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ABSTRACT 
 Cyclic plasticity and creep are the primary design 

considerations of 1st and 2nd stage gas turbine blades. 

Directionally-solidified (DS) Ni-base materials have been 

developed to provide (1) greater creep ductility and (2) lower 

minimum creep rate in solidification direction compared to 

other directions. Tracking the evolution of deformation in DS 

structures necessitates a constitutive model having the 

functionality to capture rate-, temperature-, history-, and 

orientation-dependence. Historically, models rooted in 

microstructurally-based viscoplasticity simulate the response of 

long-crystal, dual-phase Ni-base superalloys with 

extraordinary fidelity; however, a macroscopic approach 

having reduced order is leveraged to simulate LCF, creep, and 

creep-fatigue responses with equally high accuracy. This study 

applies uncoupled creep and plasticity models to predict the 

TMF of a generic DS Ni-base, and an anisotropic yield theory 

accounts for transversely-isotropic strength. Due to the fully 

analytic determination of material constants from mechanical 

test data, the model can be readily tuned for materials in either 

peak- or base-loaded units. Application of the model via a 

parametric study reveals trends in the stabilized hysteresis 

response of under isothermal fatigue, creep-fatigue, 

thermomechanical fatigue, and conditions representative of in-

service components. Though frequently considered in design 

and maintenance of turbine materials, non-isothermal fatigue 

has yet to be accurately predicted for a generalized set of 

loading conditions. The formulations presented in this study 

address this knowledge gap using extensions of traditional 

power law constitutive models.  

 

 

1. INTRODUCTION 
 Modeling the thermomechanical fatigue (TMF) response of 

structures at the component level requires reduced order models 

that, rapidly converge. Materials such as Ni-base superalloys, 

steels, titanium alloys, etc. are routinely subjected to elevated 

temperature environments superimposed with mechanical loads 

where inelastic (e.g. plasticity and creep) strain energy is 

dissipated. A non-interactive (NI) modeling approach based on 

reduced order constitutive models has been developed to 

simulate the stabilized deformation response of a generic 

directionally-solidified (DS) Ni-base superalloy under TMF 

loading conditions. Such DS materials are approximated as 

transversely isotropic due to their elongated grains that are 

aligned with the primary stress axis of blades for 

turbomachinery. Suitable elastic, plastic, and creep models 

selected for the study have parameters that can be optimized 

analytically to regress data obtained with laboratory-tested 

specimens at temperatures and mechanical loads germane to 

component operating conditions. Tensile, low cycle fatigue 

(LCF), and creep deformation experiments conducted under 

isothermal conditions including, but not limited to, reference 

temperatures labeled as T1, T2, … , T9 were utilized for model 

correlation. These temperatures are labeled such that T1 < T2 < 

… < T9. Models were then utilized to predict stabilized 

hysteretic material responses under non-isothermal conditions. 

The NI model is demonstrated to simulate TMF data accurately 

under in-phase or out-phase loading with or without the 

presence of mean strain. Trends in the non-isothermal 

hysteresis response are compared with their isothermal 

counterparts. A newly-developed model presented here, based 

solely on isothermal constitutive modeling parameters, is 

shown to accurately predict the peak-valley stress response 
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under TMF conditions. This novel model has the capability to 

make first order approximations of TMF hysteresis and also 

life, when coupled with stress versus fatigue life prognostics 

approaches. 

2. MATERIAL MODEL 
 The candidate material of this study is a generic 

directionally-solidified (DS), Ni-base superalloy, commonly 

applied as a first and second stage blading material in advanced 

land-based turbo-machines. Under service conditions, blades 

are bombarded with hot gas super-imposed with large 

centrifugal loads. Service-prompted attributes including quick 

starts, dwell periods, and rapid shut down facilitate localized 

hot/cold spots where thermomechanical fatigue cracks nucleate. 

Some DS materials that have been studied under TMF include: 

coated and bare [1] CM247LC DS, DS GTD-111 [2], DS René 

80 [3], DS René 150, and various bare/coated specimens. A 

sketch of a typical microstructure of DS Ni-base superalloys is 

shown in Fig. 1. Here 0 corresponds to the longitudinal 

orientation (L-oriented), 90 is transversely-oriented (T-

oriented), and the intermediate or bias orientation is selected at 

45. The area of grain boundaries (GBs) are minimized along 

the L orientation to add strength under creep and/or fatigue 

conditions.  

