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Abstract. Stationary cracks along and near interfaces between two time-dependent materials are simulated using
the finite element method (FEM) to examine crack tip fields and candidate driving force parameters for crack
growth. Plane strain conditions are assumed. In some cases, a thin transition layer is included between the two
materials. This transition layer features a functionally graded blend of properties of the two materials. An example
of such a system is that of weld metal (WM) and base metal (BM) in a weldment, with the transition layer
corresponding to the heat-affected zone (HAZ). Numerical solutions for the stress and strain fields of homogen-
eous and heterogeneous Compact Tension (C(T)-type) specimens are presented. The equivalent domain integral
technique is employed to compute the J -integral for elastic-plastic cases as well as the C(t)-integral and transition
times for creep behavior. Results from parametric studies are curve-fit in terms of transition layer thickness and
crack position, inelastic property mismatches, and other independent model parameters. Results indicate that the
incorporation of functionally graded transition layer regions leads to less concentrated stress and strain components
along interfaces ahead of the crack tip. It is also shown that the computed fracture parameters are influenced by
the transition layer properties.
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Nomenclature

α = work hardening regression constant

δij = identity tensor

εij = strain tensor

ε̄ = effective strain

εo = reference strain

� = path of line integral

ν = Poisson’s Ratio

σij = stress tensor (MPa)

σ
′
ij = stress deviator (MPa)

σo = reference stress (MPa)

σ̄ = effective stress (MPa)
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σm = mean or hydrostatic stress (MPa)

A = Norton creep hardening coefficient (MPa−nhr−1)

a = crack size (mm)

B = C(T) specimen depth (mm)

BM = base metal region

C∗ = steady-state creep domain integral (MPa-mm/hr)

C(t) = Path-dependent creep domain integral (MPa-mm/hr)

E = elastic modulus (MPa)

e = weld line eccentricity (mm)

HAZ = heat-affected zone region

Im, In = integration constants

J = J -integral (MPa-mm)

KI = Mode I stress intensity factor (MPa-mm
1
2 )

Mp = mode mixity parameter

m = Ramberg-Osgood strain hardening exponent

n = Norton creep strain hardening exponent

P = applied load (N)

r = distance from the crack tip (mm)

t = transition layer thickness (mm)

tT = transition time in creep case (hr)

ui = displacement field

We = strain energy density (MPa)

W ∗ = strain energy rate density in creep case (MPa/hr)

W = C(T) specimen width (mm)

WM = weld metal region

1. Introduction

Several microstructural mechanisms influence creep deformation near the crack tip. When
polycrystalline materials, such as creep-ductile CrMoV steels, are exposed to elevated tem-
perature conditions, grain boundary sliding and void coalescence can lead to macroscopic
fracture. In temperature-resistant, directionally-solidified Nickel-base alloys, deformation is
due to the accumulation of time-dependent inelastic shear strains on preferred crystallographic
slip planes. Structures fabricated from these materials can include discrete or gradual property
variation, which necessitates the consideration of the interfacial fracture toughness.

Interfacial fracture mechanics developments cover a variety length scales and focus on
different material behavior regimes. The number of practical applications for interface fracture
analyses has proliferated over the last 15 years; however, usable results related to interfaces
with non-negligible yield zones and crack tip propagation are still limited. This is due to
the lack of understanding the fundamental relationships between interfacial crack tip driving
forces and structural attributes that resist these forces.
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The purpose of this investigation is to compare crack tip parameters of welded bimaterial
specimens with time-dependent mechanical properties. We assume that the cracked bodies
are subjected to remote loads that are opening mode-dominated. We consider bimaterial spe-
cimens with the crack either along or parallel to the interface. Material properties are varied
along with crack face-to-interface distance. Results are compared to the case of homogeneous
material specimens. We then discuss bimaterial fracture and creep problems in the presence of
a transition layer in the context of a weldment with a base metal (BM), weld metal (WM) and
heat-affected zone (HAZ), all with different plasticity and creep behaviors, but with matched
isotropic linear elastic behavior. Analysis of the stress, strain, and displacement fields near
the stationary crack tip permits assessment of the conditions for crack extension along the
interface as well as crack kinking.

2. Crack tip driving forces

2.1. HOMOGENEOUS CRACKED BODIES

Many bonded structural components are comprised of constituents with dissimilar material
properties. Several common examples are rock-concrete abutments at dam bases, chip-solder-
substrate structures in electronic interconnects, and welded pressure vessel and piping com-
ponents in elevated temperature power generation applications. Each of these applications
represents a situation in which failure due to interface fracture is a limiting consideration.

