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ABSTRACT

Constitutive modeling has proven useful in providing accu-
rate predictions of material response in components subjected to
a variety of operating conditions;, however, the high number of
experiments necessary to determine appropriate constants for a
model can be prohibitive, especially for more expensive mate-
rials. Generally, up to twenty experiments simulating a range
of conditions are needed to identify the material parameters for
a model. In this paper, an automated process for optimizing
the material constants of the Miller constitutive model for uni-
axial modeling is introduced. The use of more complex stress,
strain, and temperature histories than are traditionally used al-
lows for the effects of all material parameters to be captured us-
ing significantly fewer tests. A graphical user interface known as
uSHARP was created to implement the resulting method, which
determines the material constants of a viscoplastic model us-
ing a minimum amount of experimental data. By carrying out
successive finite element simulations and comparing the results
to simulated experimental test data, both with and without ran-

*Address all correspondence to this author.

Erik A. Hogan
Department of Mechanical, Materials
and Aerospace Engineering
University of Central Florida
Orlando, FL 32816

Ali P. Gordon
Department of Mechanical, Materials
and Aerospace Engineering
University of Central Florida
Orlando, FL 32816

dom noise, the material constants were determined from 75%
fewer experiments. The optimization method introduced here
reduces the cost and time necessary to determine constitutive
model constants through experimentation. Thus it allows for a
more widespread application of advanced constitutive models in
industry and for better life prediction modeling of critical compo-
nents in high-temperature applications. Keywords: constitutive
modeling, optimization, viscoplastic

1 INTRODUCTION

Constitutive modeling is a field of engineering mechanics
that has received considerable research attention over the past
several decades, with much focus on the development of unified
constitutive models. Recent advances in computer processing
speed have enabled the implementation of these models into fi-
nite element analysis (FEA) software applications such as AN-
SYS and ABAQUS, yielding accurate and cost-effective predic-
tions of stresses and strains in structural components under a
non-generic variety of operating conditions, such as creep, fa-

Copyright (© 2010 by ASME

Downloaded From: http://proceedings.asmedigital collection.asme.or g/ on 08/05/2015 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



tigue, and thermal-mechanical fatigue. Under these conditions,
certain alloys display inelastic behavior in the form of coupled
creep and plasticity, commonly referred to as viscoplasticity. A
variety of material models has been developed to correlate with
mechanical test data. For this research, the Miller unified consti-
tutive model [1] will be used to run simulations using the AN-
SYS general purpose FEA software. The purpose of the research
is to develop a robust method of parameter determination, using
a minimum number of experimental tests, which can be easily
applied to many different types of viscoplastic constitutive mod-
els.

Traditional methods for step-by-step parameter determina-
tion require data from upwards of twenty experimental tests
[2-4]. Often, a large amount of data is needed in order to de-
termine only a portion of the total number of material constants.
One test type used for parameter determination is a low cycle
fatigue test; these tests are typically run until stress saturation
occurs, sometimes approaching one hundred cycles [5]. Typi-
cally, combinations of creep, low cycle fatigue, and tensile data
at various temperatures are used for material constant determina-
tion.

Numerical methods for parameter determination have been
presented in previous studies, e.g., [6-8]. The optimization
scheme presented here differs from these in that it is not specific
to any particular constitutive model or experimental test matrix.
Furthermore, it allows consideration of multiple experiments in
determination of material constants, leading to broader applica-
bility of the resulting model and drastically reducing the amount
of experimental data needed to determine inelastic constitutive
model parameters. For these reasons, it has the potential to re-
duce both monetary costs and time required to implement ad-
vanced constitutive models in industry. Thus it may allow for
more accurate preliminary design of critical components, reduc-
ing the need for expensive design modifications as product de-
velopment progresses.

1.1 Background

Viscoplastic constitutive modeling is an important technique
used in the design of components in high temperature applica-
tions, such as in turbine engines [5]. These material models allow
design engineers to predict stresses and strains in critical compo-
nents using finite element analysis software. The results of such
preliminary analyses allow for the optimization of shape geom-
etry to improve factors of safety and reduce high stress concen-
trations. Finite element modeling can also be used to determine
properties which allow for reasonable life prediction of compo-
nents subject to a combination of cyclical loading and temper-
ature cycling. The Miller model was designed for use in high
temperature applications, and is capable of reasonably predicting
material behavior under such conditions [1,4]. Furthermore, the
Miller constitutive model was extended to a multiaxial formu-

lation for more complex geometries and loading conditions [9].
Unfortunately, the use of advanced constitutive models is limited
by the large amount of experimental data needed to determine
material constants contained in the model and the often tedious
step-by-step procedure used to determine these constants. This
has confined the field of advanced constitutive modeling primar-
ily to the realm of academia, rather than to widespread practical
application in industry.

