,F12.5) 

 

!-----------------------------------------------------! 
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! AT THIS POINT, THE EXPERIMENTAL DATASETS HAVE BEEN  ! 

! DEFINED.  THE ANSYS SIMULATIONS FOR EACH DATASET    ! 

! NEED TO BE RUN.  THIS IS DONE HERE.                 ! 

!-----------------------------------------------------! 

CALL INPROGRESS 

call SYSTEM(' "C:\OPT\ANSYS1.BAT" ') 

CALL INPROGRESS 

call SYSTEM(' "C:\OPT\ANSYS2.BAT" ') 

CALL INPROGRESS 

call SYSTEM(' "C:\OPT\ANSYS3.BAT" ') 

 

!-------------------------------------------------------! 

!OPEN ANSYS OUTPUT FILES                                ! 

!-----------------------!-------------------------------! 

! DEFINE THE LOCATION OF THE ANSYS OUTPUT FILES HERE.   ! 

! THESE WILL BE USED TO CALCULATE THE ARRAY SIZES AND   ! 

! DEFINE THE DATASETS FOR THE ANSYS SIMULATION VECTORS. ! 

!-----------------------------=-------------------------! 

   OPEN (UNIT=30, FILE='C:\LCF.TXT', POSITION='REWIND') 

   OPEN (UNIT=31, FILE='C:\RAT.TXT', POSITION='REWIND') 

   OPEN (UNIT=32, FILE='C:\SR.TXT', POSITION='REWIND') 

    

    

!-----------------------------------------------------------------! 

! THIS IS WHERE THINGS GET TRICKY.  EACH OUTPUT FILE              ! 

! WILL BE OF A DIFFERENT FORMAT, NECESSITATING AN                 ! 

! INDIVIDUAL FORMAT STATEMENT FOR EACH OUTPUT FILE.               ! 

! HERE, THE SIZE OF THE SIMULATION ARRAYS ARE DETERMINED          ! 

! AND READ INTO THE PROGRAM.                                      ! 

!-----------------------------------------------------------------! 

 

!DETERMINE SIZE OF ARRAYS! 

    STATUS=0 

    DO 

        READ (30,*,IOSTAT=STATUS) 

        IF (STATUS /= 0) EXIT 

        NVALS=NVALS+1 

    ENDDO 

    REWIND (30) 

    NDIMA1=NVALS-69 

    NVALS=0 

    !PRINT *,NDIMA1 

     

    STATUS=0 

    DO 

        READ (31,*,IOSTAT=STATUS) 

        IF (STATUS /= 0) EXIT 

        NVALS=NVALS+1 

    ENDDO 

    REWIND (31) 

    NDIMA2=NVALS-69 

    NVALS=0 

    !PRINT *,NDIMA2 

     

    STATUS=0 

    DO 

        READ (32,*,IOSTAT=STATUS) 
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        IF (STATUS /= 0) EXIT 

        NVALS=NVALS+1 

    ENDDO 

    REWIND (32) 

    NDIMA3=NVALS-67 

    NVALS=0 

    !PRINT *,NDIMA3 

     

!--------------------------------------------! 

! ALLOCATE ARRAY SIZES.                      ! 

!--------------------------------------------! 

 

    ALLOCATE (ANSTIME1(NDIMA1),ANSDATA1(NDIMA1)) 

    ALLOCATE (ANSTIME2(NDIMA2),ANSDATA2(NDIMA2)) 

    ALLOCATE (ANSTIME3(NDIMA3),ANSDATA3(NDIMA3)) 

     

!-----------------------------------------------------------! 

! READ IN THE SIMULATED DATA SETS.  ENSURE THE FORMATTING   ! 

! STATEMENT FOR EACH DATASET IS CORRECTLY DEFINED OR THE    ! 

! SETS WILL NOT BE READ IN CORRECTLY.                       ! 

!-----------------------------------------------------------! 

    !DATASET 1-LCF! 

    READ (30,41) ANSTIME1(1),ANSDATA1(1)  

     DO I=2,NDIMA1 

        READ (UNIT=30,FMT=42,IOSTAT=RSTATUS) ANSTIME1(I),ANSDATA1(I) 

        IF (RSTATUS /= 0) THEN 

        SUM1=2E10 

        SUM2=2E10 

        SUM3=2E10 

        GOTO 955 

        ENDIF         

     ENDDO 

     CLOSE (30) 

41 FORMAT(52/,F13.5,T59,F13.6) 

42 FORMAT(F13.5,T59,F13.6) 

 

    !DATASET 2-Ratcheting! 