The solution of the homogeneous cracked body is well-documented (Bassani et al., 1981;
Hutchinson, 1968; Riedel and Rice, 1980; Rice, 1968; Saxena, 1998; Shih, 1974). Elastic,
elastic-plastic, or elastic-creep, solutions have been derived for elastic, elastic-plastic, or elastic-
creep conditions to describe the stress, strain, and displacement fields ahead of a crack tip. For
a Compact Tension (C(T)-type) fracture specimen of thickness B, size W , and initial crack
length a, the Mode I stress intensity factor is given by

KI = P

B
√

W
F

( a

W

)
, (1)

where F is the dimensionless geometric factor given by Tada et al. (1985). Of course KI still
applies to the case of small scale yielding at the crack tip. For large scale time-independent
yielding at the crack tip, the J -integral is defined by (Rice, 1968)

J =
∫

�

Wedy − Ti

∂ui

∂x
ds, (2)

where We = ∫
σij dεij . The J -integral corresponds to the rate of potential energy release due

to crack extension in an equivalent non-linear elastic body. Assuming that the inelastic strain
of the material obeys the Ramberg-Osgood law for work hardening for proportional loading,

εij = 1 + ν

e
σij − ν

E
σkkδij + 3

2
α

(
σ̄

σo

)m−1 σ
′
ij

E
, (3)

where E and ν are elastic constants, and α, σo, and m are power law plasticity constants.

The deviatoric and effective stresses are defined as σ
′
ij = σij − 1

3σkkδij and σ̄ =
√

3
2σ

′
ij σ

′
ij ,

respectively. The J -integral parameterizes the HRR stress and strain fields for small scale
yielding given as (Hutchinson, 1968)
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σij = σo

(
J

ασoεoImr

) 1
m+1

σ̂ I
ij (θ,m), ε

p

ij = αεo

(
J

ασoεoImr

) m
m+1

ε̂I
ij (θ,m), (4)

where εo is the reference strain, usually corresponding to the point of initial yield, Im is an
integration constant, r and θ are crack tip polar coordinates, and σ̂ I

ij and ε̂I
ij are angular-

dependent functions. Equation (4) is exact in the fully plastic limit and is approximately
correct for small-scale yielding.

For time-dependent material behavior, Landes and Begley (1976) and Nikbin et al. (1976)
independently proposed the C∗-integral as the analogous fracture parameter for extensive
steady state creep (EC) conditions, defined by

C∗ =
∫

�

W ∗dy − Ti

∂u̇i

∂x
ds, (5)

where W ∗ = ∫
σij dε̇ij . The C∗-integral, an extension of the J -integral, is used to describe the

crack tip fields under extensive creep deformation, i.e., steady state creep conditions must exist
throughout the entire body. Under a multiaxial stress state and steady state creep conditions,
the material is assumed to follow Norton’s creep law, i.e.,

ε̇ij = 1 + ν

E
σ̇ij − ν

E
σ̇kkδij + 3

2
Aσ̄ n

(
σ

′
ij

σ̄

)
(6)

The stress and strain rate fields near the crack tip are given as (Hutchinson 1968; Rice and
Rosengren, 1968)

σij =
(

C∗

AInr

) 1
n+1

σ̂ I
ij (θ, n), ε̇c

ij = A

(
C∗

AInr

) 1
n+1

ε̂I
ij (θ, n) (7)

Here, In is an integration constant based on the creep strain exponent, n, approximated under
plane strain conditions (Saxena, 1998). The angular dependent functions in each expres-
sion, ε̂I

ij and σ̂ I
ij , depend only on material property n and location around the crack tip, are

identical to those in Equation (4). To address the small scale, transient behavior prior to
reaching extensive steady state creep conditions, Bassani and McClintock (1981) introduced
the path-dependent crack tip singularity amplitude C(t)-integral

C(t) =
∫

�

lim
r→0

W ∗dy − Ti

∂u̇i

∂x
ds (8)

This expression is defined within the region where effective elastic strains are dominated by
the effective creep strains. This is true only very near the crack tip upon initial loading. Under
plane strain, KI -dominated small scale creep conditions (SSC), C(t) can be approximated by
(Ehlers and Riedel, 1991)

C(t) = K2
I (1 − ν2)

E(n + 1)t
(9)

Under EC conditions, C(t) becomes path-independent and equivalent to C∗. We may in-
terpolate between SSC and EC conditions to obtain the complete approximation (Saxena,
1998)

C(t) = K2
I (1 − ν2)

E(n + 1)t
+ C∗ (10)
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The transition from SSC to EC conditions is designated by the transition time, tT , and is
defined when C(t) is twice C∗. As such, the transition times for homogeneous models of the
base metal (BM), weld metal (WM), and heat-affected zone metal (HAZ) are denoted as tTBM,
tTWM, and tT HAZ , respectively. The divergence theorem was applied to Equations (2) and (8)
to obtain the domain integral formulations of J and C(t), i.e.,

J =
∫

A�

[−Weδ1j + σijui,1]q1,j dA�,C(t) =
∫

A�→0

[−Weδ1j + σijui,1]q1,j dA�, (11)

where q1 is an arbitrary smooth function equal to 1 at the crack tip and 0 at the boundary of
the domain enclosed by �, denoted by A�. Shih and coworkers (1986, 1987) introduced these
equivalent domain integrals for accurate, efficient determination of the J - and C(t)-integrals
using FE models.