1.2 The Miller Unified Constitutive Model

The Miller model is most useful for predicting the behav-
ior of materials in high temperature applications and is capable
of modeling a wide range of material behavior including time-,
rate-, and history-dependence. As a unified constitutive model,
both creep and plastic strain are combined under the moniker of
inelastic strain. The Miller model is convenient to use due to
its low number of material constants and its ability to accurately
simulate a range of material behavior. There are difficulties in
application of the Miller model, however. The formulation of
the model includes three hyperbolic sine functions, as shown in
Egs. 2. As a result, numerical simulation of the Miller model
is computationally expensive [5] Furthermore, the model is only
capable of reasonably predicting behavior of materials that work-
harden considerably [1]. This limits its applicability to certain
classes of materials, such as steels.

The theory used in the derivation of the Miller model limits
its application to alloys that work-harden considerably, such as
aluminum alloys and steels [1]. More specifically, the model
focuses on the effects of two particular types of hardening:
isotropic and kinematic. These two phenomena reflect changes
in material strength with respect to deformation history. Isotropic
hardening implies that material strength remains constant in all
directions. For example, straining a material specimen in the ten-
sile direction will strengthen it both in the tensile and compres-
sive directions. Kinematic hardening, on the other hand, reflects
different material strengths with respect to different orientations
in a material. For example, straining a specimen in the tensile di-
rection may strengthen it in the tensile direction but weaken it in
the compressive direction [1]. These effects are accounted for in
the strain rate equation. Essentially, the model predicts that the
strain rate of a material under loading is a function of the differ-
ence between the applied stress (6) and the kinematic hardening
variable, divided by the isotropic hardening variable. Kinematic
hardening and isotropic hardening are denoted by the scalar vari-
ables R and D, respectively, in the basic strain rate equation

e=f(=5-). (1)

In this formulation, the variables R and D take the forms of in-
ternal state variables (ISVs) which describe the internal state of
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the candidate material. Even though these so-called ISVs cannot
typically be measured through direct observation, they are neces-
sary to describe the nature of the microstructure and its evolution.
Since the values of R and D change during the deformation his-
tory of a material, equations are needed to model the behavior of
these two factors. These equations are not solely dependent on
the strain or strain rate, but rather depend on the entire previous
deformation history [1]. It is through the evolution of R and D,
called the back stress and drag stress respectively, that viscoplas-
tic effects are captured by the Miller model.

In order to derive a useful function for the strain rate, steady
state creep data were used as a starting point. Equations for the
evolution of R and D were developed using warm working and
work-hardening theory. The end result is the following set of
three differential equations that are capable of predicting both
steady state and transient material behavior [1]:

RIS
¢ = BO'sinh” [(IGD |) ].sgn(G—R)

R=H, (¢ B0'sinh"(A; |R]) - sgn(R))
. A
D=H, {s| <C2 +|R| — (A2> D3> —C,B0'sinh” (A,D%) | .
1
2)

The ' term is the only temperature-dependent factor in the
Miller model. Its value depends on the current temperature of
the material T and the melting temperature 7;, of the material. It
can be expressed as

exp —7,((0%%) . [ln (0'6%) + ID , T <0.67,
exp —%) , T >0.6T,

3
where k is the ideal gas constant. Within Egs. (1) and (3) there
are eight viscoplasticity constants which must be determined. Ta-
ble 1 gives ranges for the constants available in the literature
[4,5,9]. None of these parameters are temperature-dependent;
temperature affects only the 8’ term. The testing procedure that
has historically been used to determine these constants is out-
lined in [1].

The Miller unified constitutive model satisfies several im-
portant criteria that make it appropriate for testing an opti-
mization procedure such as this one. Since the verification of
the optimization procedure depends heavily on simulations con-
ducted by ANSYS, it is important that the model be suitable
for implementation into a finite element analysis program. The
Miller model has been implemented into ANSYS as a user-
programmable feature (UPF). This is a custom feature that al-
lows for a user to define a constitutive model that will be used

0'(T)=

by ANSYS to predict material behavior. Another important fac-
tor is the dependence of material constants on temperature. If
several of the constants changed with temperature, an attempt at
optimization would be further complicated by the need for more
isothermal tests at various temperatures. This is clearly in op-
position with the overall goal of reducing the number of tests
required. In the Miller model, none of the material constants are
temperature-dependent [1], meaning fewer tests will be required.
A third consideration that makes the Miller model suitable is that
only cyclical and creep (or stress relaxation) data are needed to
determine the constants. Both of these tests are relatively simple
and can be conducted with equipment that is readily available.

Table 1. Typical values of material constants for the Miller model.