 
Figure 1: Sketch of microstructure of a directionally-solidified 

(DS) Ni-base superalloy. 

 

 In the course of predicting the stress-strain response of 

these materials, a variety of constitutive models have been 

invoked to capture the temperature-, rate-, and history-

dependence of the non-linear kinematic and non-linear isotropic 

hardening that these materials display. Although continuum-

level, viscoplasticity models [4] correlate well with test data, 

they have yet to usurp reduced order constitutive models native 

to general-purpose FEA full-scale component modeling. In the 

current study, the deformation response of select orientations 

(i.e., L, T, and 45, also referred to as bias) of a DS material is 

comprised of linear elastic, non-linear plastic (time-

independent), and creep (time-dependent) components, i.e.,  

 

     total el pl cr= ,T, + ,T, + ,T,            (1) 

 

Here T corresponds with temperature and the angle is referred 

to as . Each of these models capture orientation- and 

temperature-dependence; however, each is explicitly 

independent from the remaining deformation components. 

Decoupling creep from plastic deformation modes has the main 

advantage that LCF data can be used to analytically identify 

plasticity constant; similarly, steady-state creep data confers 

creep constants.  

 Elasticity modeling of the candidate DS material is carried 

out using Hooke’s Law in three-dimensions. Based on 

symmetry, transversely isotropic materials can be described 

through five independent elastic constants: ET, EL, TT, and TL, 

GTL. While the former four can be readily determined through 

uniaxial testing in L and T orientations, experiments in the bias 

(i.e., 45-orientation) are used to analytically acquire the shear 

modulus. 

 Further, it should be noted that the elastic modulus for any 

direction within the LT-plane can be determined by means of  
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where, the angle  is referenced from the DS (or L) orientation 

(Fig. 1). For most orthotropic materials, the peak elastic 

modulus of the material is located less than 10 degrees above 

from the bias orientation. The term GTT corresponds to the shear 

modulus in the plane of isotropy. Each of these constants 

display temperature-dependence. 

 Time-independent plasticity modeling is implemented to 

do the following: (1) capture the strain hardening exhibited 

through the cyclic stress-strain DS material at various 

temperature levels, (2) capture the cyclic yield strength of the 

material, and (3) ensure that the material cannot support a stress 

above the cyclic ultimate tensile strength. Ramberg-Osgood 

plasticity is a two-parameter, power law model capable of 

satisfying each of these three requirements [5]. These 

parameters are the cyclic strain hardening coefficient, K, and 

the cyclic strain hardening exponent, n. Typically, the 

Ramberg-Osgood model (and the associated Masing model 

used for reversals [6]) is used to interpolate the monotonic 

tensile response; however, for modeling the mid-life cyclic 

response of the material, the cyclic stress-strain curve of the 

material is utilized.  

 To capture the stress-saturation of the material extending 

beyond the cyclic proportional limit (CPL) of the material, the 

cyclic 0.2% offset yield strength (0.2%CYS) and the cyclic 

ultimate tensile strength (CUTS) are acquired. While the 

0.2%CYS is defined in a similar manner to the monotonic 0.2% 

offset yield strength, CUTS is defined [7] to capture the scale 

up/down of the cyclic stress-strain curve compared to the 

monotonic analogy as reflected by the yield strengths. The ratio 

of the yield strengths extends the cyclic hardening or softening 
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trend out to the pseudo cyclic strength. Fig. 2 depicts the 

process of extrapolating low range LCF data into full range 

LCF data. The dashed line represents the case where LCF 

points are paired with monotonic yield and monotonic strength 

data. The dotted line illustrates LCF data alone.  

 
Figure 2: Schematic of cyclic plasticity model determination. 

 

Since LCF data rarely exist beyond 0.2%CYS, this approach 

represents a viable method for modeling potentially large 

deformation responses. The solid line represents the optimal 

curve where LCF data are paired with cyclic yield and strength 

data. Beginning with the L-orientation of the material, the 

cyclic strain hardening constants, K and n are determined for 

each temperature.  

 Applied mechanics has produced a variety of failure 

theories for ductile materials. These yield theories vary based 

on capability to model levels of anisotropy, tensile-compressive 

asymmetry (i.e., sensitivity to hydrostatic stress), and so on [8]. 