2.2. HETEROGENEOUS CRACKED BODIES

In recent studies concerning cracks in bimaterial specimens/bodies (Biner, 1998; Burstow
et al., 1998; Francis and Rahman, 2000; Kim and Schwalbe, 2001; Liaw et al., 1989; Luo and
Aoki, 1992; Segle et al., 1998; Shih et al., 1991), the effects of mismatch of inelastic proper-
ties have been studied, with no elastic mismatch of constituents. As such, certain bimaterial
constants introduced by Dundurs (1969) vanish. This simplification is known as the zero-
β assumption. As a consequence, the pathologies associated with linear elastic bimaterial
interface cracks are removed; however, the techniques used to evaluate the crack tip driving
forces are identical.

Investigations have also been conducted for materials with mismatched yield properties
following the zero-β assumption. Luo and Aoki (1992) used boundary layer modeling to
demonstrate that differences in yield strength do not affect the r− 1

2 singularity of the near
tip fields under small scale yielding conditions, and the lower yield strength, lower work
hardening rate material controls the size of the crack tip plastic zone. This was also observed
in elastic bimaterials for which larger shear stresses occur in the weaker material. Hydrostatic
stresses are larger in this region as well. Kim and Schwalbe (2001) extended this analysis by
considering a transition region separating the two materials. This region has averaged mech-
anical properties of the other two regions. They used various fracture specimens in order to
introduce a framework for reliably assessing the life of in-service joined bodies with cracks in
the transition layer. They found that deformation is higher in the material with the lower yield
strength. For higher property mismatches and/or small transition regions, intense deformation
is confined to the lower strength material.

Francis and Rahman (2000) showed that the J -integral for base metal-weld metal-base
metal specimens typically fell in the range of the J -integral results for homogeneous spe-
cimens of base metal or weld metal. For very thin weld metal regions, fracture behavior
approached that of the homogeneous base metal. Conversely, for thick weld regions, con-
tributions of the base metal were minimal and the behavior was similar to the homogeneous
weld metal. They linearly interpolated the plastic portion of the J -integral results by using

Jp = c

(
a

W
,

t

1.2W
,χσ0 , χm

)
J BM

p +
[

1 − c

(
a

W
,

t

1.2W
,χσ0 , χm

)]
J WM

p , (12)

where J BM
p and J WM

p are the J -integrals for specimens with same geometry but composed of
only homogeneous base or weld metal, respectively. The interpolation factor, c, is based on
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geometric variables and property mismatch parameters χσ0 and χm, defined as the weld-to-
base metal ratio of any material property, for example χσo

= σoWM/σoBM . It was later shown
by Burstow et al. (1998) that the near tip stress fields are self-similar when normalized by
J/(tσ0WM), where t is the thickness of the weld strip and σ0WM is the yield strength of the
weld material.

For elastic-plastic interfaces exposed to dominantly opening mode loading, the near tip
stress fields resemble those of the homogenous analogy under mixed mode conditions given
as

σij = σo

(
J

ασoεoImr

) 1
m+1

σ̂ (θ,Mp,m) (13)

The angular-dependent function in this case is parameterized by the plastic mode mixity factor,
Mp (Shih, 1977), defined by

Mp = 2

π
tan−1

(
σxy

σyy

)
r→0

(14)

Luo and Aoki (1992) predicted fracture toughness of ductile interfaces using a modified
Gurson model to predict initial void volume growth and coalescence based on angular dis-
tributions of the hydrostatic and effective stresses. Other micromechanically-based interfacial
studies have used a modified Rice-Tracey (R-T) model for spherical void growth (Rice and
Tracey, 1969).

2.3. APPLICATION TO WELDMENTS

To relate discussions of a bimaterial interface with a graded transition layer to a physical
problem, we consider a weldment as a model system. Weldments are fabricated via high
temperature fusion processes. Fused zones influence the strength of the structure. Tailoring the
properties in this region minimizes fabrication-induced crack-like flaws and residual stresses
and maximizes fracture toughness. Microstructural variation among bodies manufactured with
this process causes substantial variability of fracture and creep crack growth (CCG) behavi-
ors. To reduce this variation, reheating and annealing processes are incorporated. Modern
fabrication techniques have enhanced control over material arrangement and properties.