Material Constant Units Typical Values
A ksi~! 0.8-0.93
Ar ksi™3 7.4x1073-5.94x1073
B s 1.03 x 10'4-1.0 x 1013
G ksi 0.1-50
H, ksi 280-10,000
H, (unitless) 100
n (unitless) 1.60-5.8
0] cal /mol 91,000-104,600

1.3 Type 304 Stainless Steel

Application of the Miller model will be limited to type 304
stainless steel in this research. The chemical composition of this
alloy is shown in Table 2. Type 304 stainless steel is frequently
used in high temperature applications due to its corrosion resis-
tance properties, which result from the inclusion of chromium
and nickel in the chemical composition [11]. The dependence
of ultimate tensile strength (UTS) and 0.2% yield strength on
temperature is shown in Fig. 2. Both of the material properties
decrease in value as temperature increases. Similarly, the elastic
modulus decreases as temperature increases, as shown in Fig. 1.
The ultimate tensile strength must be considered in the design of
experimental tests for parameter determination; the Miller model
does not include failure criteria, so the experimental tests de-
signed for parameter determination must avoid approaching the
UTS. Likewise, the fatigue life of type 304 stainless steel, shown
in Fig. 3, must be considered during experimental design. If
the necessary data is not collected before fatigue fracture occurs,
the experimental data will be useless. These existing data for
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Figure 1. TEMPERATURE DEPENDENCE OF ELASTIC MODULUS
FOR TYPE 304 STAINLESS STEEL
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Figure 2.  TEMPERATURE DEPENDENCE OF ULTIMATE TENSILE
STRENGTH AND 0.2%-OFFSET YIELD STRENGTH FOR TYPE 304
STAINLESS STEEL

type 304 stainless steel will be kept under consideration while
developing simulated experiments for material parameter deter-
mination to ensure that excessive damage or premature failure
will not occur in material specimens.

2 MODELING APPROACH
In order to compare theoretical results with experimental test
data, the Miller model was implemented into a finite element pro-

Figure 3. FATIGUE LIFE OF TYPE 304 STAINLESS STEEL AT ELE-
VATED TEMPERATURES

Table 2. Chemical composition of type 304 stainless steel [10]

Carbon Chromium Nickel Manganese Silicon
0.052 (wt %) 18.92 9.52 1.1 0.52
Phosphorus Sulfur Molybdenum Nitrogen Iron

0.011 0.01 0.12 0.052 Balance

gram known as ANSYS. Since the tests conducted for parame-
ter estimation are typically uniaxial the most appropriate model
of an experimental test specimen is a single three dimensional
SOLID185 element consisting of eight nodes. All loads or dis-
placements were applied to the top four nodes, while the bottom
of the element had fixed displacement in the z-direction. The
element cross sectional area was allowed to deform to account
for the effects of Poisson’s ratio. In this manner, uniaxial exper-
imental tests were simulated.

Since the research objective was to develop a procedure for
automatically determining the material constants of the Miller
unified constitutive model with a minimum number of experi-
ments, an automated optimization routine was needed that could
compare simulations with experimental data to determine the pa-
rameters. For this purpose, a program called uSHARP was writ-
ten. It is capable of determining constitutive model parameters
requiring only a single initial guess, which can be obtained from
previously determined constants existing in literature. Any type
of data can be used in the optimization process, including stress,
strain, or even stress and strain rates. Before further discussion of
the optimization procedure executed by uSHARRP, it is pertinent
to discuss the limitations of the software package.

First, uSHARP was written for constitutive models which
are well understood, such as the Miller model. The program
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Table 3. Obijective function parameters

Symbol Meaning
n number of time steps in the simulation
w(t;) weight at time #;
Yexp (ti) interpolated value at time #;
Ysim (ti) simulated value at time f;
(Yexp)max | erp(ti). where [yexy (1) = max|yexy (1)

should only be used when the appropriate orders of magnitude
for the material parameters are known. The routine has demon-
strated an inability to converge when the initial guess is not close
to the proper order of magnitude. As such, the best initial start-
ing point will be values that have previously been determined
through the standard means for another material. This limitation,
however, is a result of the optimization algorithm implemented
into the current version of uSHARP, and not a problem with
uSHARRP itself. The application of a more robust optimization
algorithm could mitigate this problem. Additionally, the consti-
tutive model must accurately represent the behavior of the ma-
terial for which it is being used. For example, the Miller model
does not incorporate damage evolution; therefore it would not be
appropriate for predicting tertiary creep damage in a material.

In order to use the uSHARP routine to optimize material
constants, it is imperative that the time steps in test histories of
the experimental and simulated data match closely. It is easy
to simulate complicated test histories; it is difficult, however, to
carry these out experimentally due to errors in equipment and
natural imprecision present in the current usage of PID con-
trollers. Emerging research into more advanced control systems
indicates that in the near future these complicated test histories
will be accurately replicated [12].