    RSTATUS=0 

    READ (31,43) ANSTIME2(1),ANSDATA2(1)  

     DO I=2,NDIMA2 

        READ (UNIT=31,FMT=44,IOSTAT=RSTATUS) ANSTIME2(I),ANSDATA2(I) 

        IF (RSTATUS /= 0) THEN 

        SUM2=2E10 

        SUM3=2E10 

        GOTO 955 

        ENDIF  

     ENDDO 

     CLOSE (31) 

43 FORMAT(52/,F13.5,T59,E13.6) 

44 FORMAT(F13.5,T59,E13.6) 

 

    !DATASET 3-STRESS RELAXATION! 

    RSTATUS=0 

    READ (32,45) ANSTIME3(1),ANSDATA3(1)  

     DO I=2,NDIMA3 

        READ (UNIT=32,FMT=46,IOSTAT=RSTATUS) ANSTIME3(I),ANSDATA3(I) 

        IF (RSTATUS /= 0) THEN 
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        SUM3=2E10 

        GOTO 955 

        ENDIF 

     ENDDO 

     CLOSE (32) 

45 FORMAT(50/,F13.5,T61,F11.6) 

46 FORMAT(F13.5,T61,F11.6) 

 

 

!-----------------------------------------------------------! 

! ALL NECESSARY DATASETS HAVE BEEN DEFINED.  THE OBJECTIVE  ! 

! FUNCTION WILL NOW BE EVALUATED.                           ! 

!-----------------------------------------------------------! 

 

!LCF DATA! 

SUM1=LCFFUNC(ANSDATA1,EXDATA1,SIG,NDIME1,NDIMA1,ANSTIME1,EXTIME1) 

 

!CREEP DATA! 

SUM2=LCFFUNC(ANSDATA2,EXDATA2,16.0,NDIME2,NDIMA2,ANSTIME2,EXTIME2) 

 

!STRESS RELAXATION DATA! 

SUM3=SRFUNC(ANSDATA3,ANSTIME3,EXDATA3,EXTIME3,NDIMA3,NDIME3) 

 

DEALLOCATE (ANSTIME1,ANSDATA1) 

DEALLOCATE (ANSTIME2,ANSDATA2) 

DEALLOCATE (ANSTIME3,ANSDATA3) 

DEALLOCATE (EXTIME1,EXDATA1) 

DEALLOCATE (EXTIME2,EXDATA2) 

DEALLOCATE (EXTIME3,EXDATA3) 

 

955 CONTINUE 

 

OBJECTIVE=SUM1+SUM2+SUM3 

 

 

!---------------------------------------------------------------! 

! THE VALUE OF THE OBJECTIVE FUNCTION WILL NOW BE RECORDED TO   ! 

! FILE.                                                         ! 

!---------------------------------------------------------------! 

 

    OPEN (UNIT=50, FILE='FOM.TXT', POSITION='APPEND') 

    WRITE (50,51) OBJECTIVE 

     

    CLOSE (50) 

51 FORMAT(E12.5) 

52 FORMAT(E12.5,' ','+') 

    OPEN (UNIT=100, FILE='SUMS.TXT', POSITION='APPEND') 

    WRITE (100,*) SUM1, '  ',SUM2,'  ',SUM3 

 

RETURN 

END     
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!-----------------------------------------------------! 

! THIS FUNCTION RETURNS THE NORMALIZED LEAST SQUARES  ! 

! VALUE BETWEEN TWO DATASETS.  THE USER IS REQUIRED   ! 

! TO INPUT THE TWO Y VALUE DATASETS, THE WEIGHT       ! 

! VECTOR, AND THE NUMBER OF DIMENSIONS OF THE DATA.   ! 

!-----------------------------------------------------! 

 

FUNCTION NLSTSQR(YEX,YSIM,WEIGHT,NDIMA) 

 

IMPLICIT NONE 

INTEGER NDIMA,I 

REAL YEX(NDIMA),YSIM(NDIMA),WEIGHT(NDIMA) 

REAL NLSTSQR,YMAX,DIFF 

 

!-----------------------------------------------------! 