With regard to DS materials in the current study, the Hill 

potential is employed due to its balance of simplicity, accuracy, 

and flexibility. Hill’s theory states  
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where F, G, H, L, M, and N are given as 
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where the R terms correspond to strength ratios between a 

given orientation and a reference orientation. For DS materials 

where the elongated grains are along the z-axis and the xy-

plane is plane of isotropy,  
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   (5) 

 

Here, the reference orientation is defined as the L-orientation, 

and the reference strength, 0, is defined as the CUTS in the L-

orientation. Although LCF data may be available in the T- and 

45 orientations, only the CUTS or the 0.2%CYS points are 

obligatory. In this modeling approach, only the orientation-

dependence of the strength is accounted for. Variations between 

the cyclic strain hardening between T and 45, compared to that 

of the L are neglected. Alternatively stated, in the plasticity 

relation that accounts for orientation-dependence, e.g., 
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only strength varies with orientation, while n is isotropic. 

 Creep behavior of DS Ni-base materials is generally 

dominated by secondary and tertiary modes of deformation. 

Typically, tertiary creep strain is localized in turbine 

components, so modeling time-dependent deformation can be 

carried out with steady state creep models. Modeling the 

secondary creep response of a material can be executed using a 

number of second stage creep formulations. Most often, the 

Norton creep model is used to capture stress-dependence at a 

given temperature; however, the Garofalo model is able to 

capture the amplified creep rate of materials subjected to high 

stress levels [9], i.e.,  

 

  sinh
n

cr HillA       (7) 

 

where A, , and n are regression constants that display 

temperature-dependence. Here the creep rate is taken as the 

minimum creep rate (or the slope during the secondary creep 

regime) for a given creep deformation and rupture curve. The 

Hill’s potential serves the purpose of specifying the 

temperature-dependence and the shape of the yield surface in 

creep and plasticity [Eqs. (3)-(5)]. In the current study, only 

limited creep data are available (i.e., L- and T-orientations 

alone). Separate Hill’s constants specific to creep and plasticity 

will be identified in future work. Considering that there are 

typically no available creep data above the yield strength of the 
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material, more points must be included to capture the stress-

saturation behavior. A tensile strength anchor point is associated 

with a high strain rate, and it is considered as a conventional 

creep point.  

 

3. DETERMINATION OF MATERIAL PARAMETERS 

3.1 EXPERIMENTS AND MATERIAL DATA  
 Acquiring the mechanical properties required from the NI 

model formulation requires tensile, LCF, and creep deformation 

data. A variety of experiments of mechanics of materials was 

used to characterize the subject material of the study. In each 

case, test samples were cylindrically shaped, uncoated, and 

unnotched. Samples were machined from cast plates via low 

stress grinding and polishing of the gage section to eliminate 

machining marks, similar to a prior study by the authors [10]. 

Afterwards, data were analyzed and regressions constant were 

developed (Sec. 3.2).  

 Strain-controlled, tensile experiments were conducted on 

each orientation of the material at a range of temperatures. 

Experiments and consequent data conform to ASTM E8 [11]. A 

strain rate of 0.001s-1 (6%/min) was used. Compared to 

specimens oriented either parallel or perpendicular to grains, 

fewer specimens were incised in the off-axis direction. 

Monotonic data were analyzed to for 0.2% yield strength 

(termed 0.2%MYS) and monotonic ultimate tensile strength, 

MUTS.  

 Strain-controlled LCF testing was done on an MTS servo-

hydraulic load frame. The identical strain rate employed for 

tensile testing was applied for the isothermal cyclic tests. A 

high temperature extensometer provided the strain 

measurement used for feedback control. Completely-reversed 

test conditions (i.e., R = -1, A = ) were employed, and tests 

were conducted to 50% drop of stabilized tensile load. Data 

was recorded at a minimum frequency of 1Hz as specified by 

ASTM E606 [10]. Strain amplitude levels were bracketed 

between 0.0010 and 0.015mm/mm, depending on temperature 

and orientation. These experiments did not contain dwell 

periods.  

 Creep experiments were conducted on lever arm frames 

with dead weight loading. Tests were carried out until test 

samples completely ruptured. Stress levels were bracketed 

between 50 to 850MPa, depending on temperature and 

orientation.  

 While tensile, LCF, and creep tests were used to validate 

the constitutive model formulation, non-isothermal fatigue data 

were gathered to verify the stabilized cyclic stress-strain model. 