The uSHARP optimization routine makes use of an iterative
procedure to determine the material constants through succes-
sive simulations. Simulations are conducted which match the test
history of the experimental data and the material parameters are
varied until a “best fit” is achieved. An objective function is con-
structed which provides a measure of the discrepancy between
the experimental and simulated data. When the objective func-
tion is minimized over the set of material constants, the simulated
data is considered to be a best fit to the experimental data, and
the material constants determined by the program are considered
to accurately reflect the behavior of the experimental data. The
model and constants can then be used to simulate more complex
service histories.

Since the uSHARP routine was designed so that multiple test
types could be used simultaneously, a simple least squares func-
tion was not adequate. Different orders of magnitude present in
different data types would naturally skew the value of the ob-

jective function towards higher orders of magnitude. Addition-
ally, different data sets contain different numbers of data points,
which would lead to skewing in the objective function by weight-
ing tests with higher numbers of data points higher than tests with
fewer data points. To account for these phenomena, a standard
weighted least squares function was developed to allow for the
simultaneous use of different experimental test types without un-
intended skewing. The form of this objective function is

S= 1ZW(Z‘,‘)

n

i=1 (Yexp)max
This equation contains several different parameters, which are
described in Table 3. For convenience, quantities computed at
time #; will henceforth be denoted by a subscript, i.e., y; = y(£;).
The objective function accounts for the differences between the
experimental and simulated data at each time index as a percent-
age of the maximum value of the experimental data set. This has
the effect of scaling all test types to the same order of magnitude.
Additionally, the total least squares value is normalized to the
number of data points used in its calculation. This prevents test
data containing more time indices from being weighted higher
than data with fewer time indices. uSHARP can use multiple
tests simultaneously in the determination of material parameters.
This is done by adding the individual objective function values
from each test type together, and minimizing the value of the
combined objective function:

m
Stol == Z Sj (5)
j=1

where m is the total number tests being combined.

It is important to note that the uSHARP objective function
requires experimental and simulated data at the same time value.
Finite element simulations and experimental data often have dif-
ferent time increments, so the experimental data points are lin-
early interpolated to the same times as the finite element simula-
tion. Time is the independent variable in the uSHARP objective
function because each time is unique within the dataset.

The uSHARP objective function is a weighted least squares
function. Depending on the test type being used, a different
weighting function will be employed. Currently, weighting func-
tions have been developed for two different test types: low cy-
cle fatigue and stress relaxation. Each weighting function is de-
signed to emphasize the more dynamic regions of material be-
havior, where the Miller model parameters influence the material
behavior most prominently. The simplest of the weighting func-
tions is used for low cycle fatigue tests. All data points above a
certain stress magnitude in tension and compression are weighted
with a value of 2.5, while all points below this value are weighted
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as 1.0. This range of values was determined from practical ex-
perience and its utility was verified in the experimental results.
The effect of the weighting scheme is an emphasis on the inelas-
tic regions of material response where the Miller model, and not
simple elastic theory, predicts the behavior.

The weighting function developed for the stress relaxation
is more complicated, using both the stress rate and the derivative
of the stress rate. It takes the form

o Co+Ci |Gi| +C |f5i|

wi = - —, (6)
"G Cil6i] - G|
where
7 . ..
Co= 3 (C1]6| +C2 161+ (7N
and * satisfies
|6+ | = max |6;]. 3

Here, C; and C, are equal to unity and serve to eliminate
nonequivalent units. The weighting function in Eq. 6 is designed
to keep all values of w; between 1.0 and 2.5. The lower value
of 1.0 is set automatically as the stress relaxation approaches a
steady state value. The definition of Cy ensures that the weight-
ing function reaches a maximum of 2.5 at the time at which the
maximum stress relaxation rate occurs. This is desirable in or-
der to determine the hardening parameters present in the Miller
model more accurately. The effects of the hardening parameters
are greatest at times when relaxation is occurring most rapidly.
Since continuous experimental data are not available, finite dif-
ference approximations were used to calculate the stress rate and
derivative of the stress rate as

. G _G
6 = i+1 i (9)

tit1 =1

Ci+1—20;+0G; 1

(tiv1 —1:)(ti —ti-1)

Gi= (10)

Several criteria were used in the selection of the optimiza-
tion algorithm. First, it was desired that no derivatives or gra-
dients be required for minimization. The complex nature of the
Miller model would make such calculations difficult and would
limit the robustness of the uSHARP routine by requiring modifi-
cation for use with any other constitutive model. To this effect,
an optimization algorithm requiring only objective function eval-
uations was strongly desired. Second, due to the length of time
required to carry out a single finite element simulation, an ef-
ficient optimization algorithm requiring a minimum number of
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Figure 4. OPTIMIZATION PROCESS