! DETERMINE MAX VALUE IN THE EXPERIMENTAL DATASET.    ! 

! THIS WILL BE USED TO NORMALIZE THE LEAST SQUARES    ! 

! CALCULATION.                                        ! 

!-----------------------------------------------------! 

 

YMAX=0 

DO I=1,NDIMA 

    IF (ABS(YEX(I)).GT.YMAX) THEN 

        YMAX=ABS(YEX(I)) 

    ELSE 

        YMAX=YMAX 

    ENDIF 

ENDDO 

 

!-----------------------------------------------------! 

! PERFORM WEIGHTED LEAST SQUARES CALCULATION.         ! 

!-----------------------------------------------------! 

DIFF=0 

DO I=1,NDIMA 

    DIFF=DIFF+(WEIGHT(I)*(100*(YEX(I)-YSIM(I))/YMAX)**2) 

ENDDO 

 

NLSTSQR=DIFF/NDIMA 

 

RETURN 

END 

 

 

 

!------------------------------------------------------! 

! SRFUNC IS AN OBJECTIVE FUNCTION THAT AUTOMATICALLY   ! 

! WEIGHTS AND CALCULATES THE LEAST SQUARES VALUE FOR   ! 

! A STRESS RELAXATION TEST.  THE USER ONLY NEEDS TO    ! 

! SUPPLY THE EXPERIMENTAL DATA SET, FEM DATA SET, AND  ! 

! THEIR CORRESPONDING DIMENSIONS. THE ROUTINE USES A   ! 

! COMBINATION OF THE FIRST AND SECOND DERIVATIVES OF   ! 

! THE STRESS VS TIME DATA TO GENERATE THE WEIGHTS.     ! 

!------------------------------------------------------! 
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FUNCTION SRFUNC(ANSSTRESS,ANSTIME,EXSTRESS,EXTIME,NDIMA,NDIME) 

 

IMPLICIT NONE 

INTEGER NDIMA,NDIME,I 

REAL ANSSTRESS(NDIMA),EXSTRESS(NDIME),STRESSINTERP(NDIMA) 

REAL ANSTIME(NDIMA),EXTIME(NDIME) 

REAL WEIGHT(NDIMA),SIGDOT(NDIMA),SIGDUB(NDIMA) 

REAL DIFF,SRFUNC,NLSTSQR 

 

!----------------------------------------------------! 

! FIRST, INTERPOLATE STRESS VALUES SO THEY CORRESPOND! 

! TO THE SAME TIME INDICES.                          ! 

!----------------------------------------------------! 

 

CALL INTERP(ANSTIME,EXTIME,EXSTRESS,NDIMA,NDIME,STRESSINTERP) 

 

!----------------------------------------------------! 

! PERFORM FIRST AND SECOND DERIVATIVE CALCULATIONS   ! 

! AND GENERATE THE WEIGHT FOR EACH TIME POINT. THE   ! 

! FIRST AND LAST POINTS ARE NEGLECTED FOR SIMPLICITY.! 

!----------------------------------------------------! 

 

DO I=2,NDIMA-1 

    !STRESS RATE CALCULATION! 

    SIGDOT(I)=(STRESSINTERP(I+1)-STRESSINTERP(I))/(ANSTIME(I+1)-

ANSTIME(I)) 

    !SECOND DERIVATIVE CALCULATION! 

    SIGDUB(I)=(STRESSINTERP(I+1)-2*STRESSINTERP(I)+STRESSINTERP(I-

1))/((ANSTIME(I+1)-ANSTIME(I))*(ANSTIME(I)-ANSTIME(I-1))) 

    !GENERATE WEIGHTS! 

    WEIGHT(I)=(0.5+ABS(SIGDOT(I))+ABS(SIGDUB(I)))/abs((0.5-

ABS(SIGDOT(I))-ABS(SIGDUB(I)))) 

ENDDO 

 

WEIGHT(1)=0 

WEIGHT(NDIMA)=0 

!-----------------------------------------------------! 

! DUE TO EXPERIMENTAL DISCREPANCIES, APPROXIMATE      ! 

! DERIVATIVES MAY LEAD TO VERY HIGH WEIGHTS FOR       ! 

! CERTAIN INCONSISTENT DATA POINTS.  THIS CORRECTS    ! 