Thermal cycling always followed the frequency of mechanical 

strain cycling with in- and out-of-phase conditions. A 

temperature rate of 5C/sec was used in all cases. In some 

cases, mean strains were employed. Although a number of test 

specimens underwent post-test fractographic and 

microstructural analysis via white light optical microscopy 

(OM) and scanning electron microscopy (SEM), the discussion 

of observed damage mechanisms and how they relate to crack 

initiation life are reserved for future work.  

3.2 PROCEDURE FOR PARAMETER IDENTIFICATION  
 Based on the experimental mechanics test program 

described in Sec. 3.1, an uncoupled elastic-plastic-creep 

deformation model was developed. Since the material model is 

designed to emphasize the stabilized hysteresis response of the 

DS Ni-base superalloy, measurements are derived via the mid-

life response wherever possible. Analysis is focused on 

temperature levels of T1, T3, T4, T5, T6, T7, and T9 to capture 

temperature-dependence.  

 For the elastic response, high-order polynomial curve fits 

were used to interpolate the mid-life elastic response of the DS 

material in the L, T, and bias orientations. The most scatter in 

modulus occurs in the 45 orientation. Although the grains are 

elongated in the 45 (cf. Fig. 1), the number of grains that may 

appear in a cross-section can vary greatly. The orientation 

dependence of the mid-life modulus is shown for selected 

temperatures in Fig. 3. 

 

 
Figure 3: Orientation- and temperature-dependence of a 

generic DS Ni-base superalloy. 

 

The peak modulus occurring at nearly at 52 is consistent with 

orthotropic materials where EL is less than ET. Weak 

temperature-dependence at low temperatures is illustrated by 

convergence of the curves, while strong temperature-

dependence shows separation between curves. It should be 

noted that as temperature increases to T9, the central tendency 

of the curves begins to disappear. The material is generally less 

transversely-isotropic and increasingly more isotropic at high 

temperatures. 

 Beginning with the DS (or L) orientation, both K and n 
were determined by means of regressing Eq. (6) through 

stabilized stress-strain points. Typical data are shown in Fig. 4, 

and it should be noted that most LCF data emphasize the elastic 

region occurring at or beneath the CPL of the material. 

Properties from tensile curves were used to develop a pseudo 

stabilized cyclic UTS point. The monotonic and cyclic UTS 

points of the DS material are compared in Fig. 5. At low and  
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Figure 4: Stabilized cyclic stress-strain response of select 

orientations of a generic DS Ni-base superalloy at a 

temperature of T5. 

 

 
Figure 5: Temperature-dependence of yield and tensile strength 

of select orientations of a generic DS Ni-base superalloy. 

 

moderate temperatures, the material is shown to cyclically 

harden, but this gives way to a softening response as 

temperature increases. Using this enhanced collection of points, 

K and n were determined for each temperature at which data 

were available (e.g. T1, T3, T4, T5, T6, T7, T8, and T9). The 

material model limits the DS material to cyclically work-harden 

at the same rate across the various orientations. The fit of the 

model through experimental LCF data for the transverse and 

bias orientations are optimized by manipulating the strength 

ratios given in Eq. (5).  

 Collecting the strength ratios between T (i.e., RTT) and 45 

(i.e., RLTs) at the various selected temperatures must be carried 

out to fully develop the Hill’s potential across the range of use 

of the material. Fig. 6 shows the normalized cyclic strength of 

the material along various orientations. Throughout the range of 

temperatures, the L orientation generally displays the maximum 

cyclic strength; however, as temperature increases the material 

exhibits isotropic strength under cyclic loading.  

 For each creep deformation curve, the minimum creep rate 

is determined. In some materials when the stress is in the range 

of and beyond the yield strength of the material, the strain rate  

 
Figure 6: Stabilized cyclic yield surface of a generic DS Ni-

base superalloy at select temperatures.  

 

exhibited in materials may exceed that which is predicted by 

Norton creep. In the event that the stress level applied to the 

material escalates above the yield strength, the Garofalo model 

makes the creep rate of the material diverge. 

 For each temperature, stress versus creep rate data were 

regressed to optimize the fit of the Eq. (7). On the log-log scale, 

the trend with low stress creep data appears linear. Creep data 

are not available at either stress levels above the 0.2% yield 

strength or at key temperatures T1, T3, T4, T5, and T6. It 

should be noted that cast Ni-base superalloys have melting 

temperatures, Tm, in the range of 1300 to 1400C. In most 

materials, creep deformation is negligible at and below 0.4Tm. 