Table 4. Miller constants for “experimental” test data, type 304 stainless
steel

Inelastic Constant Value Strongly influences
Ay (ksi™!) 0.8 Cyclic behavior at high
strain ranges
Ay (ksi™!) 7.42 %1073 Cyclic behavior at high
strain ranges
B sec™! 1.0 x 1013 Secondary creep
C ksi 1.0x 107! Cyclic behavior at low
strain ranges
Hy ksi 2.8 x 10? Cyclic behavior at in-
termediate strain ranges
Hy 1.0 x 10? Cyclic and isotropic
hardening, primary
creep
n 5.8 Secondary creep

iterations was desired. While this would almost certainly con-
strain the uSHARP routine to the use of a local optimizer, the
length of time required for an optimization run would be practi-
cal and not too costly in terms of computation time. Lastly, an
optimization algorithm requiring only a single initial guess was
desired, since usually a set of material constants for a particular
constitutive model can be found in the literature. All of these
desired characteristics are met by the Hooke-Jeeves direct search
algorithm [13], a robust local optimization algorithm. The opti-
mization procedure utilized in uSHARP is outlined in Fig. 4.

3 EXPERIMENTAL PROCEDURE
3.1 Advanced Candidate Experiments

The focus of the research was determining a small number
of candidate experiments that would allow for the determination
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of the material parameters with a minimum amount of experi-
mental data. These experiments take the form of numerically
simulated mechanical test data generated from the UPF with the
published Miller constants for type 304 stainless steel, shown in
Table 4 [4]. These simulated experiments are useful in designing
the actual mechanical experiments that will be performed with
future research. After an analysis of the material parameters was
performed based on Miller [1] the necessary test conditions were
determined for the parameter determination.

The experimental behavior affected by each of the constants
is shown in Table 4. The absence of the Q parameter must be
noted. The determination of this parameter requires data at dif-
ferent temperatures. To maintain simplicity for the preliminary
stages of the research, isothermal test conditions were used, elim-
inating the ability to determine Q. Future research will include
non-isothermal test histories to enable the identification of this
parameter.

Two candidate experiments were identified for use with the
aforementioned uSHARP optimization routine. In order to run
the uSHARP routine, “experimental” tests were simulated us-
ing the ANSYS finite element program. The material constants
from [4] for type 304 stainless steel were used for these simula-
tions. The value for Q was set at 91,000 cal/mole, as defined by
Miller. In this way, the material constants of the “experimental”
test data were already known, allowing for verification of the
optimization routine once uSHARP had determined values for
material parameters. Once the key simulated experiments have
been identified and the parameter optimization process has been
fully developed, experimental specimens will be used to obtain
actual data. The uSSHARP optimization routine can then be veri-
fied under real conditions.

One simulated “experimental” test that was used was a
strain-controlled low cycle fatigue test with ramping strain am-
plitude, as shown in Fig. 5(a). The strain amplitude for the first
cycle was 0.05%, and the amplitude of the last cycle was 0.5%.
The time per quarter cycle was held at a constant 10 seconds, and
the simulated temperature was 593°C. The strain rates experi-
enced during the test ranged from 5.0x1073 % sec™! to 5.0x102
% sec™!. This was done in order to provide material behavior at
different strain rates, an important consideration with a strain rate
sensitive model such as the Miller model [1]. Additionally, dif-
ferent strain amplitudes in a single test provide a broad spectrum
of material behavior using only one test specimen. This low cy-
cle fatigue test was used to simulate the non-hardening and cyclic
material behavior so the corresponding constants could be deter-
mined. Six cycles were simulated in order to allow for reasonable
simulation times.

The second “experimental” test type used to determine the
material parameters was a strain-controlled stress relaxation test,
also at 593°C. Two different strain amplitudes were applied in
one test, as depicted in Fig. 5(b). The first strain amplitude was
0.075%, followed by a ramping up to a level of 0.1%. Each of
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Figure 5. EXPERIMENTAL (A) LOW-CYCLE FATIGUE TEST AT 593°C
AND (B) STRESS RELAXATION TEST AT 593°C USED FOR PARAME-
TER DETERMINATION

the amplitudes was held for 600 seconds. One second was used
as the strain ramping time. The two different strain amplitudes
were used in order to gather material information under different
conditions using only one test.

In addition to the previous two candidate experiments, a
third test was designed to be used along with the low cycle fa-
tigue and stress relaxation tests. A strain-controlled ratcheting
test was simulated at 593°C for fifteen cycles. The strain for the
test was increased 0.05% under loading and decreased 0.025%
during unloading, as depicted in Fig. 6. This process was re-
peated fifteen times for a maximum amplitude of 0.4%. The time
between successive peaks was held at a constant 40 seconds so
that the strain rates varied. A high number of cycles was simu-
lated in the ratcheting test to account for any shortcomings result-
ing from the low number of cycles present in the “experimental”
low cycle fatigue test. This resulted in a significantly longer com-
putation time; the compromise, it was hoped, would come in the
form of more accurate constants. All three tests would be used
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Figure 6. RATCHETING TEST USED FOR PARAMETER DETERMINA-
TION

simultaneously during the parameter determination process.