! FOR THAT BY LIMITING THE MAXIMUM WEIGHT FOR ANY     ! 

! POINT TO 2.5.                                       ! 

!-----------------------------------------------------! 

 

DO I=2,NDIMA-1 

    IF (WEIGHT(I).GT.(2.5)) THEN 

        WEIGHT(I)=2.5 

    ELSE 

        WEIGHT(I)=WEIGHT(I) 

    ENDIF 

ENDDO 

 

!----------------------------------------------------! 

! CALCULATE NORMALIZED LEAST SQUARES VALUE.          ! 

!----------------------------------------------------! 
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SRFUNC=NLSTSQR(STRESSINTERP,ANSSTRESS,WEIGHT,NDIMA) 

 

RETURN 

END 

 

 

 

 

 

!---------------------------------------------------------! 

! LCFFUNC IS A FUNCTION TO AUTOMATICALLY WEIGHT AN LCF    ! 

! HYSTERESIS LOOP.  THE USER PROVIDES A STRESS VALUE, SIG,! 

! ABOVE WHICH THE FUNCTION WEIGHTS THE LEAST SQUARES      ! 

! VALUES HIGHER THAN THOSE OF THE ELASTIC DEFORMATION REGIONS.  ! 

! IDEALLY, SIG SHOULD REFLECT THE LOWEST STRESS VALUE AT WHICH  ! 

! PLASTIC DEFORMATION BEGINS.  THE ROUTINE WILL PENALIZE ANY         ! 

! GUESS THAT DOES NOT CAUSE STRESSES ABOVE SIG, ENSURING THE         ! 

! BEST FIT FALLS IN THE APPROPRIATE PLASTIC DEFORMATION REGION.      ! 

!--------------------------------------------------------------------! 

 

FUNCTION LCFFUNC(ANSSTRESS,EXSTRESS,SIG,NDIME,NDIMA,ANSTIME,EXTIME) 

 

IMPLICIT NONE 

INTEGER I,NDIMA,NDIME 

REAL ANSSTRESS(NDIMA),ANSTIME(NDIMA),EXSTRESS(NDIME),EXTIME(NDIME) 

REAL STRESSINTERP(NDIMA),WEIGHT(NDIMA) 

REAL SIG,NEGSIG,DIFFA,DIFFB,DIFFC,LCFFUNC,NLSTSQR 

 

!---------------------------------------------------------------! 

! FIRST, INTERPOLATE THE STRESS VALUES SO THEY CORRESPOND TO    ! 

! THE SAME TIME INDICES.                                        ! 

!---------------------------------------------------------------! 

 

CALL INTERP(ANSTIME,EXTIME,EXSTRESS,NDIMA,NDIME,STRESSINTERP) 

 

 

!---------------------------------------------------------------! 

! BEGIN WEIGHTING FUNCTION, FIRST INITIALIZING DIFFERENCE VALUES! 

! TO 0.                                                         ! 

!---------------------------------------------------------------! 

 

NEGSIG=SIG*-1 

 

DO I=1,NDIMA 

    IF (STRESSINTERP(I).LT.NEGSIG) THEN 

        WEIGHT(I)=2.5 

    ELSEIF (STRESSINTERP(I).GT.SIG) THEN 

        WEIGHT(I)=2.5 

    ELSE 

        WEIGHT(I)=1.0 

    ENDIF 

ENDDO 
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!--------------------------------------------------------------! 

! CALCULATE TOTAL LEAST SQUARES VALUE AND AVERAGE IT ACROSS THE! 

! NUMBER OF DATA POINTS USED.                                  ! 

!--------------------------------------------------------------! 

 

LCFFUNC=NLSTSQR(STRESSINTERP,ANSSTRESS,WEIGHT,NDIMA) 

 

RETURN 

 

END 
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APPENDIX C: HOOKE-JEEVES ALGORITHM SOURCE 

 

function hooke ( nvars, startpt, endpt, rho, eps, itermax, f )    

 

!*****************************************************************************8

0 

! 

!! HOOKE seeks a minimizer of a scalar function of several variables. 

! 

!  Discussion: 

! 

!    This routine find a point X where the nonlinear objective function  

!    F(X) has a local minimum.  X is an N-vector and F(X) is a scalar.   

!    The objective function F(X) is not required to be differentiable 

!    or even continuous.  The program does not use or require derivatives  

!    of the objective function.  