The modeling constants are considered are all temperature-

independent and the Hill’s parameters established earlier are 

carried over and applied to creep conditions.  

3.3 RESULTS 
 The focus of this study on thermomechanical fatigue is that 

of a limited, but inclusive set of parametric simulations that 

replicate the diverse load histories and temperature profiles 

used in engineering practice. These include the maximum and 

minimum cycle temperature, the strain range, Δε, strain ratio, 

phasing, and number of cycles. Factors such as the grain 

orientation, θ, and the addition of dwells are a focus of future 

research. To capture such a large set of loading conditions, a 

parametric study was conducted in ANSYS 14.0 Mechanical 

APDL using a single element model. APDL, short for ANSYS 

Parametric Design Language, is the FORTRAN-based 

programming equivalent to ANSYS Workbench, and allows 

simulations to be set up and conducted in a code-based 

environment. The parametric code performs displacement-

controlled tests of a Solid185 element. Each side of the cubic, 

8-node element has a length of 1mm. A summary of the test 

parameters is shown in Table 1. The values of stress analyzed in 

this study are those associated with the component stress in the 

loading direction, though the material properties defined by the 

Garofalo creep model and the multilinear isotropic hardening 

model are directly modified by the Hill’s anisotropy. 
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Table 1: Summary of parametric testing parameters 

Condition, Symbol (Units) Value 

Strain Range, Δε (mm/mm) 0.0000 - 0.0125 

LCF Test Temperatures, T (ref) T2, T6, T7, T8 

TMF Peak Temperatures, Tmax (ref) T6, T7, T8 

TMF Valley Temperature, Tmin (ref) T2 

TMF Phasing, φ IP, OP 

Strain Ratio, R (mm/mm) 0, -1, -∞ 

Hold Time, thold (hr) 0 

Grain Orientation, θ (°) 90 

LOW-CYCLE FATIGUE 
 Simulated completely-reversed LCF results (Fig. 7) at 

elevated strain ranges demonstrate a large inelastic deformation 

in the initial cycle, followed by a short period of strain-

controlled hardening. Subsequent cycles are considered 

stabilized, with little change in plastic strain, though a decaying 

increase of magnitude in the maximum and minimum stress is 

observed. This causes the magnitude in peak and valley stresses 

to appear as a power law change over time. The hysteresis 

response includes tensile/compressive symmetry, which is an 

expected outcome of the material model.  

 

 
Figure 7: Hysteresis plot of FEA results for an element 

subjected to a completely-reversed isothermal and IP non-

isothermal load for three cycles at T8. 

LOW-CYCLE FATIGUE WITH MEAN STRESS 
 Hysteresis response for isothermal zero-to-tension and 

zero-to-compression loadings can be described as mirror 

images of one another resulting from the material symmetry; 

therefore, only the zero-to-tension case will be considered, 

which is shown in Fig. 8. Similar to the completely-reversed 

case, the plotted response contains a proportionally large 

quantity of inelastic strain in the first cycle. Subsequent cycles 

are predominantly elastic, with very little plasticity localized at 

the peak strain. The result is a straight line with a slight 

curvature at the end that creates a minor downward shift 

between cycles. The stress relaxation due to creep combined 

with strain hardening with continuous cycling lead to a mean 

stress that gradually reduces to zero. 

Figure 8: Hysteresis plot of FEA results for an element 

subjected to a zero-to-tension isothermal and IP non-isothermal 

load for three cycles at T8. 

THERMOMECHANICAL FATIGUE 
 The IP and OP completely-reversed simulated hysteresis 

response takes the form of a traditional TMF loop, where the 

stress at the peak temperature contains a noticeable curvature 

and is lower in magnitude than the stress at the valley 

temperature. The completely-reversed IP and OP response is 

mirrored. The curvature and dissimilar stresses (Fig. 7) at the 

extremes are the result of the mechanical and thermal properties 

changing with respect to temperature. At T2, the elastic 

modulus and yield strength are larger than that of T8, but little 

to no creep is developed. The intermediate temperatures in the 

TMF cycle must also be considered. The dissimilarity of 

mechanical properties between temperatures, combined with 

the buildup of creep strain results in the curvature at the peak of 

each cycle, where the maximum stress is not necessarily at the 

maximum strain. As the number of cycle increases, the 

hysteresis loop is shifted downward by a decreasing amount. 