All of the simulated “experimental” tests were designed so
that they could be conducted by the available hardware, thus al-
lowing for actual experimental validation following the prelimi-
nary trial runs using the aforementioned synthetic data. None of
the “experimental” tests feature instantaneous changes in strain
level; there are no strain rates which are not achievable mechan-
ically. While it was assumed that more complex control systems
will enable more complicated experimental tests to be conducted,
the experimental tests that would be conducted for validation
would be controlled by a PID controller. Correspondingly, none
of the tests designed here should present too great a challenge in
mechanical testing; they are slightly more complex versions of
standard experiments which are routinely conducted and are all
isothermal. Furthermore, to ensure that the designed experiments
could be conducted on specimens without premature failure, all
of the strain rates and maximum strain amplitudes were kept to
levels at or below those of the data found in [4].

3.2 Parameter Determination using uSHARP

The “experimental” data that were used to validate the
uSHARP optimization routine were created by finite element
simulation of the previously outlined strain controlled experi-
ments, using the constants for type 304 stainless steel determined
by [4]. As mentioned previously, the uSSHARP routine performs
best when the appropriate orders of magnitude for the constants
are already known. It is assumed that for any future parameter
determination runs using a different alloy the constants devel-
oped for stainless steel will be used as a starting guess. This as-
sumption is provided as justification for choosing an initial guess
which is on the proper order of magnitude. During every op-
timization run, the evolution of the constants and the objective

Table 5. Initial parameters for optimization procedure. “Experimental”
data constants are repeated here for convenience.

Inelastic Constant "Experimental" Value Initial Guess

Ay (ksi™) 0.8 1.0

Ay (ksi™h) 7.42 %1073 1.0x 1073

B sec™! 1.0x 10 1.0x 101

C ksi 1.0x 107! 1.0x 107!

Hy ksi 2.8 x 102 1.0 x 10?

H, 1.0 x 10? 1.0 x 10?
n 5.8 1.0

function value were recorded after each iteration. This enabled
for real time updates of these values as the parameter determina-
tion progressed, and created a comprehensive log of these values
for analysis following an optimization run.

3.3 Addition of Random Noise

In order to better simulate actual experimental testing and
the inevitable associated measurement errors, the three simulated
“experimental” datasets were modified by adding random noise.
The resolution of the load cell available on the in-house testing
rig was used as a guideline to develop a realistic range for the ran-
dom noise. While this method of adding error does not account
for any systematic bias that may be present during actual me-
chanical testing, it does add in an element of statistical sampling
error. This allows for verification of the uSHARP routine under
less-than-ideal circumstances. For the purposes of this research
it is assumed that under careful experimental consideration, sys-
tematic error can be minimized, leaving primarily a statistical
noise error.

Random noise was also added to verify the technique of us-
ing simulated data to match experimental tests. If the results for
noisy experimental data match the results for ideal experimental
data, it is more likely that the technique of using simulated data is
sound. To this end, the uSHARP optimization routine was used
to determine material constants for the “experimental” data both
with and without the added noise.

4 RESULTS AND DISCUSSION
4.1 Material Parameter Determination

The uSHARP routine was used twice to determine the Miller
model material parameters. In addition to the “ideal” simulated
experiments, data with random noise was also used with the op-
timization routine. In each case the initial guess, presented in Ta-
ble 5, was the same to allow for a comparison of the converged
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Table 6. Converged values of material constants

Inelastic Con- | "Experimental"| Converged Converged

stant Value Values (no | Values (with
noise) noise)

Ay (ksi™h) 0.8 0.1959 1.524

Ay (ksi™h) 7.42 %1073 2.616x 107 | 2.754x 107

B sec™! 1.0x 10 1.005 x 10 | 8.963 x 101

C; ksi 1.0x 107! 1.521x 107! | 3.811x 1072

H ksi 2.8 x 102 2.796 x 102 3.051 x 102

H, 1.0 x 102 1.024 x 102 8.062 x 10!

n 5.8 5.801 5.723

solutions for each data set. Note that the initial guesses are on the
same order of magnitude as the actual values for the constants,
and for some parameters, the initial guess is the same as the ex-
perimental value. However, due to the high nonlinearity of the
Miller model equations, the initial guess generates a simulated
test history that diverges significantly from the “experimental”
data, even when some of the parameter values match.