Research on weldments has often focused on creep-ductile CrMoV alloys, since fracture
specimens can be readily machined from ex-service steam pipe sections. These specimens
are subsequently used for CCG and fracture toughness test. For example, Liaw et al. (1989)
determined the CCG rates for fused base-weld metal specimens and homogeneous weld metal
specimens. CCG rates in creep ductile materials have been well characterized by Ct , intro-
duced by Saxena (1986). In cases where the applied KI is small, the crack growth rates for
fused materials are greater than the weld material for the same KI . However, when the load
is increased, these rates tend to become similar. Large variability in the fracture toughness of
heterogeneous specimens was observed. This motivated the need to understand the driving
force at the interface. Shih and coworkers addressed this by analyzing the stresses along
interfaces in weldment models. This work and subsequent studies (Shih et al., 1991; Shih
and Asaro, 1988, 1989; Shih et al., 1993) predicted crack kinking in the direction along the
interface of the transition layer and the neighboring material that is more strain compliant –
typically the weld metal.
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Figure 1. C(T)-type specimen geometry. (a) Rendering of the numerical heterogeneous bimaterial fracture spe-
cimen of HAZ thickness, t , and crack plane eccentricity, e, (measured from the crack plane to the center of the
HAZ) and (b) a finite element mesh used in the current investigation.

As shown in Figure 1a, heterogeneous models can incorporate realistic attributes of fracture
specimens sectioned from ex-service structures, including the Heat-Affected Zone (HAZ),
crack eccentricity, and crack plane-interface angle. Along with obtaining the stress and strain
fields at the crack tips of these specimens, some studies predicted initial CCG rates with cavity
growth models. Similar to elastic-plastic interface studies, Segle and coworkers (1998) used
the modified R-T model (Rice and Tracey, 1969), a creep ductility-based damage relation, to
predict initial void link up along the interface. Biner (1998) attempted to predict the crack
growth rates in a similar fashion by using a coupled creep deformation and diffusion model
developed by Tvergaard (1984). The growth rate of the first cavity ahead of the crack tip
was affected by the thickness and the properties of the transition layer. Within the bimaterial
structure, the void growth rate is much faster in the lower stiffness material. Because of the
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Figure 2. Resulting microstructure around the weld due to back-welding of the base metal (BM).

severe non-proportional loading history experienced at the crack tip, however, their results
should only be used for qualitative purposes.

Most time-dependent interfacial fracture studies suggest that void growth and CCG rates
are expected to be much higher in bimaterials compared to cracked bodies. Mathematical
prediction models for interface crack tip fields in realistic time-dependent materials have not
been developed, we extend previously developed techniques to determine fracture parameters
of cracks on or near distinct or graded bimaterial interfaces.

3. Numerical simulations

Most existing experimental and analytical results describing fracture parameters and crack
tip stress-strain fields are derived using C(T)-type specimens, shown in Figure 1. Although
not employed in this study, alternative specimen designs have been used in similar investiga-
tions. Examples are the Single-Edge Notched (SEN) specimens (Biner, 1998) and boundary
layer formulations (Burstow et al., 1998). The only geometric differences between the experi-
mental C(T)-specimen and our numerical rendering are the 5%W gap used to create the initial
notch and the side groove reduction introduced to assist fatigue pre-cracking in laboratory
specimens. Our investigation focuses on structures in which the length scale of inelastic
deformation at the crack tip is smaller than the thickness of the specimen. This condition
is sufficient for plane strain conditions. The far right point of the ligament line on the crack
plane was fixed in the y-direction, while the centers of each of the elastic load pins were fixed
in the x-direction. This study restricts the specimen size to W = 25.4 mm (1.0 in), and crack
size to a = 12.7 mm (0.5 in). The thickness is B = 6.35 mm (0.25 in). For the time-dependent
cases the ambient temperature is taken to be T = 538 ◦C. The model geometry is shown in
Figure 1b.

Most previous bimaterial fracture models address two distinct perfectly-bonded, isotropic,
homogeneous constituents, with the initial crack being coplanar with the interface. The nu-
merical models employed in this study are extensions of those used for the homogeneous case
with several modifications. In a typical weldment, models are composed of two bonded homo-
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genous, isotropic materials, each occupying either the region above or below the crack plane;
however, in cases featuring a HAZ, a graded transition layer is introduced in a region between
the homogeneous weld and base metal regions. A weldment that features this type of structure
is shown in Figure 2. Two types of loadings configurations were assumed. Each caused either
elastic-plastic or elastic-creep crack tip conditions. The material properties corresponding to
the material models given in Equations (3) and (6) are given in the next section.