! 

!    The user supplies three things:  

!    1) a subroutine that computes F(X),  

!    2) an initial "starting guess" of the minimum point X,  

!    3) values for the algorithm convergence parameters.   

! 

!    The program searches for a local minimum, beginning from the     

!    starting guess, using the Direct Search algorithm of Hooke and   

!    Jeeves. 

! 

!    This program is adapted from the Algol pseudocode found in the 

!    paper by Kaupe, and includes improvements suggested by Bell and Pike, 

!    and by Tomlin and Smith. 

! 

!    The algorithm works by taking "steps" from one estimate of 

!    a minimum, to another (hopefully better) estimate.  Taking  

!    big steps gets to the minimum more quickly, at the risk of  

!    "stepping right over" an excellent point.  The stepsize is  

!    controlled by a user supplied parameter called RHO.  At each  

!    iteration, the stepsize is multiplied by RHO  (0 < RHO < 1),  

!    so the stepsize is successively reduced.  

! 

!    Small values of rho correspond to big stepsize changes,  

!    which make the algorithm run more quickly.  However, there  

!    is a chance (especially with highly nonlinear functions)  

!    that these big changes will accidentally overlook a  

!    promising search vector, leading to nonconvergence.  

! 

!    Large values of RHO correspond to small stepsize changes,  

!    which force the algorithm to carefully examine nearby points  

!    instead of optimistically forging ahead.  This improves the  

!    probability of convergence.  

! 

!    The stepsize is reduced until it is equal to (or smaller  

!    than) EPS.  So the number of iterations performed by  

!    Hooke-Jeeves is determined by RHO and EPS: 
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!  

!      RHO^(number_of_iterations) = EPS 

! 

!    In general it is a good idea to set RHO to an aggressively  

!    small value like 0.5 (hoping for fast convergence).  Then,  

!    if the user suspects that the reported minimum is incorrect  

!    (or perhaps not accurate enough), the program can be run  

!    again with a larger value of RHO such as 0.85, using the  

!    result of the first minimization as the starting guess to  

!    begin the second minimization. 

! 

!    Normal use:  

!    (1) Code your function F() in the C language; 

!    (2) Install your starting guess; 

!    (3) Run the program. 

! 

!    If there are doubts about the result, the computed minimizer  

!    can be used as the starting point for a second minimization attempt. 

! 

!    To apply this method to data fitting, code your function F() to be  

!    the sum of the squares of the errors (differences) between the  

!    computed values and the measured values.  Then minimize F()  

!    using Hooke-Jeeves.  

! 

!    For example, you have 20 datapoints (T(i), Y(i)) and you want to 

!    find A, B and C so that: 

! 

!      A*t*t + B*exp(t) + C*tan(t) 

! 

!    fits the data as closely as possible.  Then the objective function 

!    F() to be minimized is just 

! 

!      F(A,B,C) = sum ( 1 <= i <= 20 ) 

!        ( y(i) - A*t(i)*t(i) - B*exp(t(i)) - C*tan(t(i)) )^2. 

! 

!  Modified: 

! 

!    12 February 2008 

! 

!  Author: 

! 

!    ALGOL original by Arthur Kaupe. 

!    C version by Mark Johnson. 

!    FORTRAN90 version by John Burkardt. 

! 

!  Reference: 

! 

!    M Bell, Malcolm Pike, 

!    Remark on Algorithm 178: Direct Search, 

!    Communications of the ACM, 

!    Volume 9, Number 9, September 1966, page 684. 

! 

!    Robert Hooke, Terry Jeeves, 

!    Direct Search Solution of Numerical and Statistical Problems, 

!    Journal of the ACM, 
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!    Volume 8, Number 2, April 1961, pages 212-229. 

! 

!    Arthur Kaupe, 

!    Algorithm 178: 

!    Direct Search, 

!    Communications of the ACM, 

!    Volume 6, Number 6, June 1963, page 313. 

! 

!    FK Tomlin, LB Smith, 

!    Remark on Algorithm 178: Direct Search, 

!    Communications of the ACM, 

!    Volume 12, Number 11, November 1969, page 637-638. 

! 

!  Parameters: 

! 

!    Input, integer ( kind = 4 ) NVARS, the number of spatial dimensions. 

! 