 Finite element analysis results are compared with 

experimental data of the first and mid-life cycle in Fig. 9. 

Although the material model is created from isothermal mid-

life data, the simulated results exhibit a stronger resemblance to 

the first cycle TMF data. Closer examination reveals that the 

main source of error is derived from the response at the lower 

temperature. As the stress at this location is less than the yield 

strength of the material, no plastic deformation occurs in the 

simulation. In reality, changes in the yield surface and 

accumulated damage would allow this deformation to occur. It 

can be concluded that the plasticity model chosen for these 

simulations allows for a reasonable approximation, but a more 

complex, non-linear model is needed to increase fidelity.  

TMF WITH MEAN STRESS 
 Due to the tensile/compressive symmetry of the material, 

only the zero-to-tension case is considered (Fig. 8). IP Results 

are similar to that of the completely-reversed case, though the 

effect of TMF on the shape of the hysteresis loop is more 

pronounced. Identical to the completely-reversed case, the first 

cycle experiences a large amount of inelastic deformation, 

which is stabilized in later cycles. This deformation has a  
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Figure 9: FEA hysteresis data plotted against experimental 

results of a TMF completely-reversed (top) T2–T8 IP with a 

strain range of 0.0085 mm/mm (middle) T2-T7 IP with a strain 

range of 0.0125 mm/mm (bottom) T2-T8 OP with a strain range 

of 0.0125mm/mm. 

 

magnifying effect to the mismatch of peak stress and peak 

strain, where the stress appears to decrease in tension. After this 

initial cycle, the response at lower temperatures can be seen as 

a straight line that retraces its path after a minimum stress is 

reached, indicating that no plasticity or creep is developed in 

this stage. The response shifts downward with a decreasing 

amount in successive cycles. The OP loading condition is very 

similar to the isothermal condition at the minimum temperature. 

This is expected, as the maximum temperature associated with 

conditions that promote creep and plasticity, is coincident with 

the location of zero strain. 

4. MODEL IMPROVEMENTS 
 Parametric test data in the following sections are presented 

in a unique plot where maximum and minimum stress is 

compared to their respective strain range. Individual graphs are 

created for each cycle number, maximum temperature and 

strain ratio. Each plot accounts for the isothermal response at 

the high temperature, isothermal response at the low 

temperature, IP TMF and OP TMF. The source of these plots is 

modeled in Fig. 10.  

 

 
 

 
 

 

Figure 10: (top) Sample minimum/maximum stress to strain 

range plot with (bottom) sketches of originating hysteresis 

loops. 
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 Each plot in this report contains normalized data after the 

response has stabilized. It should be noted that the LCF data 

used to correlate isothermal and non-isothermal response must 

be data acquired at the same rate and cycle number as the TMF 

test under consideration. Incorporation of a rate-dependent 

analysis method such as the Zener-Hollomon parameter, the 

Perzyna model, or the Peirce model [13] to conform to the 

standard testing rate of 0.001 mm/mm/s is a topic of future 

study. 

 The direct implementation of these relations into the 

findings of this study is a topic of future research. Though no 

concrete formulation has been presented, finite element results 

obtained in this study suggest that an equivalent relaxed stress 

obtained using a creep model at the maximum cycle 

temperature can be used to modify the cyclic hardening 

coefficient. This would provide a simple approximation of the 

rate-dependent effects in isothermal and non-isothermal stress 

prediction.  

4.1 LOW-CYCLE FATIGUE 
 A constitutive model for estimating the minimum and 

maximum stress under thermomechanical fatigue using 

isothermal properties must begin with the analysis of LCF data. 

Incorporation of completely-reversed LCF data into the 

maximum/minimum stress to strain range (MSSR) plot are 

shown in Fig. 11. Due to the single element design and 

displacement-controlled test conditions, the resulting maximum 

and minimum stress occur at the maximum and minimum 

strain, respectively; therefore, the relation between strain range 

and maximum/minimum stress can be formulated using 

Ramberg-Osgood equation described in Sec. 2. However, for 

the completely-reversed case, a more accurate model can be 

achieved by employing a modification of the Masing’s model 

traditionally established as 

 

 

1

2
2

n

E K

 


  
     

   (8) 

 

where Δε is the strain range and Δσ is the stress range. Due to 

the tensile/compressive symmetric nature of the material, the 

maximum stress is equal to half the stress range, and the 

minimum stress is the negative of the maximum stress, 

resulting in 
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min max    

 

where σmax is the maximum stress and σmin is the minimum 

stress. The result of this change on the MSSR plot is a 

reduction of the slope to half of the original value. A more 

accurate representation of the simulated data on a MSSR plot  

 
 

 
 

 
 

Figure 11: MSSR plot of a (top) T2–T6, (middle) T2-T7, and 

(bottom) T2-T8 completely-reversed load with accompanying 

experimental data and formulated model. 