4. Results

4.1. FRACTURE PARAMETERS

Elastic-plastic and elastic-secondary creep behavior models are employed in this study. Slight
variations of the parent or base metal (BM) inelastic properties are assumed for the weld
(WM), while the HAZ metal was modeled with average properties of the weld and base metals.
In every case the elastic properties are identical. Under elastic-plastic conditions given in
Equation (3) 2

1
4 CrMoV steel is used as the BM and has the following room temperature

properties:

E = 175 Gpa, ν = 0.3, σ0 = 168 MPa, α = 2.2, m = 5 (15)

At T = 538 ◦C, elastic-secondary creep conditions given in Equation (6) are assumed, and
the material constants for the BM are given as

E = 160 GPa, ν = 0.3, A = 2.0 × 10−17 MPa−nhr−1, n = 4.7 (16)

The material property mismatch, χM , is defined as the weld-to-base metal ratio of any
material property M, for example χA = AWM/ABM = 10. In many of the cases studied here,
the WM is more strain compliant than the BM; we say in this case that the properties are un-
dermatched in the sense of strength. The converse case is overmatched. Property mismatches
are varied concurrently with the thickness of the HAZ, t and the eccentricity or distance of
the crack plane from the center of the HAZ, e. For positive eccentricity the crack tends to be
embedded within the WM, whereas for increasing negative eccentricity, the crack tends to be
embedded in the BM, depending on the thickness of the HAZ. In Figure 1, the eccentricity
shown is negative since the crack lies in the BM. If e = t = 0, there is no HAZ and the crack
lies on the WM-BM interface. If e �= 0 but t = 0, the crack runs through the middle of the
HAZ.

Visualizations of the time-dependent effective stress fields in creep were obtained for a
variety of models. Some are illustrated in Figure 3. Elastic matching results in initially sym-
metric crack tip stress fields in all cases, but the steady state effective stress distribution for
creep is non-symmetric across the interface due to the inelastic property mismatch and a near-
tip shear stress exists near the crack plane. The magnitude of this shear stress is larger in the
more inelastically compliant material (i.e., the HAZ and/or the WM region). Generally, the
variation of effective stress across the interface increases with higher mismatch of inelastic
properties. The accumulation of creep strain in the direction of the applied load (vertical-axis)
is shown in Figure 4.

Figure 5 presents the singularity amplitude C(t) normalized by the steady state creep amp-
litude C∗ for the homogenous BM case under steady state creep conditions, labeled as C∗

BM,
for several inelastic mismatch combinations in bimaterial models. In Figure 5, the eccentricity
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Figure 3. Effective stress distribution in C(T)-specimens under creep conditions at T = 538 ◦C; (row 1) homo-
geneous base metal (BM), (row 2) bimaterial (BM-WM), (row 3) weldment with blended HAZ, (row 4) weldment
with functionally graded HAZ, and (fifth row) eccentric bimaterial speciments. Each weldment specimen features
an inelastic mismatch of χA = 100 and χn = 1. For each specimen, the effective stress field is shown at various
times: (column 1) t � tTWM , tTBM , (column 2) t ≈ tTWM , (column 3) t ≈ tTBM , and (column 4) t 	 tTWM , tTBM .
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Figure 4. Opening mode creep strain distribution in C(T)-speciments under creep conditions at T = 538 ◦C:
(row 1) homogeneous base metal (BM), (row 2) bimaterial (BM-WM), (row 3) weldment with blended HAZ,
(row 4) weldment with functionally graded HAZ, and (fifth row) eccentric bimaterial speciments. Each weldment
specimen features an inelastic mismatch of χA = 100 and χn = 1. For each specimen, the effective stress field is
shown at various times: (column 1) t ≈ tTWM , (column 2) tTWM < t < tTBM , and (column 3) t ≈ tTBM .
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Figure 5. C(t)-integral for various bimaterial models (e = t = 0) with inelastic mismatches in strain hardening
coefficient, A, and exponent, n. T = 538 ◦C for each case.

and HAZ thicknesses are both zero, so this is a true bimaterial crack model (e = t = 0).
Curves for each of the equivalent domain integrals resemble the shape of the homogeneous
BM case. For cases in which χA = 10, the predicted steady state domain integrals are at least
two times those of the other cases. For cases where the WM is more creep compliant than the
BM (i.e., χA > 1.0), the transition time between small scale and steady state creep conditions
is higher than for χA < 1.0. For each of the material mismatch cases for bimaterials, the
resulting J and C∗ predictions were observed to nearly follow the geometric mean of the
corresponding J and C∗ values of the two material constituents in the homogeneous case.

For increasing e and with t = 0 (no HAZ), the crack plane is distanced further from
the interface. The crack tip is more deeply embedded within the weld metal, and J and C∗
converge to JWM and C∗

WM, respectively. The results of the elastic-plastic bimaterial models
are normalized by the J -integral for the homogenous base metal case, JBM, and are shown
in Figure 6. This convergence behavior is also observed for models with heat affected zones.
Figure 7 illustrates elastic-plastic weldment models with a transition layer or HAZ of various
levels of thickness, with e = 0. In this case, the properties of the HAZ are median properties
of the WM and BM. The domain integral values exponentially approach JHAZ and C∗

HAZ , re-
spectively, as t increases. By increasing t or e, the discontinuous material property boundaries
are further separated from the crack plane. In other words, the degree of homogeneous material
near the crack tip along the path increases with increasing t or e. Crack tip stress, strain and
displacement fields become increasingly similar to those of the corresponding homogenous
HRR field. As a result, the crack tip driving force parameters approach those of the respective
homogeneous cases.
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Figure 6. Variation of the J -integral with crack plance eccentricity for various plastic material property mis-
matches at room temperature. For each case, there is no HAZ, i.e., t = 0. The BM properties are identical in each
model: as e decreases, J/JBM approaches unity.