The final converged values determined by uSHARP for each
case can be seen in Table 6. It is evident from the results that
the same solution was not obtained in both cases for each param-
eter. Only the values for A, B, H|, H», and n were reasonably
close in the final converged solutions for the data with and with-
out noise. The values for A; and C,, however, differ by nearly
an order of magnitude. Furthermore, a comparison of the opti-
mized values for the material constants with the values used to
generate the “experimental” data indicates that the optimization
routine did not resolve the “correct” value for all of the parame-
ters. While the values for B, Hy, H,, and n converge reasonably
to the experimental set values, the values for Aj, A, and C, do
not. This appears to imply that the uSHARP routine did not de-
termine usable values for these material parameters. However,
the simulated test histories using optimized constants are visibly
close fits to the experimental test histories, as can be seen in Figs.
7 and 8.

In each case, the material parameters determined by the
uSHARP optimization routine have provided excellent fits across
the entire range of data, despite being distinct from the experi-
mental data parameters. This suggests that for a given set of ex-
perimental data, a unique solution for material parameters might
not exist. If the discrepancies were due to the candidate experi-
ments not fully capturing the effects of each material parameter,
then the non-uniqueness of the material constants could be ex-
plained by the under-determination of the optimization problem.
At any rate, the discrepancies demonstrate that any attempt to
determine constitutive model parameters must involve a careful

25

20

Stress, o (ksi)
S

Initial Guess
A "Experimental" Data
Final Converged Solution

0 200 400 600 800 1000 1200 1400

Time, t (sec)
40
30
= ,ﬁ ‘f
h h A
20 tr zg 4 4 4 A
o F Y a0 pH
% 104 r'S A 4 &
=
B & Py 5 IS
B 4 N n Py
(/5 0 D 4
E A A A | +
5 _10 B 50 F: N 4
2 F: Y & 2D
h h F: Y &
-20 7 4 4L 4 4
h b
309 A "Experimental" Data
—— Final Converged Solution
-40 T T T T T T T T
0 200 400 600 800 1000 1200 1400 1600
Time, t (sec)
30
25
20 A
;5“
— 15 4
[§)
&
[2]
g 10
w
5 4
04 —— |Initial guess
A "Experimental" Data
= Final Converged Solution

0 100 200 300 400 500 600 700

Time, t (sec)

Figure 7. USHARP CONVERGENCE RESULTS FOR (A) STRESS RE-
LAXATION, (B) LOW-CYCLE FATIGUE, AND (C) RATCHETING STRAIN
AMPLITUDE FOR NOISELESS DATA

Copyright (© 2010 by ASME

Downloaded From: http://proceedings.asmedigital collection.asme.or g/ on 08/05/2015 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



25

20 +

Stress, o (ksi)
>

Initial Guess
A "Experimental” Data
Final Converged Solution

T
1400

0 200 400 600 800 1000 1200
Time, t (sec)
60
40 -
20 A
k7]
"4
b
g 07
n
o
n
-20 +
-40 Initial Guess
A& "Experimental” Data
Final Converged Solution
-60 T T T T T T
0 50 100 150 200 250 300
Time, t (sec)
30
25 A
20
=
= 15
5]
ﬁ—
o 10 -
17
5 |
0 - £ = |nitial guess
A "Experimental” Data
Final Converged Solution

-5 T T T T T T T T
0 100 200 300 400 500 600 700

Time, ¢ (sec)

Figure 8. USHARP CONVERGENCE RESULTS FOR (A) STRESS RE-
LAXATION, (B) LOW-CYCLE FATIGUE, AND (C) RATCHETING STRAIN
AMPLITUDE FOR DATA WITH RANDOM NOISE

10

10000

1000 A

100 A

N
o
1

Objective Function Value, S,

0.1 4
0.01
o Data with Noise
Data without Noise
0.001 T T T T T T T

T
0 1000 2000 3000 4000 5000 6000 7000

Number of Iterations
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consideration of the experimental test matrix to be used. While
the converged values for the material constants have accurately
reproduced the “experimental” test history in this case, there is
no guarantee that the same correlation will occur under more
complex or longer-duration test histories.

Comparing the number of iterations required for conver-
gence indicates that the noiseless data took nearly 2500 more
iterations to converge than the data with noise. Additionally,
the final objective function value for the data without noise was
nearly three orders of magnitude lower than that of the data with
the added noise. Both of these trends can be explained by the
fact that without any random errors, the model can perfectly re-
produce simulated data, meaning that the differences between
the optimized-constant simulated data and the experimental data
may be extremely small. On the other hand, when noise is added,
there is a limit to how well the model can fit the data, so that
the minimum of the objective function is much higher. Com-
paring the evolution of objective function values in both cases
shows that for both data sets the initial objective function value
was approximately equal. Because the objective function value
at convergence is much lower for the noiseless data, many more
iterations are required.