 

can be achieved by also using half the original value of the 

cyclic hardening exponent. This results in the expression 
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2

max max2 2
2

2

n

E K

 


 
     

   (10) 

min max    

 

where the value of K’ and n’ are selected using LCF data at a 

TMF rate.  

4.2 LOW-CYCLE FATIGUE WITH MEAN STRESS 
 Similar to the completely-reversed case, simulated zero-to-

tension and zero-to-compression data can be analyzed on a 

MSSR plot, shown in Fig. 12, where a Ramberg-Osgood trend 

can be modeled for the maximum stress in zero-to-tension case. 

This relation is 

 

 

1

max max
n

E K

 


 
     

   (11) 

 

In order to assess the effect of the mean stress, the minimum 

stress curve of zero-to-tension case is considered. The MSSR 

plot can be segmented into three distinct regions, outlined in 

Fig. 13. Strain ranges in which the maximum strain is unable to 

produce a stress that promotes yielding allows for purely elastic 

deformation (Region I). Therefore, the minimum stress is zero 

for this region. However, after plasticity is introduced (Region 

II), this minimum stress becomes negative, as the element is 

subjected to an elastic compressive stress at the minimum 

strain. Under extended strain range conditions, this minimum 

stress begins to deform plastically (Region III), which in turn 

affects the response at the maximum stress. A similar, though 

inverse, response can be seen for the zero-to-compression 

cases. In the following sections, the regions described above 

will be numbered according to the TMF response. 

 Analyzing the segment of the zero-to-tension plot that does 

not extend into Region III, we can conclude that the inelastic 

response at the maximum stress in Region I and II is the driving 

factor for the minimum stress. The minimum stress in Regions I 

and II is modeled as 

 

 

1

max

min

n

E
K


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 
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    (12) 

 

In Region III, where yielding occurs in the compressive region, 

the mean stress shifts to zero, even though the strain ratio 

indicates zero-to-tension loading. As the mean stress is zero, the 

minimum stress is equal to the negative maximum stress.  

4.3 THERMOMECHANICAL FATIGUE 
 Superimposing isothermal and non-isothermal simulation 

data on a MSSR plot (Fig. 11) reveals that the shapes of both 

material responses are similar. Given a set of unknown E, K 

and n constants, an equation of similar form to Eq. (9) can be 

used to correlate the maximum and minimum stress to the 

strain range. The maximum stress of the IP loading is 

considered first.  

 

 
 

 
 

 
 

Figure 12: MSSR plot of a (top) T2-T6, (middle) T2-T7, and 

(bottom) T2-T8 zero-to-tension load with formulated model. 
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Figure 13: Maximum/Minimum stress to strain range plot of 

simulated T8 isothermal data with separated regions. 

 

By inspection of Region I, the TMF equivalent elastic modulus 

of the maximum stress is equal to the elastic modulus at the 

peak temperature. Similarly, the equivalent elastic modulus of 

the minimum stress is equal to the elastic modulus at the lower 

temperature. In Region II, the resulting maximum and 

minimum stress of the TMF response are lower than that of the 

isothermal response. Simulated results show that the maximum 

stress can be successfully modeled using 
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   (13) 

 

where B is a unitless homologous modulus defined by  

 

   
,max

,min

iso

iso

E
B

E
     (14) 

 

where Eiso,max is the elastic modulus at the maximum 

temperature, Eiso,min is the elastic modulus at the minimum 

temperature, Kiso,max is the cyclic hardening coefficient at the 

maximum temperature and niso,max is the cyclic hardening 

exponent at the maximum temperature. Effectively, the simple 

addition of a factor, B, into the Masing model allows for both 

isothermal and non-isothermal prediction of the maximum and 

minimum stress if the value of B is the homologous modulus in 

non-isothermal conditions, and 0.5 in isothermal conditions. In 

order to estimate the influence of creep, the isothermal elastic 

and plastic material properties used in these empirical 

correlations are those associated with a TMF strain rate.    