Figure 7. Variation of the J -integral with transition layer thickness for various plastic material property mis-
matches at room temperature. For each case, the initial crack plane is along the centerline of the HAZ, i.e.,
e = 0.
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The resulting variation of the parameters for the graded bimaterial for e = 0 can be related
via a simple power law expression. Generally, the fracture parameters can be approximately
fit with the exponential form

J

C∗

}
= b(χ) exp

(
−D(χ)

1

1.2W

)∣∣∣∣∣
e=0

, (17)

where b and D are obtained via regression analysis. Function b takes on units of the fracture
parameters, J (MPa-mm or J/mm2) or C∗ (MPa-mm/hr or J/mm2-hr), while D is dimension-
less The parameter b is usually bounded by the values of the fracture parameters that pertain
to the identical crack in each of the homogeneous constituents of the bimaterial pair, i.e.,

b ∈ [{
JBM, C∗

BM, tTWM

}
,
{
JWM, C∗

WM, tTBM

}]
(18)

Here, tTBM and tTBM are the transition times from small scale to extensive steady state creep
conditions in homogeneous WM and BM specimens, respectively. Moreover, b in the case
t > 0 is close to the geometric mean of the fracture parameters for the homogeneous bodies,
i.e.,

b ≈ √
JBMJWM or b ≈ √

C∗
BMC∗

WM (19)

Also, tT ≈ √
tTBM tTBM . If interested in the limiting range t → 0, we can quantify b based on

the results of the trivial bimaterial model.
If a relation with respect to crack plane eccentricity is sought without a HAZ (t = 0), then

the form of Equation (17) can be slightly altered and t can be replaced with e in, i.e.,

J

C∗

}
=

(
be(χ) + ce(χ) tanh

[
de(χ)

e

1.2W

])∣∣∣∣∣
t=0

(20)

4.2. BIMATERIAL INTERFACES

In weldments, grading of mechanical properties arises from the fusion process. During weld-
ing, contact between the liquefied weld metal and the base metal leads to partial melting of
the base metal. This back-welding of BM allows some intermingling of the two materials and
columnar grain coarsening. This process inherently creates a new material section known as
the heat-affected zone. The thickness of this region is controlled by weld temperature, weld
time, and other factors. Historically, fracture investigators assume homogeneity of the HAZ
and apply a quasi-‘rule of mixtures’ to obtain these properties. We denote these cases as
‘median’ models since the intermediate layer has material properties that are a simple blend
of the neighboring materials, as shown in Figure 8a.

Some fracture studies more accurately depict weldments by grading material properties
through the transition layer; however, they limit consideration typically to linear property
variation. Spatial dependence of yield strength properties is incorporated in only a very small
number of studies. In this study, we grade the hardening coefficients and exponent of the HAZ.
It is reasonable to assume that the material behavior at each of the HAZ boundaries must
match those of the homogeneous weld and base metals. We replace sharp property variations
with continuous functions, as depicted in Figures 8b and 9. Micro-hardness tests of welded
specimens show that the variation in Vickers hardness changes nearly linearly between base
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Figure 8. Prescribed spatial dependence for strain hardening coefficients for functionally graded (FG) and
‘median’ HAZ region. χA = 100, χn = 1 and t/1.2W = 0.15, and e = 0 for each case.

and weld metal regions (Miyazaki et al., 1993). This corresponds to linear yield strength
variation through the HAZ, ranging from BM to WM properties at each respective interface.
These indentation profiles can be combined with the Ramberg-Osgood power law expression
to indicate that the strain hardening coefficient varies exponentially across the HAZ under
the assumption that the strain hardening exponent is fixed. This argument is extended here
to model a gradient of the creep coefficient, AHAZ(y), assuming that the creep exponent is
fixed through the HAZ; such models have been simulated under identical boundary conditions
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Figure 9. Inelastic material property spatial variation in functionally graded transition layers. For each case, e = 0.

Table 1. Resultant fracture parameters for homogeneous, bimaterial, and weldment
models. χA = 100 and χn = 1 where applicable. For each case, e = 0.

Normalized transition Normalized C∗-Integral,

Model Description Time, tT /tTBM C∗/C∗
BM

Homog. Base Metal 1.000 1.000

Homog. Weld Metal 0.010 100.000

Homog. HAZ Metal 0.100 10.000

Bimaterial (No Haz) 0.022 45.965

Median HAZ 0.033 29.452

FG Linear HAZ 0.037 25.994

FG Exponential HAZ 0.053 18.386

FG Continuous HAZ 0.049 19.135

and intermediate thickness levels. Figure 10 shows the resulting C(t)-integral of models with
HAZs. These are normalized by the C∗-integral for the BM homogenous case under steady
state creep conditions, C∗

BM. The value of C∗ is lower for cases with functionally graded
intermediate layers than median property models. Table 1 summarizes this trend.