The method employed by the uSHARP routine has proven
successful at determining viscoplastic constitutive model param-
eters. Furthermore, the program has been constructed in such a
way as to be applicable to a wide class of constitutive models
with little modification. Similar results have recently been ob-
tained applying uSHARP to other constitutive models. The only
optimization criterion available in the determination of constitu-
tive model parameters is the evaluation of an objective function
indicating the caliber of fit between a current guess and experi-
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MENTAL TESTS USING (A) THE USHARP OBJECTIVE FUNCTION
(EQ. 4) AND (B) STANDARD OBJECTIVE FUNCTION FROM LITERA-
TURE (EQ. 11)

mental data. In this regard, uSSHARP has performed well, gen-
erating a nearly perfect fit in both cases and minimizing the ob-
jective function, as seen in Fig. 9. However, it has been demon-
strated that an objective function minimum, corresponding to an
excellent fit, does not necessarily indicate a unique solution for
the material parameters. This problem may, in fact, be unavoid-
able when an inadequate test matrix is used to determine consti-
tutive model parameters. It is thought, however, that with more
careful consideration of candidate experiments, the uSHARP op-
timization routine may be used to successfully determine mate-
rial parameters with a greater level of accuracy. This will be left
for validation in future work.

11

4.2 Objective Function Analysis

The objective function featured in the uSHARP routine was
designed to enable the use of different test types and data sets si-
multaneously for parameter determination. It is pertinent to per-
form an analysis as to whether or not this goal has been achieved.
The standard objective function commonly used for automated
parameter determination is a simple, weighted least squares func-
tion [14, 15]. This is typically expressed as

S= (11

Wi (yexp,i - ysim,i)z

(ngE

1

where n is the number of data points, w; is a weighting factor,
Yexp,i is the experimental data point, and yy;, ; is the simulated
data point. Multiple datasets are then combined in the form of
Eq. 5. To provide an indication of the utility of Eq. 4, the
uSHARP objective function, the individual S-values of each of
the three tests were recorded during the optimization process
for the data without noise. By comparing these results with S-
values calculated using Eq. 11 during the same optimization run,
the proposed objective function can be compared with the stan-
dard from current literature. For both equations, the uSHARP
weighting functions were used. The evolution of S throughout
the optimization process for both cases is shown in Fig. 10. The
results show that the use of the standard least squares error func-
tion would have been insufficient for the simultaneous use of
the experimental data used during the parameter determination
runs. Equal consideration would not have been given to each
test. Use of the uSHARP objective function, however, eliminates
this problem.

The use of Eq. 11 would have been sufficient for the combi-
nation low-cycle fatigue / ratcheting test. The least-squares val-
ues for both tests are approximately on the same order of mag-
nitude, meaning that neither of the curves would receive more
weight than the other during the optimization process. However,
the inclusion of the stress relaxation test creates a problem when
using Eq. 11. For the duration of the optimization process, the
value of S for the stress relaxation test is at least an order of mag-
nitude lower than the values for the two other tests. This creates
a natural bias during optimization, providing more consideration
to the ratcheting and low-cycle fatigue tests. This trend is not
evident with use of the uSHARP objective function. The indi-
vidual § values remain on the same order of magnitude for the
duration of the optimization process. This is proof that u>SHARP
allows for the use of several different test types without undue
consideration of any single test over the others. Clearly, the
proposed objective function represents an improvement over the
standard objective function commonly used for automated con-
stitutive model parameter determination.
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5 CONCLUSIONS

The uSHARP optimization routine was successful in deter-
mining values for the material constants which created excellent
fits with the “experimental” data. While the final converged con-
stants were not close to the “experimental” values in all cases,
this merely indicates an experimental test matrix which is not
adequate for capturing the effects of all of the material constants.
Thus, there is a need to verify the adequacy of the experimental
test matrix used in an automated parameter determination rou-
tine before the results can be trusted. A procedure using synthetic
data where the “experimental” constants are already known, sim-
ilar to the method used here, would be a good initial step to verify
the adequacy of any test matrix before making the commitment
to actual experiments using test specimens. Use of the uSSHARP
routine shows great promise in simplifying the procedure of pa-
rameter determination. Since the uSHARP optimization process
is completely contained, calling on an external program (AN-
SYS) to provide the necessary finite element simulations, it is
expected to be adaptable to any constitutive model or finite el-
ement software package. In this way, the developed parameter
determination method was designed to be broadly applicable to
suit the needs of many different users, as its procedure is not spe-
cific to the Miller model. The form of the objective function used
in the uSHARP routine demonstrated superiority over the tradi-
tional form commonly found in literature. The goal of enabling
the use of multiple test types simultaneously with minimal user
input was satisfied, ensuring that every “experimental” test used
had equal consideration during the parameter determination pro-
cess. While the weighting functions were determined through a
trial and error process, they have performed favorably. In each
case, the set of constants that minimized the objective function
produced a close fit to simulated experimental data.
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