 In IP loading, the minimum stress response is strongly 

related to the isothermal response at the minimum temperature. 

As the material properties at the minimum temperature exhibit 

a yield strength higher than that of the maximum temperature, 

the minimum stress in the TMF response does not begin to 

yield at the same time as the maximum stress. That is to say, the 

curvature in the minimum stress response is only due to the 

plasticity and creep formed in the maximum stress. Therefore, 

in Region II, the minimum stress can be modeled as 

 

 max

min ,min

,max
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E
E


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 
   (15) 

 

This model, as well as experimental data, is included in the 

MSSR plot of Fig. 11. Due to the symmetric nature of the 

material, an estimate of the OP response can be achieved by 

simply multiplying the resulting maximum and minimum 

stresses by a factor of -1.  

4.4 TMF WITH MEAN STRESS 
 The MSSR plot for a zero-to-tension in-phase and out-of-

phase response is shown in Fig. 12. Given the similarity with 

the zero-to-tension isothermal response, the maximum stress is 

expected to fit a Ramberg-Osgood relationship. The IP load 

condition is analyzed first.  

 The maximum stress in Region I contains the same slope 

as the isothermal response at the peak temperature. Therefore, 

the equivalent elastic modulus is the same value as that of the 

LCF at the peak temperature. The minimum stress in this region 

is zero, as the strain ratio indicates zero-to-tension, and no 

plasticity is developed. In Region II, the maximum stress under 

TMF is larger than the LCF case, which is unexpected, as the 

completely-reversed case results in a non-isothermal result that 

is lower than that of the isothermal response. The origin of 

these contrasting trends is a topic of future study, though the 

effect of creep is a likely factor. Despite this, the maximum 

stress in Region I and II can be formulated with Eq. (11) such 

that the values of K and n are those of isothermal data at the 

peak temperature at a non-isothermal strain rate, and the value 

of n is multiplied by the homologous modulus. Similar to the 

completely-reversed case, the minimum stress can be related to 

the inelastic strain formed by the maximum stress. Therefore 

the minimum stress is approximated using Eq. (15). The non-

isothermal response did not enter Region III in the strain range 

under consideration.  

 The maximum/minimum stress to strain range plot also 

reveals that the maximum stress in the OP case is nearly 

identical to that of the isothermal case at the minimum 

temperature. Therefore the maximum stress for an OP zero-to-

tension load is calculated from Eq. (11) where the values of K 

and n are the cyclic hardening parameters evaluated at the 

minimum temperature. The value of minimum stress in the OP 

response is similar to that of the IP response, but is closely 

related to elastic modulus at the minimum temperature, 

formulated as 

  

 max

min ,max

,min

iso

iso

E
E


 

 
     

 
    (16) 
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In short, the maximum stress in an isothermal LCF or IP TMF 

zero-to-tension loading can be modeled using a modified 

Ramberg-Osgood model, where a homologous modulus is 

multiplied to the cyclic hardening exponent. In the OP TMF 

zero-to-tension loading, this homologous modulus is not 

needed, and is of the same form as the Ramberg-Osgood model.  

5. CONCLUSIONS 
 Design of turbomachinery components subject to service 

conditions requires accurate approximations of hysteresis 

response. Under non-isothermal conditions, power-law 

plasticity models have been extended to predict peak/valley 

stress levels. Although the candidate material employed in the 

study is a DS Ni-base superalloy, it is plausible that the 

approaches developed here are applicable to cyclic stress-strain 

responses of two-parameter power law plasticity solids. The 

model was demonstrated to simplify if the temperature 

conditions become nominally isothermal. Ostensibly, the 

stresses in some components are thermally-driven, i.e., thermal 

fatigue. The novel model presented here is validated for zero-

to-tension (R = 0, A = 1), and zero-to-compression (R = -, A 

= -1) situations. Implementation of these approaches is realized 

as a set of parametric simulations exercised to provide non-

isothermal results. Analysis of this data yields a collection of 

empirical models able to approximate the maximum and 

minimum stress under non-isothermal conditions. Though 

accurate, these formulations are straight-forward material-based 

extensions to the Ramberg-Osgood and Masing models. 
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