Recall that median HAZ properties correspond to direct averages of properties of the WM
and BM materials. When the thickness t of the HAZ is decreased, the graded and median
model predictions converge. This is shown in Figure 11. Conversely, as the thickness increases
these diverge. The C∗ value is always lower in cases with functionally graded HAZ layers than
for median property models.
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Figure 10. Comparison of C(t)-integral results for models with various functionally graded (FG) HAZ sections
under creep conditions at T = 538 ◦C. χA = 100, χn = 1, and e = 0 for each case.

4.3. MODE MIXITY

Cracks propagate along a path of least material resistance for a given crack driving force.
This observation is critical since cracks in practical applications are seldom exposed to purely
Mode I loading conditions. Moreover, the nature of bimaterial crack tip stress fields is inher-
ently of mixed mode character. Mixed mode conditions in the presence of stress triaxiality
lead to crack bifurcation and/or kinking. Numerous criteria attempt to correlate mixed mode
crack propagation behavior found from fracture experiments to stress, strain, or displacement
fields obtained from finite element models.

The traction experienced at a crack tip in a bimaterial interface crack between linear elastic
constituents can be described by a set of local solid phase angles. Each of these quantities
represents the ratio of in-plane shear-to-normal tractions and out-of-plane shear-to-normal
tractions, i.e.,

tan ψ = �{Kriε}
�{Kriε} , cos φ = KIII√

|K|2 + K2
III

, (21)

where K is the complex stress intensity factor. For Mode I loading of an elastic bimaterial,
the in-plane crack tip mode mixity parameter, phase angle ψ , is uniquely described by ε, the
bimaterial constant given by Williams (1959). The out-of-plane phase angle, φ, is irrelevant in
two-dimensional analyses. In the case of a stationary creep crack, these phase angles pertain
only in the limit of short times after initial loading, i.e., t → 0+.

Subsequent investigations applied ψ to predict the fracture energy and the direction of
crack extension in bimaterial problems under small-scale yielding (SSY) conditions for which
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Figure 11. Dependence on HAZ thickness under creep conditions at T = 538 ◦C of (a) C∗-integral and (b)
transition time. For each case, E = 0.
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the crack tip is constrained by a linear elastic field. Under SSY conditions and for elastically
matched models, the in-plane local phase angle, ψ , is proportional to the plastic mode mixity
parameter, Mp, defined in Equation (14). Shih (1974) showed that the mixed-mode HRR
fields for cracks in homogeneous elastic-plastic materials are parameterized by Mp under SSY
conditions. Since Mp can be directly linked to ψ for the elastic and SSY cases, but can also
provide meaningful information for arbitrary nonlinear material behavior under large scale
yielding, we use Mp here, computed at a distance r/W = 0.004 directly ahead of the crack
tip. Correlations of these crack tip parameters to crack propagation trajectories can only be
made in connection with analogous experiments.

Elastically matched cases (EWM = EBM and νWM = νBM) for bimaterial interface cracks
subjected to remote Mode I conditions exhibit no shear along the crack plane in the absence of
plasticity or creep deformation. As such, Mp = 0. Conversely, when the material constituents
on either side of the crack are not elastically matched, significant crack plane shear is present
upon initial loading and non-zero Mp is always obtained. This phenomenon occurs for any
type of nonlinear material behavior. Li et al. (1988) showed that the singular crack tip fields for
stationary cracks subjected to remote Mode I conditions are of mixed mode character and the
magnitude of the shearing mode contribution increases with increase of property mismatch.

The transition times of stationary cracks in elastically matched bimaterials with distinct
creep properties lie between those of the base and weld metals, tTWM and tTBM. The near-tip
mode mixity during this transient behavior is reflected by Mp for models with transition layer
thickness, t , that make use of blended, functionally graded material properties. The gradient
function used throughout the remainder of this study is the exponential relation shown in
Figure 8b.

Since the weld material occupies the upper region in the cracked specimen model, positive
local Mp indicates that the crack is likely to grow towards the more creep strain compliant
constituent, the WM in this case. This is a recurring result for each simulation. In Figures 12
and 13, models with a finite HAZ thickness predict local Mp values that favor crack bifurcation
in the direction of the weld metal. Modeling weldments with ‘median’ HAZs lead to lower
values of shear stresses near the crack tip. When the fracture specimen is simulated with
a graded section of some specified thickness, Mp is increased. Once extensive steady state
creep conditions (EC) are reached in the base metal, Mp becomes constant.

This procedure is repeated for specimens that feature eccentrically located cracks. Fig-
ure 14 indicates that for any level of eccentricity, the local Mp is positive. When the crack is
located within the BM (e < 0), Mp increases by at least a factor of two and saturates at times
closer to tTBM. The level of the mismatch also influences Mp, as shown in Figure 15.