!    Input, real ( kind = 8 ) STARTPT(NVARS), the user-supplied 

!    initial estimate for the minimizer.  

! 

!    Output, real ( kind = 8 ) ENDPT(NVARS), the estimate for the 

!    minimizer, as calculated by the program. 

! 

!    Input, real ( kind = 8 ) RHO, a user-supplied convergence parameter 

!    which should be set to a value between 0.0 and 1.0.  Larger values  

!    of RHO give greater probability of convergence on highly nonlinear  

!    functions, at a cost of more function evaluations.  Smaller      

!    values of RHO reduce the number of evaluations and the program  

!    running time, but increases the risk of nonconvergence.  

! 

!    Input, real ( kind = 8 ) EPS, the criterion for halting    

!    the search for a minimum.  When the algorithm    

!    begins to make less and less progress on each    

!    iteration, it checks the halting criterion: if   

!    the stepsize is below EPS, terminate the     

!    iteration and return the current best estimate   

!    of the minimum.  Larger values of EPS (such  

!    as 1.0e-4) give quicker running time, but a      

!    less accurate estimate of the minimum.  Smaller  

!    values of EPS (such as 1.0e-7) give longer   

!    running time, but a more accurate estimate of    

!    the minimum.             

! 

!    Input, integer ( kind = 4 ) ITERMAX, a limit on the number of iterations. 

! 

!    Input, external real ( kind = 8 ) F, the name of the function routine, 

!    which should have the form: 

!      function f ( x, n ) 

!      integer ( kind = 4 ) n 

!      real ( kind = 8 ) f 

!      real ( kind = 8 ) x(n) 

! 

!    Output, integer ( kind = 4 ) HOOKE, the number of iterations taken. 

! 

  implicit none 
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  integer nvars 

 

  real best_nearby 

  real delta(nvars) 

  real endpt(nvars) 

  real eps 

  real, external :: f 

  real fbefore 

  integer funevals 

  integer hooke 

  integer i 

  integer itermax 

  integer iters 

  integer j 

  integer keep 

  real newf 

  real newx(nvars) 

  real rho 

  real startpt(nvars) 

  real steplength 

  real tmp 

  logical, parameter :: verbose = .false. 

  real xbefore(nvars) 

 

  do i = 1, nvars 

    newx(i) = startpt(i) 

  end do 

 

  do i = 1, nvars 

    xbefore(i) = startpt(i) 

  end do 

 

  do i = 1, nvars 

    if ( startpt(i) == 0.0D+00 ) then 

      delta(i) = rho 

    else 

      delta(i) = rho * abs ( startpt(i) ) 

    end if 

  end do 

 

  funevals = 0 

  steplength = rho 

  iters = 0 

  fbefore = f ( newx, nvars ) 

  funevals = funevals + 1 

  newf = fbefore 

 

  do while ( iters < itermax .and. eps < steplength ) 

 

    iters = iters + 1 

 

    if ( verbose ) then 

 

      write ( *, '(a)' ) ' ' 
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      write ( *, '(a,i8,a,g14.6)' ) & 

      '  FUNEVALS, = ', funevals, '  F(X) = ', fbefore 

 

      do j = 1, nvars 

        write ( *, '(2x,i8,2x,g14.6)' ) j, xbefore(j) 

      end do 

 

    end if 

! 

!  Find best new point, one coordinate at a time. 

! 

    do i = 1, nvars 

      newx(i) = xbefore(i) 

    end do 

 

    newf = best_nearby ( delta, newx, fbefore, nvars, f, funevals ) 

! 

!  If we made some improvements, pursue that direction. 

! 

    keep = 1 

 

    do while ( newf < fbefore .and. keep == 1 ) 

 

      do i = 1, nvars 

! 

!  Arrange the sign of DELTA. 

! 

        if ( newx(i) <= xbefore(i) ) then 

          delta(i) = - abs ( delta(i) ) 

        else 

          delta(i) = abs ( delta(i) ) 

        end if 

! 

!  Now, move further in this direction. 

! 

        tmp = xbefore(i) 

        xbefore(i) = newx(i) 

        newx(i) = newx(i) + newx(i) - tmp 

      end do 

 

      fbefore = newf 

      newf = best_nearby ( delta, newx, fbefore, nvars, f, funevals ) 

! 

!  If the further (optimistic) move was bad... 