5. Conclusions

By conducting a parametric study of stationary cracks subjected to non-linear and time-
dependent material behavior, the influence of the crack plane-to-interface distance on the
crack tip driving forces was studied. Transition layers between bimaterials have been included
in this work; it was demonstrated that the severity of the stress and strain fields ahead of the
crack tip and along the interface is reduced relative to the distinct bimaterial interface case.
By computing a near tip mode mixity factor Mp, we infer the likelihood of crack bifurcation
direction.
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Figure 12. Convergence of mode mixity parameter Mp for models under creep conditions at T = 538 ◦C for
cases with (a) median HAZs and (b) functionally graded HAZs. χA = 100, χn = 1, and e = 0 for each case.
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Figure 13. Mode mixity parameter Mp for mismatched models under extensive steady state creep conditions (EC)
at T = 538 ◦C for cases with (a) χA = 100, χn = 1 and (2) χtT = 0.0014. For each case e = 0.

Figure 14. Convergence of mode mixity parameter Mp for eccentric models under creep conditions at
T = 538 ◦C. χA = 100, χn = 100, and t = 0 for each case.
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Figure 15. Mode mixity parameter Mp for mismatched models under extensive steady state creep conditions (EC)
at T = 538 ◦C. For each case t = 0.

In addition to material properties, crack location relative to interfaces and width of a trans-
ition layer of intermediate properties both have an effect on the evolution and steady-state
values of the asymptotic stress and strain fields near the crack tip. They affect the approxima-
tion of the fracture parameters J , C∗, and tT , and the local mode mixity parameter, Mp. From
the parametric analysis of several inelastic property mismatches for various crack plane-to-
interface geometries, the behavior of the near-tip stress fields and crack tip parameters have
been examined. Regardless of the type of material mismatch, the variation of the driving force
parameters J and C∗ across a range of transition layer thickness or eccentricities can be curve
fit, as can the transition time from small scale to extensive, steady state creep of cracked
specimens. The predicted parameters are typically bounded by those of the same crack in
each of the homogenous constituents. For trivial, perfect bimaterial cases, the fracture para-
meters approximately follow the geometric mean of those of the same crack in homogeneous
constituents. Variation in either the eccentricity or the thickness of the transition layer (e.g.
the weldment interface(s) is moved farther away from the crack tip) facilitates noteworthy
variations in the stress and strain fields. The predicted behavior begins to approximate homo-
geneous behavior of the base or weld metal as the transition layer thickness increases. Our
results are consistent with these limiting behaviors.

The mode mixity parameter Mp exhibits slight changes with respect to specimen dimen-
sions and material property mismatch as well; Mp predicts the maximum Mode I direction
along the crack plane for cracks in homogeneous bodies with remote Mode I loading. For
the eccentric and HAZ thickness cases studied, crack bifurcation (if cracks were allowed
to propagate) is indicated towards the more compliant of the constituents. Effective stress
disparities at graded interfaces are smaller than those for blended interfaces. These correspond
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to estimates of fracture parameters J , C∗, or, tT , that are closer to the geometric mean of the
bimaterial analogy (a WM-BM model).

The near tip shear stresses, which can cause crack tip bifurcation in perfect bimaterial case,
are generally reduced for the eccentric crack. We can propose how a crack might propagate in
a weldment by considering a range of bimaterial cases with various e values and initial crack
lengths. Consider, for example, an interface crack (e = 0) with length a, and inelastic property
mismatch χM . Experiments involving elastic-plastic materials show that the crack is likely to
extend into the more plastic strain compliant material (Shukla, 2001; Sorensen and Horsewell,
2001; Varias et al., 1999), thus creating a kinked crack. Crack tip mode mixity decreases when
the interface is further away from the initial crack plane, so the near tip behavior resembles
that of homogeneous crack tip conditions. Eccentric crack models showed decreased crack
tip mode mixity relative to the non-eccentric case. As a consequence, the mixed mode crack
tip stress fields that have promoted crack kinking from the interface may relax and cause the
crack to turn and meander parallel to the interface. Ultimately, this must be supported by crack
propagation analyses and experiments.

These results for J and C∗ can be combined with fracture toughness (material resistance)
properties to predict CCG rates; as a caveat, future numerical studies should incorporate
propagation along a direction that is controlled by the evolution of the near tip stress and strain
fields. Since no generalized analytical solution exists for the variation of the stress, strain, and
displacement fields near the interface crack tip for time-dependent creep conditions, the results
of this study can only be confirmed and extended by performing growing crack analyses and in
connection with experiments. Once solutions of J and C∗ are made from load-line deflection
results obtained from growing crack analyses or experiments carried out with the identical
conditions as the models presented in this study, the crack tip parameters that were developed
here can be correlated with crack growth rates.
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