! 

      if ( fbefore <= newf ) then 

        exit 

      end if 

! 

!  Make sure that the differences between the new and the old points  

!  are due to actual displacements; beware of roundoff errors that  

!  might cause NEWF < FBEFORE. 

! 

      keep = 0 
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      do i = 1, nvars 

        if ( 0.5D+00 * abs ( delta(i) ) < & 

          abs ( newx(i) - xbefore(i) ) ) then 

          keep = 1 

          exit 

        end if 

      end do 

 

    end do 

 

    if ( eps <= steplength .and. fbefore <= newf ) then 

      steplength = steplength * rho 

      do i = 1, nvars 

        delta(i) = delta(i) * rho 

      end do 

    end if 

 

  end do 

 

  do i = 1, nvars 

    endpt(i) = xbefore(i) 

  end do 

 

  hooke = iters 

 

  return 

end 

 

function best_nearby ( delta, point, prevbest, nvars, f, funevals ) 

 

!*****************************************************************************8

0 

! 

!! BEST_NEARBY looks for a better nearby point, one coordinate at a time. 

! 

!  Modified: 

! 

!    12 February 2008 

! 

!  Author: 

! 

!    The ALGOL original is by Arthur Kaupe. 

!    C version by Mark Johnson 

!    FORTRAN90 version by John Burkardt 

! 

!  Reference: 

! 

!    M Bell, Malcolm Pike, 

!    Remark on Algorithm 178: Direct Search, 

!    Communications of the ACM, 

!    Volume 9, Number 9, September 1966, page 684. 

! 

!    Robert Hooke, Terry Jeeves, 

!    Direct Search Solution of Numerical and Statistical Problems, 

!    Journal of the ACM, 
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!    Volume 8, Number 2, April 1961, pages 212-229. 

! 

!    Arthur Kaupe, 

!    Algorithm 178: 

!    Direct Search, 

!    Communications of the ACM, 

!    Volume 6, Number 6, June 1963, page 313. 

! 

!    FK Tomlin, LB Smith, 

!    Remark on Algorithm 178: Direct Search, 

!    Communications of the ACM, 

!    Volume 12, Number 11, November 1969, page 637-638. 

! 

!  Parameters: 

! 

!    Input, real ( kind = 8 ) DELTA(NVARS), the size of a step in each 

direction. 

! 

!    Input/output, real ( kind = 8 ) POINT(NVARS); on input, the current 

candidate. 

!    On output, the value of POINT may have been updated. 

! 

!    Input, real ( kind = 8 ) PREVBEST, the minimum value of the function seen 

!    so far. 

! 

!    Input, integer ( kind = 4 ) NVARS, the number of variables. 

! 

!    Input, external real ( kind = 8 ) F, the name of the function routine, 

!    which should have the form: 

!      function f ( x, n ) 

!      integer ( kind = 4 ) n 

!      real ( kind = 8 ) f 

!      real ( kind = 8 ) x(n) 

! 

!    Input/output, integer ( kind = 4 ) FUNEVALS, the number of function 

evaluations. 

! 

!    Output, real ( kind = 8 ) BEST_NEARBY, the minimum value of the function 

seen 

!    after checking the nearby neighbors. 

! 

  implicit none 

 

  integer nvars 

 

  real best_nearby 

  real delta(nvars) 

  real, external :: f 

  real ftmp 

  integer funevals 

  integer i 

  real minf 

  real point(nvars) 

  real prevbest 

  real z(nvars) 
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  minf = prevbest 

 

  do i = 1, nvars 

   z(i) = point(i) 

  end do 

 

  do i = 1, nvars 

 

    z(i) = point(i) + delta(i) 

 

    ftmp = f ( z, nvars ) 

    funevals = funevals + 1 

 

    if ( ftmp < minf ) then 

 

      minf = ftmp 

 

    else 

 

      delta(i) = - delta(i) 

      z(i) = point(i) + delta(i) 

      ftmp = f ( z, nvars ) 

      funevals = funevals + 1 

 

      if ( ftmp < minf ) then 

        minf = ftmp 

      else 

        z(i) = point(i) 

      end if 

 

    end if 

 

  end do 

 

  do i = 1, nvars 

    point(i) = z(i) 

  end do 

 

  best_nearby = minf 

 

  return 

end 

 


